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Preliminaries

A – finite-dimensional algebra over a fixed algebraically closed field k

modA(d) – affine variety of d-dimensional A-modules

Gld(k) – acts on modA(d) by conjugation

O(M) – Gld(k)-orbit of a module M in modA(d)

For M,N ∈ modA(d),N is called degeneration of M if N ∈ O(M)
(M ≤deg N)

Fact

≤deg is a partial order on modA(d).
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Preliminaries

M ≤ext N ⇔ there are modules Mi , Ui , Vi and short exact sequences

0 → Ui → Mi → Vi → 0

in mod A such that M = M1, Mi+1 = Ui ⊕ Vi , 1 ≤ i ≤ s, and
N = Ms+1 for some 1 ≤ s ∈ N

Facts
1 ≤ext is a partial order on modA.

2 For all modules M,N ∈ modA(d), we have

M ≤ext N =⇒ M ≤deg N.

Remark

The converse implication is not true in general even for very simple
representation-finite algebras as in the following Riedtmann’s example.
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Riedtmann’s example

Example

Let A = kQ/I , where

Q : 1
β // 2 EDBC α@AOO , I = 〈α2〉.

Let M and N be two A-modules given by the following representations:

M : k
[ 1
0 ]

// k2 EDBC [ 0 0
1 0 ]@AOO N : k

[ 0
1 ]

// k2 EDBC [ 0 0
1 0 ]@AOO

Then kQ/I is an algebra of finite type and M, N are nonisomorphic and
indecomposable. Moreover, M <deg N, but M 6<ext N.

(M <ext N =⇒ N − decomposable)
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Components of the Auslander-Reiten quiver

ΓA – Auslander-Reiten quiver of A

C – connected component of ΓA

C is said to be generalized standard if rad∞(X ,Y ) = 0 for all
modules X , Y in C
C is said to be almost cyclic if all but finitely many modules of C lie
on oriented cycles contained entirely in C
C is said to be coherent if the following two conditions are satisfied:

1 For each projective module P in C there is an infinite sectional path
P = X1 → X2 → · · · → Xi → Xi+1 → · · · in C,

2 For each injective module I in C there is an infinite sectional path
· · · → Yj+1 → Yj → · · · → Y2 → Y1 = I in C.
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Möbius and coil configurations

A full translation subquiver of ΓA of the form

Y2
!!DDD

Y1
##GG

Y1

;;ww

%%JJJ
◦

!!CCC
◦

==zzz

##GG
G Y2

◦
;;www

%%JJJ

=={{{ ◦
99ttt

%%KKK
K

99ttt

##GGG N

::uuu

##GGG

τZ

::ttt

$$JJ Z

==zzz

M

;;ww

is said to be a Möbius configuration.
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Möbius and coil configurations

A full translation subquiver of ΓA of the form

◦
##GG ◦

##GG
◦

;;ww

##GG // ◦ // ◦
;;ww

##GG // ◦ // ◦
##GG;;ww ◦

;;ww ◦
;;ww

##GG;;ww

%%KKK
K

N

::uuu

##GGG ##GGG N
##GGG

τZ

::ttt

$$JJ Z

==zzz
τZ

::ttt

$$JJ Z

M

;;ww
M

;;ww

is said to be a coil configuration.
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Results

For a module M ∈ mod A, we shall denote by [M] the image of M in
the Grothendieck group K0(A) of A.

Thus [M] = [N] if and only if M and N have the same simple
composition factors including the multiplicities.

Proposition

Let A be an algebra and C a component in ΓA which contains a Möbius
configuration or a coil configuration. Then there exist indecomposable
modules M and N in C such that [M] = [N] and M <deg N.
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Results

Proof. We need the following facts.

LEMMA

Let A be an algebra and

0 → M1
[f1,u1]t−−−−−−−−→ N1 ⊕M2

[u2,f2]−−−−−−−−→ N2 → 0

0 → M2
[f2,v1]t−−−−−−−−→ N2 ⊕M3

[v2,f3]−−−−−−−−→ N3 → 0

be short exact sequences in modA. Then the sequence

0 → M1
[f1,v1u1]t−−−−−−−−−−−−−→ N1 ⊕M3

[−v2u2,f3]−−−−−−−−−−−−−→ N3 → 0

is exact.
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Results

PROPOSITION (Riedtmann)

If
0 → Z → Z ⊕M → N → 0

is an exact sequence in modA then M ≤deg N.

