Degenerations in the additive categories of almost cyclic coherent Auslander-Reiten components

Piotr Malicki

University of Cologne

March 5, 2009

Piotr Malicki (UMK)

Degenerations in the additive categories

Cologne, 5.03.2009 1 / 15

Piotr Malicki (UMK)

メロト メポト メヨト メヨト

æ

• A – finite-dimensional algebra over a fixed algebraically closed field k

A - finite-dimensional algebra over a fixed algebraically closed field k
mod_A(d) - affine variety of d-dimensional A-modules

- A finite-dimensional algebra over a fixed algebraically closed field k
- $mod_A(d)$ affine variety of *d*-dimensional *A*-modules
- $Gl_d(k)$ acts on $mod_A(d)$ by conjugation

- A finite-dimensional algebra over a fixed algebraically closed field k
- $mod_A(d)$ affine variety of *d*-dimensional *A*-modules
- $Gl_d(k)$ acts on $mod_A(d)$ by conjugation
- $\mathcal{O}(M) \operatorname{Gl}_d(k)$ -orbit of a module M in $\operatorname{mod}_A(d)$

- A finite-dimensional algebra over a fixed algebraically closed field k
- $mod_A(d)$ affine variety of *d*-dimensional *A*-modules
- $Gl_d(k)$ acts on $mod_A(d)$ by conjugation
- $\mathcal{O}(M) \operatorname{Gl}_d(k)$ -orbit of a module M in $\operatorname{mod}_A(d)$
- For M, N ∈ mod_A(d), N is called degeneration of M if N ∈ O(M) (M ≤_{deg} N)

- A finite-dimensional algebra over a fixed algebraically closed field k
- $mod_A(d)$ affine variety of d-dimensional A-modules
- $Gl_d(k)$ acts on $mod_A(d)$ by conjugation
- $\mathcal{O}(M) \operatorname{Gl}_d(k)$ -orbit of a module M in $\operatorname{mod}_A(d)$
- For $M, N \in \text{mod}_A(d), N$ is called **degeneration** of M if $N \in \overline{\mathcal{O}(M)}$ $(M \leq_{\text{deg}} N)$

Fact

 \leq_{deg} is a partial order on $mod_A(d)$.

• $M \leq_{\text{ext}} N \Leftrightarrow$ there are modules M_i , U_i , V_i and short exact sequences

$$0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0$$

in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \le i \le s$, and $N = M_{s+1}$ for some $1 \le s \in \mathbb{N}$

• $M \leq_{\text{ext}} N \Leftrightarrow$ there are modules M_i , U_i , V_i and short exact sequences

$$0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0$$

in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \le i \le s$, and $N = M_{s+1}$ for some $1 \le s \in \mathbb{N}$

Facts

 $\bullet \leq_{\mathsf{ext}} \mathsf{is a partial order on mod } A.$

• $M \leq_{\text{ext}} N \Leftrightarrow$ there are modules M_i , U_i , V_i and short exact sequences

$$0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0$$

in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \le i \le s$, and $N = M_{s+1}$ for some $1 \le s \in \mathbb{N}$

Facts

 $\bullet \leq_{\mathsf{ext}} \mathsf{is a partial order on mod } A.$

2 For all modules $M, N \in \text{mod}_A(d)$, we have

$$M \leq_{\mathsf{ext}} N \Longrightarrow M \leq_{\mathsf{deg}} N.$$

• $M \leq_{\text{ext}} N \Leftrightarrow$ there are modules M_i , U_i , V_i and short exact sequences

$$0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0$$

in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \le i \le s$, and $N = M_{s+1}$ for some $1 \le s \in \mathbb{N}$

Facts

 $\bullet \leq_{\mathsf{ext}} \mathsf{is a partial order on mod } A.$

2 For all modules
$$M, N \in \text{mod}_A(d)$$
, we have

$$M \leq_{\mathsf{ext}} N \Longrightarrow M \leq_{\mathsf{deg}} N.$$

Remark

The converse implication is not true in general even for very simple representation-finite algebras as in the following Riedtmann's example.

