RECOLLEMENTS AND TILTING OBJECTS

LIDIA ANGELERI HÜGEL Università di Verona, Italy (joint work with Steffen König and Qunhua Liu)

March 2009

Let $\lambda:R\to \mathcal{S}$ be a ring homomorphism. Then there is an embedding

 $\lambda_* : \operatorname{Mod-}S \to \operatorname{Mod-}R.$

Let $\lambda:R\to S$ be a ring homomorphism. Then there is an embedding

$$\lambda_* : \text{Mod-}S \to \text{Mod-}R.$$

The following statements are equivalent.

- 1. λ is a ring epimorphism.
- 2. $\lambda_* : \text{Mod-}S \to \text{Mod-}R$ is a full embedding.

Theorem (Geigle-Lenzing 1991). The following statements are equivalent.

1. λ is a ring epimorphismus, and $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$.

Theorem (Geigle-Lenzing 1991). The following statements are equivalent.

- 1. λ is a ring epimorphismus, and $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$.
- 2. $\operatorname{Ext}^i_R(M,N) \cong \operatorname{Ext}^i_S(M,N)$ for all $M,N \in \operatorname{Mod}-S$, $i \geq 1$.

Theorem (Geigle-Lenzing 1991). The following statements are equivalent.

- 1. λ is a ring epimorphismus, and $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$.
- 2. $\operatorname{Ext}^i_R(M,N) \cong \operatorname{Ext}^i_S(M,N)$ for all $M,N \in \operatorname{Mod}-S$, $i \geq 1$.
- 3. The functor

$$\lambda_*:D(S)\to D(R)$$

induced by λ is a full embedding.

Theorem (Geigle-Lenzing 1991). The following statements are equivalent.

- 1. λ is a ring epimorphismus, and $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$.
- 2. $\operatorname{Ext}^i_R(M,N) \cong \operatorname{Ext}^i_S(M,N)$ for all $M,N \in \operatorname{Mod}-S$, $i \geq 1$.
- 3. The functor

$$\lambda_*:D(S)\to D(R)$$

induced by λ is a full embedding.

Then λ is said to be a homological ring epimorphism.

Definition. A module T_R is called a (1-) tilting module provided

Definition. A module T_R is called a (1-) tilting module provided (T1) proj.dim $(T) \le 1$;

Definition. A module T_R is called a (1-) tilting module provided (T1) proj.dim $(T) \le 1$;

(T2)
$$\operatorname{Ext}_{R}^{1}(T, T^{(I)}) = 0$$
 for each set I ;

Definition. A module T_R is called a (1-) tilting module provided

- (T1) proj.dim $(T) \leq 1$;
- (T2) $\operatorname{Ext}_{R}^{1}(T, T^{(I)}) = 0$ for each set I;
- (T3) there is an exact sequence $0\to R\to T_0\to T_1\to 0$ where $T_0,\,T_1$ belong to Add T.

Classifying tilting modules

If T is a tilting module, then

$$\operatorname{Gen} T = \operatorname{Ker} \operatorname{Ext}_R^1(T, -)$$

is its tilting class.

Classifying tilting modules

If T is a tilting module, then

$$\operatorname{Gen} T = \operatorname{Ker} \operatorname{Ext}_R^1(T, -)$$

is its tilting class.

Two tilting modules T and T' are equivalent if $\operatorname{Gen} T = \operatorname{Gen} T'$.

Classifying tilting modules

Theorem (Bazzoni–Herbera 2005). Every tilting class is of the form

$$\operatorname{Gen} T = \operatorname{Ker} \operatorname{Ext}_R^1(\mathcal{U}, -)$$

where $U \subset \text{mod-}R$ be a set of R-modules of pdim 1.

Let now $\mathcal{U} \subset \operatorname{mod-}R$ be a set of R-modules of pdim 1. For each $U \in \mathcal{U}$, fix a projective resolution in $\operatorname{mod-}R$

$$0 \to P \overset{\alpha_U}{\to} Q \to U \to 0$$

and set $\Sigma = \{\alpha_U \mid U \in \mathcal{U}\}.$

Let now $\mathcal{U} \subset \operatorname{mod-}R$ be a set of R-modules of pdim 1. For each $U \in \mathcal{U}$, fix a projective resolution in $\operatorname{mod-}R$

$$0 \rightarrow P \stackrel{\alpha_U}{\rightarrow} Q \rightarrow U \rightarrow 0$$

and set $\Sigma = \{\alpha_U \mid U \in \mathcal{U}\}.$

Theorem (Schofield). There is $\lambda \colon R \to R_{\mathcal{U}}$ such that

- 1. λ is Σ -inverting: all $\alpha_U \otimes_R 1_{R_U}$ are isomorphisms,
- 2. λ is *universal* with respect to 1.

