Some results about cohomology of integral Specht modules

CHRISTIAN WEBER
Lehrstuhl D fr Mathematik, RWTH Aachen
Templergraben 64 D-52062 Aachen Germany

In 2003, Szczepański formulated the conjecture: For any finite group G there exists a Bieberbach group with holonomy group G and \mathbb{Q} -multiplicity free holonomy representation.

In the special case of the symmetric groups, this conjecture can be reformulated in the following way: For any $n \in \mathbb{Z}_{>0}$ there exist distinct partitions $\lambda_1, \ldots, \lambda_m \vdash n$, such that $\bigoplus_{j=1}^m S_{\mathbb{Z}}^{\lambda_j}$ is a faithful $\mathbb{Z}S_n$ -lattice, and the cohomology group $H^2(S_n, \bigoplus_{j=1}^m S_{\mathbb{Z}}^{\lambda_j})$ contains a special element, that is an element α with $\operatorname{res}_U^{S_n}(\alpha) \neq 0$ for any subgroup $U \leq S_n$. $(S_{\mathbb{Z}}^{\lambda_j})$ means the integral Specht module associated to the partition $\lambda_j \vdash n$.)

We discuss some partial results which lead into the direction of a proof of this special case.