Piotr Malicki (UMK)

Piotr Malicki (UMK)

< 🗇 🕨

æ

Example

Let A = kQ/I, where

$$Q: \qquad 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} , \qquad I = \langle \alpha^2 \rangle.$$

Piotr Malicki (UMK)

Degenerations in the additive categories

< 볼 ▶ < 볼 ▶ 볼 ∽ Q Q Cologne, 5.03.2009 4 / 15

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Example

Let A = kQ/I, where

$$Q: \qquad 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} , \qquad I = \langle \alpha^2 \rangle.$$

Let M and N be two A-modules given by the following representations:

Piotr Malicki (UMK)

Degenerations in the additive categories

Cologne, 5.03.2009 4 / 15

Example

Let A = kQ/I, where

$$Q: \qquad 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} , \qquad I = \langle \alpha^2 \rangle.$$

Let M and N be two A-modules given by the following representations:

$$M: \quad k \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}} \qquad N: \quad k \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}}$$

Piotr Malicki (UMK)

Degenerations in the additive categories

Cologne, 5.03.2009 4 / 15

< 🗗 🕨

Example

Let A = kQ/I, where

$$Q: \qquad 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} , \qquad I = \langle \alpha^2 \rangle.$$

Let M and N be two A-modules given by the following representations:

$$M: \quad k \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}} \qquad N: \quad k \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}}$$

Then kQ/I is an algebra of finite type and M, N are nonisomorphic and indecomposable. Moreover, $M <_{deg} N$, but $M \not<_{ext} N$.

Example

Let A = kQ/I, where

$$Q: \qquad 1 \xrightarrow{\beta} 2 \xrightarrow{\alpha} , \qquad I = \langle \alpha^2 \rangle.$$

Let M and N be two A-modules given by the following representations:

$$M: \quad k \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}} \qquad N: \quad k \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} k^2 \underbrace{[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}}$$

Then kQ/I is an algebra of finite type and M, N are nonisomorphic and indecomposable. Moreover, $M <_{deg} N$, but $M \not<_{ext} N$.

$$(M <_{\mathsf{ext}} N \Longrightarrow N - \operatorname{decomposable})$$

• Γ_A – Auslander-Reiten quiver of A

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A
- C is said to be generalized standard if rad[∞](X, Y) = 0 for all modules X, Y in C

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A
- C is said to be generalized standard if rad[∞](X, Y) = 0 for all modules X, Y in C
- C is said to be **almost cyclic** if all but finitely many modules of C lie on oriented cycles contained entirely in C

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A
- C is said to be generalized standard if rad[∞](X, Y) = 0 for all modules X, Y in C
- C is said to be **almost cyclic** if all but finitely many modules of C lie on oriented cycles contained entirely in C
- C is said to be **coherent** if the following two conditions are satisfied:

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A
- C is said to be generalized standard if rad[∞](X, Y) = 0 for all modules X, Y in C
- C is said to be **almost cyclic** if all but finitely many modules of C lie on oriented cycles contained entirely in C
- \mathcal{C} is said to be **coherent** if the following two conditions are satisfied:
 - For each projective module P in C there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow \cdots$ in C,

- Γ_A Auslander-Reiten quiver of A
- C connected component of Γ_A
- C is said to be generalized standard if rad[∞](X, Y) = 0 for all modules X, Y in C
- C is said to be **almost cyclic** if all but finitely many modules of C lie on oriented cycles contained entirely in C
- \mathcal{C} is said to be **coherent** if the following two conditions are satisfied:
 - For each projective module P in C there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow \cdots$ in C,
 - ② For each injective module *I* in *C* there is an infinite sectional path $\cdots \rightarrow Y_{j+1} \rightarrow Y_j \rightarrow \cdots \rightarrow Y_2 \rightarrow Y_1 = I$ in *C*.