Let now $\mathcal{U} \subset \operatorname{mod-}R$ be a set of R-modules of pdim 1. For each $U \in \mathcal{U}$, fix a projective resolution in $\operatorname{mod-}R$

$$0 \rightarrow P \stackrel{\alpha_U}{\rightarrow} Q \rightarrow U \rightarrow 0$$

and set $\Sigma = \{\alpha_U \mid U \in \mathcal{U}\}.$

Theorem (Schofield). There is $\lambda \colon R \to R_{\mathcal{U}}$ such that

- 1. λ is Σ -inverting: all $\alpha_U \otimes_R 1_{R_U}$ are isomorphisms,
- 2. λ is *universal* with respect to 1.

 $\lambda \colon R \to R_{\mathcal{U}}$ is a ring epimorphism with $\operatorname{Tor}_{1}^{R}(R_{\mathcal{U}}, R_{\mathcal{U}}) = 0$, the universal localization of R at \mathcal{U} .

A classification result. Over a *Dedekind domain*, every tilting module is equivalent to a module of the form

$$R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$$

where $\mathcal{U}=\{R/\mathfrak{m}\mid \mathfrak{m}\in \mathfrak{P}\}$ and \mathfrak{P} is a set of maximal ideals of R (Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

A classification result. Over a *Dedekind domain*, every tilting module is equivalent to a module of the form

$$R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$$

where $\mathcal{U}=\{R/\mathfrak{m}\mid \mathfrak{m}\in \mathfrak{P}\}$ and \mathfrak{P} is a set of maximal ideals of R (Trlifaj-Wallutis / Bazzoni-Eklof-Trlifaj 2005).

Similar results also for commutative 1-Gorenstein rings, HNP-rings ...

Further tilting modules.

Example. Let R be a (connected) hereditary finite dimensional algebra. The Auslander-Reiten-quiver of R is of the form

p is the preprojective componentq is the preinjective componentt is a family of regular components.

Further tilting modules.

There is a torsion pair $(\mathcal{P}, \mathcal{L})$ maximal w.r.t. $\mathbf{p} \subset \mathcal{P}$ e $\mathbf{t} \subset \mathcal{L}$

with a large tilting module $L \in \text{Mod-}R$ such that $\text{Gen}L = \mathcal{L}$ (Lukas 1991, Kerner–Trlifaj 2005).

Further tilting modules.

There is a torsion pair $(\mathcal{P}, \mathcal{L})$ maximal w.r.t. $\mathbf{p} \subset \mathcal{P}$ e $\mathbf{t} \subset \mathcal{L}$

with a large tilting module $L \in \text{Mod-}R$ such that $\text{Gen}L = \mathcal{L}$ (Lukas 1991, Kerner–Trlifaj 2005).

Note: L is **not** equivalent to a tilting module of the form $S \oplus S/R$ for some injective ring epimorphism $R \to S$.

Theorem (A-Archetti 2008). For every tilting module ${\cal T}$ there are an exact sequence

$$0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

and a set \mathcal{U} a set of R-modules of pdim 1 such that

- 1. $T_0, T_1 \in \operatorname{Add} T$,
- 2. Gen $T = \text{KerExt}_R^1(\mathcal{U}, -)$,

Theorem (A-Archetti 2008). For every tilting module ${\mathcal T}$ there are an exact sequence

$$0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

and a set \mathcal{U} a set of R-modules of pdim 1 such that

- 1. $T_0, T_1 \in \operatorname{Add} T$,
- 2. Gen $T = \text{KerExt}_R^1(\mathcal{U}, -)$,
- 3. the perpendicular category $T_1^{\perp} = \bigcap_{i \geq 0} \operatorname{KerExt}_R^i(T_1, -)$ coincides with the essential image of the functor

$$\lambda_*: \operatorname{Mod-}R_{\mathcal{U}} \to \operatorname{Mod-}R$$

induced by the universal localization λ at \mathcal{U} .

Let T and T_1 be as above. Consider

$$\mathcal{X} = \operatorname{Tria} \mathcal{T}_1$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains \mathcal{T}_1 and is closed under small coproducts,

Let T and T_1 be as above. Consider

$$\mathcal{X} = \operatorname{Tria} \mathcal{T}_1$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains \mathcal{T}_1 and is closed under small coproducts,

$$\mathcal{Y} = \mathsf{Ker}\,\mathsf{Hom}_{\mathcal{D}(R)}(\mathcal{X},-)$$

Let T and T_1 be as above. Consider

$$\mathcal{X} = \text{Tria } \mathcal{T}_1$$

the smallest full triangulated subcategory of $\mathcal{D}(R)$ which contains T_1 and is closed under small coproducts,

$$\mathcal{Y} = \mathsf{Ker}\,\mathsf{Hom}_{\mathcal{D}(R)}(\mathcal{X},-)$$

Note: \mathcal{Y} is closed under small coproducts.

Theorem (A–König–Liu 2008). Every tilting module T of projective dimension one induces a recollement

with the following properties:

- T_1 is an exceptional generator of \mathcal{X} .
- $T_2 = q(R)$ is a compact generator of \mathcal{Y} .