The same conclusion holds for an exact sequence

0 → N → M ⊕ Z → Z → 0.

Piotr Malicki (UMK) Degenerations in the additive categories Cologne, 5.03.2009 10 / 15



Results

PROPOSITION (Riedtmann)

If
0 → Z → Z ⊕M → N → 0

is an exact sequence in modA then M ≤deg N.

The same conclusion holds for an exact sequence

0 → N → M ⊕ Z → Z → 0.

Piotr Malicki (UMK) Degenerations in the additive categories Cologne, 5.03.2009 10 / 15



Results

Assume first that C admits a Möbius configuration.

Y2 &&LL Y1 ''OO
Y1

77oo

((QQQ ◦ &&MM ◦
88rr
''OOO Y2

◦
77ooo
))SSS

88qq ◦
66mmm

))SSS
55kkk

''OO N
66mmm
''OO

τZ
66mm
((QQ Z

88qq

M
77oo

Applying LEMMA to the short exact sequences given by the meshes of the
above translation quiver we get exact sequences

0 → N → Y1 ⊕ Z → Y2 → 0,

and
0 → Y1 → Y2 ⊕M → Z → 0.

Applying LEMMA again

0 → N → M ⊕ Z → Z → 0.
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Y2 &&LL Y1 ''OO
Y1

77oo

((QQQ ◦ &&MM ◦
88rr
''OOO Y2

◦
77ooo
))SSS

88qq ◦
66mmm

))SSS
55kkk

''OO N
66mmm
''OO

τZ
66mm
((QQ Z

88qq

M
77oo

Applying LEMMA to the short exact sequences given by the meshes of the
above translation quiver we get exact sequences

0 → N → Y1 ⊕ Z → Y2 → 0,

and
0 → Y1 → Y2 ⊕M → Z → 0.

Applying LEMMA again

0 → N → M ⊕ Z → Z → 0.

Piotr Malicki (UMK) Degenerations in the additive categories Cologne, 5.03.2009 11 / 15



Results

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that
M ≤deg N. Then M <deg N, since M 6' N.

If C admits a coil configuration the proof is similar.

Theorem

Let A be an algebra and C a generalized standard almost cyclic coherent
component of ΓA. The following conditions are equivalent:

1 C contains neither a Möbius configuration nor a coil configuration.

2 The partial orders ≤deg and ≤ext coincide on add(C).

In the proof the following characterization of almost cyclic coherent
component of ΓA is essentially applied:

Theorem (M – Skowroński)

Let C be a connected component of ΓA. Then C is coherent and almost
cyclic if and only if C is a generalized multicoil.
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1 C contains neither a Möbius configuration nor a coil configuration.

2 The partial orders ≤deg and ≤ext coincide on add(C).

In the proof the following characterization of almost cyclic coherent
component of ΓA is essentially applied:

Theorem (M – Skowroński)

Let C be a connected component of ΓA. Then C is coherent and almost
cyclic if and only if C is a generalized multicoil.
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Separating family of components

Let A be an algebra. A family C = (Ci )i∈I of components of ΓA is said to
be separating in mod A if the modules in ind A split into three disjoint
classes PA, CA = C and QA such that:

1 CA is a sincere generalized standard family of components;

2 HomA(QA,PA) = 0, HomA(QA, CA) = 0, HomA(CA,PA) = 0;

3 any morphism from PA to QA factors through add(CA).

Recall that CA is called sincere if every simple A-module occurs as a
composition factor of a module in CA.

Note that then PA and QA are uniquely determined by CA.
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Results

Following Drozd an algebra A is said to be tame if, for each dimension d ,
there exists a finite number of k[x ]− A-bimodules Mi which are finitely
generated and free as left k[x ]-modules, and all but finite number of
isomorphism classes of indecomposable A-modules of dimensional d are of
the form k[x ]/(x − λ)⊗k[x] Mi for some i and some λ ∈ k.

Corollary

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA. Then the orders ≤deg and ≤ext coincide on mod A if
and only if A is tame and CA contains neither a Möbius configuration nor a
coil configuration.
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