A full translation subquiver of Γ_A of the form

is said to be a Möbius configuration.

A full translation subquiver of Γ_A of the form

 For a module M ∈ mod A, we shall denote by [M] the image of M in the Grothendieck group K₀(A) of A.

- For a module M ∈ mod A, we shall denote by [M] the image of M in the Grothendieck group K₀(A) of A.
- Thus [M] = [N] if and only if M and N have the same simple composition factors including the multiplicities.

- For a module M ∈ mod A, we shall denote by [M] the image of M in the Grothendieck group K₀(A) of A.
- Thus [M] = [N] if and only if M and N have the same simple composition factors including the multiplicities.

Proposition

Let A be an algebra and C a component in Γ_A which contains a Möbius configuration or a coil configuration. Then there exist indecomposable modules M and N in C such that [M] = [N] and $M <_{deg} N$.

Proof. We need the following facts.

æ

Image: A mathematical states and a mathem

Proof. We need the following facts.

LEMMA

Let A be an algebra and

$$0 \to M_1 \xrightarrow{[f_1, u_1]^t} N_1 \oplus M_2 \xrightarrow{[u_2, f_2]} N_2 \to 0$$
$$0 \to M_2 \xrightarrow{[f_2, v_1]^t} N_2 \oplus M_3 \xrightarrow{[v_2, f_3]} N_3 \to 0$$

be short exact sequences in mod A. Then the sequence

$$0 \to M_1 \xrightarrow{[f_1, v_1 u_1]^t} N_1 \oplus M_3 \xrightarrow{[-v_2 u_2, f_3]} N_3 \to 0$$

is exact.

3

PROPOSITION (Riedtmann)

lf

$$0 \to Z \to Z \oplus M \to N \to 0$$

is an exact sequence in mod A then $M \leq_{deg} N$.

PROPOSITION (Riedtmann)

$$0 \to Z \to Z \oplus M \to N \to 0$$

is an exact sequence in mod A then $M \leq_{deg} N$.

The same conclusion holds for an exact sequence

$$0 \to N \to M \oplus Z \to Z \to 0.$$

Assume first that $\ensuremath{\mathcal{C}}$ admits a Möbius configuration.

э

Assume first that C admits a Möbius configuration.

Applying LEMMA to the short exact sequences given by the meshes of the above translation quiver we get exact sequences

$$0 \to N \to Y_1 \oplus Z \to Y_2 \to 0,$$

11 / 15

Assume first that C admits a Möbius configuration.

Applying LEMMA to the short exact sequences given by the meshes of the above translation quiver we get exact sequences

$$0 \to N \to Y_1 \oplus Z \to Y_2 \to 0,$$

and

$$0 \rightarrow Y_1 \rightarrow Y_2 \oplus M \rightarrow Z \rightarrow 0.$$

11 / 15

Assume first that C admits a Möbius configuration.

Applying LEMMA to the short exact sequences given by the meshes of the above translation quiver we get exact sequences

$$0 \to N \to Y_1 \oplus Z \to Y_2 \to 0,$$

and

$$0 \to Y_1 \to Y_2 \oplus M \to Z \to 0.$$

Applying LEMMA again

$$0 \to N \to M \oplus Z \to Z \to 0.$$

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$.

3

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$.

If $\ensuremath{\mathcal{C}}$ admits a coil configuration the proof is similar.

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$.

If $\ensuremath{\mathcal{C}}$ admits a coil configuration the proof is similar.

Theorem

Let A be an algebra and C a generalized standard almost cyclic coherent component of Γ_A . The following conditions are equivalent:

- \bigcirc C contains neither a Möbius configuration nor a coil configuration.
- **2** The partial orders \leq_{deg} and \leq_{ext} coincide on add(C).

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$.

If $\ensuremath{\mathcal{C}}$ admits a coil configuration the proof is similar.