Theorem (A–König–Liu 2008). Every tilting module T of projective dimension one induces a recollement

$$\mathcal{D}(R_{\mathcal{U}}) \sim \mathcal{Y} \xrightarrow{\mathrm{inc}} \mathcal{D}(R) \xrightarrow{\mathrm{inc}} \mathcal{X}$$

with the following properties:

- T_1 is an exceptional generator of \mathcal{X} .
- $T_2 = q(R)$ is a compact generator of \mathcal{Y} .
- T_2 tilting object in $\mathcal{Y} \Leftrightarrow \lambda : R \to R_{\mathcal{U}}$ homological epi. In this case λ_* induces an equivalence $\mathcal{D}(R_{\mathcal{U}}) \sim \mathcal{Y}$.

Theorem (A–König–Liu 2008). Every tilting module T of projective dimension one induces a recollement

$$\mathcal{D}(R_{\mathcal{U}}) \sim \mathcal{Y} \xrightarrow{\text{inc}} \mathcal{D}(R) \xrightarrow{\text{inc}} \mathcal{X} \sim \mathcal{D}(V)$$

with the following properties:

- T_1 is an exceptional generator of \mathcal{X} .
- $T_2 = q(R)$ is a compact generator of \mathcal{Y} .
- T_2 tilting object in $\mathcal{Y} \Leftrightarrow \lambda : R \to R_{\mathcal{U}}$ homological epi. In this case λ_* induces an equivalence $\mathcal{D}(R_{\mathcal{U}}) \sim \mathcal{Y}$.
- $\mathcal{X} \sim \mathcal{D}(V)$ with $T_1 \mapsto V_V$ for some ring $V \Leftrightarrow T \in \text{mod-}R$ up to equivalence.

Over the Kronecker-algebra

$$\bullet \xrightarrow{\alpha} \bullet$$

every tilting module induces a recollement

$$\mathcal{D}(R_{\mathcal{U}})$$
 \longleftarrow $\mathcal{D}(R)$ \longleftarrow $\text{Tria } R_{\mathcal{U}}/R$

Over the Kronecker-algebra

$$\bullet \xrightarrow{\alpha} \bullet$$

every tilting module induces a recollement

$$\mathcal{D}(R_{\mathcal{U}})$$
 (R) (R) (R) (R) (R)

and the infinite dimensional tilting modules, up to equivalence, are:

- the tilting module L with $\mathrm{Gen} L = \mathcal{L}$
- $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R$ where \mathcal{U} is a set of simple regular modules.

Over a Prüfer domain every tilting module T induces a recollement

$$\mathcal{D}(R_{\mathcal{U}})$$
 $\stackrel{\mathrm{inc}}{\longleftarrow} \mathcal{D}(R)$ $\stackrel{\mathrm{inc}}{\longleftarrow}$ $\mathrm{Tria}\,R_{\mathcal{U}}/R$

Over a Prüfer domain every tilting module T induces a recollement

and T is of the form $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R \iff \operatorname{pd} R_{\mathcal{U}} \leq 1$.

Over a Prüfer domain every tilting module T induces a recollement

$$\mathcal{D}(R_{\mathcal{U}})$$
 (R) (R) $(R_{\mathcal{U}})$ $(R_{\mathcal{U}})$

and T is of the form $R_{\mathcal{U}} \oplus R_{\mathcal{U}}/R \iff \operatorname{pd} R_{\mathcal{U}} \leq 1$.

Moreover

 $\{ \text{equivalence classes of tilting modules} \} \overset{1-1}{\leftrightarrow} \{ \text{perfect Gabriel topologies} \}$

$$T\mapsto (R\to R_{\mathcal{U}})$$

(Bazzoni-Eklof-Trlifaj, Salce 2005).

Over the quasi-hereditary algebra $R=egin{array}{cccc}1&2&\oplus&13&\oplus&rac{3}{2}\\1&&2&&2\end{array}$ consider the characteristic tilting module

$$T = \begin{array}{ccc} 1 & 2 \\ 2 & \oplus & 13 & \oplus & 3 \\ 1 & & 2 & \end{array}$$

Over the quasi-hereditary algebra R= $\begin{bmatrix}1&2\\2&\oplus&13\\1&2\end{bmatrix}$ consider the characteristic tilting module

$$T = \begin{array}{ccc} 1 & 2 \\ 2 & \oplus & 13 & \oplus & 3 \\ 1 & & 2 & \end{array}$$

with the exact sequence

$$0 \to R \to \mathit{T}_0 \to \mathit{T}_1 \to 0$$

with

Over the quasi-hereditary algebra R= $\begin{bmatrix}1&2\\2&\oplus&13\\1&2\end{bmatrix}$ consider the characteristic tilting module

$$T = \begin{array}{ccc} 1 & 2 \\ 2 & \oplus & 13 & \oplus & 3 \\ 1 & & 2 \end{array}$$

with the exact sequence

$$0 \rightarrow R \rightarrow T_0 \rightarrow T_1 \rightarrow 0$$

with

Here $\lambda: R \to R_{\mathcal{U}}$, the universal localization at $\mathcal{U} = \left\{ \begin{array}{c} 2 \\ 1 \end{array} \right\}$, is **not** a homological epimorphism.