Theorem

Let A be an algebra and C a generalized standard almost cyclic coherent component of Γ_A . The following conditions are equivalent:

- **O** *C* contains neither a Möbius configuration nor a coil configuration.
- 2 The partial orders \leq_{deg} and \leq_{ext} coincide on add(C).

In the proof the following characterization of almost cyclic coherent component of Γ_A is essentially applied:

Observe that [M] = [N]. Finally, by PROPOSITION, we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$.

If $\ensuremath{\mathcal{C}}$ admits a coil configuration the proof is similar.

Theorem

Let A be an algebra and C a generalized standard almost cyclic coherent component of Γ_A . The following conditions are equivalent:

- **O** *C* contains neither a Möbius configuration nor a coil configuration.
- 2 The partial orders \leq_{deg} and \leq_{ext} coincide on add(C).

In the proof the following characterization of almost cyclic coherent component of Γ_A is essentially applied:

Theorem (M – Skowroński)

Let C be a connected component of Γ_A . Then C is coherent and almost cyclic if and only if C is a generalized multicoil.

Piotr Malicki (UMK)

Separating family of components

Piotr Malicki (UMK)

Degenerations in the additive categories

Cologne, 5.03.2009 1

< 67 ▶

13 / 15

3

() C_A is a sincere generalized standard family of components;

- C_A is a sincere generalized standard family of components;

- C_A is a sincere generalized standard family of components;
- **3** any morphism from \mathcal{P}_A to \mathcal{Q}_A factors through $\operatorname{add}(\mathcal{C}_A)$.

- C_A is a sincere generalized standard family of components;
- 3 Hom_A(Q_A, P_A) = 0, Hom_A(Q_A, C_A) = 0, Hom_A(C_A, P_A) = 0;
- **③** any morphism from \mathcal{P}_A to \mathcal{Q}_A factors through $\operatorname{add}(\mathcal{C}_A)$.

Recall that C_A is called **sincere** if every simple A-module occurs as a composition factor of a module in C_A .

• C_A is a sincere generalized standard family of components;

③ any morphism from \mathcal{P}_A to \mathcal{Q}_A factors through $\operatorname{add}(\mathcal{C}_A)$.

Recall that C_A is called **sincere** if every simple A-module occurs as a composition factor of a module in C_A .

Note that then \mathcal{P}_A and \mathcal{Q}_A are uniquely determined by \mathcal{C}_A .

Following Drozd an algebra A is said to be **tame** if, for each dimension d, there exists a finite number of k[x] - A-bimodules M_i which are finitely generated and free as left k[x]-modules, and all but finite number of isomorphism classes of indecomposable A-modules of dimensional d are of the form $k[x]/(x - \lambda) \otimes_{k[x]} M_i$ for some i and some $\lambda \in k$.

Following Drozd an algebra A is said to be **tame** if, for each dimension d, there exists a finite number of k[x] - A-bimodules M_i which are finitely generated and free as left k[x]-modules, and all but finite number of isomorphism classes of indecomposable A-modules of dimensional d are of the form $k[x]/(x - \lambda) \otimes_{k[x]} M_i$ for some i and some $\lambda \in k$.

Corollary

Let A be an algebra with a separating family C_A of almost cyclic coherent components in Γ_A . Then the orders \leq_{deg} and \leq_{ext} coincide on mod A if and only if A is tame and C_A contains neither a Möbius configuration nor a coil configuration.

P. Malicki, Degenerations in the module varieties of almost cyclic coherent Auslander-Reiten components, Colloq. Math. **114**, 253–276 (2009).

P. Malicki and A. Skowroński, Algebras with separating almost cyclic coherent Auslander-Reiten components, J. Algebra **291**, 208–237 (2005).

A. Skowroński and G. Zwara, On degenerations of modules with nondirecting indecomposable summands, Canad. J. Math. **48**, 1091–1120 (1996).