Fusion systems and blocks of finite groups

Ryo Narasaki

RWTH Aachen University / Osaka University

joint work with Katsuhiro Uno

Thursday, March 5, 2009

- Fusion system
- Broué's Conjecture
- Generalization of perfect isometry

Definition

Let p be a prime number and P a finite p-group. A fusion system \mathcal{F} over **P** is a category whose objects : the subgroups of Pmorphisms : Hom_{\mathcal{F}}(Q_1, Q_2) for $Q_1, Q_2 \leq P$ satisfy the following; (i) Elements in $\operatorname{Hom}_{\mathcal{F}}(Q_1, Q_2)$ are injective homomorphisms and all the homomorphisms from Q_1 to Q_2 given by the conjugation of elements of P lie in $\operatorname{Hom}_{\mathcal{F}}(Q_1, Q_2)$. (ii) Every element f in $\operatorname{Hom}_{\mathcal{F}}(Q_1, Q_2)$ can be written as a composition of the isomorphism $f: Q_1 \rightarrow f(Q_1)$ and the inclusion $f(Q_1) \subseteq Q_2$, and the both lie in \mathcal{F} .

Definition

Let \mathcal{F} be a fusion system over P.

(i) A subgroup Q of P is said to be fully centralized in \mathcal{F} , if $|C_P(Q)| \ge |C_P(Q_1)|$ for all those $Q_1 \le P$ that are \mathcal{F} -conjugate to Q. (ii) A subgroup Q of P is said to be fully normalized in \mathcal{F} , if $|N_P(Q)| \ge |N_P(Q_1)|$ for all those $Q_1 \le P$ that are \mathcal{F} -conjugate to Q.

Definition (Puig)

Let \mathcal{F} be a fusion system over P.

We say that \mathcal{F} is a saturated fusion system if the following are satisfied.

(a) Every fully normalized subgroup Q of P is fully centralized and $\operatorname{Aut}_{P}(Q)$ is a Sylow *p*-subgroup of $\operatorname{Hom}_{\mathcal{F}}(Q, Q)$.

(b) For $Q \leq P$ and $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, P)$ with $\varphi(Q)$ is fully centralized, let $N = \{g \in N_P(Q) \mid \varphi c_g \varphi^{-1} \in \operatorname{Aut}_P(\varphi(Q))\}$, where c_g is the conjugation by g. Then, there is $\varphi' \in \operatorname{Hom}_{\mathcal{F}}(N, P)$ such that the restriction of φ' to Q is equal to φ .

Proposition (Broto-Levi-Oliver)

Let *G* be a finite group, and let *P* be a Sylow *p*-subgroup of *G*. Then the fusion system $\mathcal{F}_P(G)$ over *P* is saturated.

Here we let $\mathcal{F}_{P}(G)$ be the fusion system over P defined by setting $\operatorname{Hom}_{\mathcal{F}_{P}(G)}(Q_{1}, Q_{2}) = \operatorname{Hom}_{G}(Q_{1}, Q_{2})$ for all $Q_{1}, Q_{2} \leq P$.

(K, O, k): a splitting *p*-modular system

- *O* : a complete discrete valuation ring *K* : the field of fractions, char(K) = 0*k* : the residue class field of *O*, char(k) = p
- G, H: finite groups
- B, B': the principal *p*-blocks of G and H

```
Irr(B) := \{ \chi \in Irr(G) \mid \chi \in B \}
```

Definition

 $\exists \text{ bijection } f: \operatorname{Irr}(B) \to \operatorname{Irr}(B'), \quad \exists \text{ map } \epsilon: \operatorname{Irr}(B) \to \{\pm 1\}$

$$\mu(g,h) := \sum_{\chi \in \operatorname{Irr}(B)} \epsilon(\chi) \chi(g) f(\chi)(h) \qquad (g \in G, h \in H)$$

If μ satisfies the following, then we say that μ is perfect isometry. (i) If $\mu(g, h) \neq 0$, then either both g and h are p-regular or both are p-singular.

(ii) $\mu(g,h)/|C_G(g)|$ and $\mu(g,h)/|C_H(h)|$ lie in O .

Conjecture (Broué's Abelian Defect Group Conjecture)

Let *B* be the principal *p*-block of *G* with abelian Sylow *p*-subgroup *P* and let *b* be the principal *p*-block of $N_G(P)$. Then *B* and *b* are derived equivalent and are perfectly isometric.

Conjecture (Broué's Abelian Defect Group Conjecture)

Let *B* be the principal *p*-block of *G* with abelian Sylow *p*-subgroup *P* and let *b* be the principal *p*-block of $N_G(P)$. Then *B* and *b* are derived equivalent and are perfectly isometric.

Conjecture (Reformulation of Broué's Conjecture)

G, *H* : finite groups with common Sylow *p*-subgroup *P B*, *B*' : the principal *p*-blocks of *G* and *H* If *P* is abelian and if $\mathcal{F}_P(G) = \mathcal{F}_P(H)$, then *B* and *B*' are derived equivalent and are perfectly isometric.

Conjecture (Broué's Abelian Defect Group Conjecture)

Let *B* be the principal *p*-block of *G* with abelian Sylow *p*-subgroup *P* and let *b* be the principal *p*-block of $N_G(P)$. Then *B* and *b* are derived equivalent and are perfectly isometric.

Conjecture (Reformulation of Broué's Conjecture)

G, *H* : finite groups with common Sylow *p*-subgroup *P B*, *B*' : the principal *p*-blocks of *G* and *H* If *P* is abelian and if $\mathcal{F}_P(G) = \mathcal{F}_P(H)$, then *B* and *B*' are derived equivalent and are perfectly isometric.

Remark

(Burnside) If a Sylow *p*-subgroup *P* of *G* is abelian, then *G* and $N_G(P)$ give rise to same fusion system over *P*.

Let P be a p-group, and let Q be a normal subgroup of P.

$$X(P;Q) := \{ \theta \in \mathbb{Z} \operatorname{Irr}(P) \mid \theta(g) = 0 \ \forall g \in P \setminus Q \}$$
$$V(P;Q) := \{ \sum_{\varphi \in \operatorname{Irr}(Q)} a_{\varphi} \varphi \uparrow^{P} \mid a_{\varphi} \in \mathbb{Z} \}$$

Then, X(P; Q) and V(P; Q) are \mathbb{Z} -submodules of $\mathbb{Z}Irr(P)$. Moreover, we have $V(P; Q) \subseteq X(P; Q)$. Furthermore V(P; Q) and X(P; Q) have the same \mathbb{Z} -rank.

Let P be a p-group, and let Q be a normal subgroup of P.

$$X(P;Q) := \{ \theta \in \mathbb{Z} \operatorname{Irr}(P) \mid \theta(g) = 0 \ \forall g \in P \setminus Q \}$$
$$V(P;Q) := \{ \sum_{\varphi \in \operatorname{Irr}(Q)} a_{\varphi} \varphi \uparrow^{P} \mid a_{\varphi} \in \mathbb{Z} \}$$

Then, X(P; Q) and V(P; Q) are \mathbb{Z} -submodules of $\mathbb{Z}Irr(P)$. Moreover, we have $V(P; Q) \subseteq X(P; Q)$. Furthermore V(P; Q) and X(P; Q) have the same \mathbb{Z} -rank.

Proposition (Robinson)

With the notation above, there exists a non-negative integer c such that $p^{c}X(P; Q) \subseteq V(P; Q)$.

Definition

Let *P* be a *p*-group and *Q* a normal subgroup of *P*. We denote by c(P; Q) the non-negative integer *c* smallest among those *c* which satisfy $p^c X(P; Q) \subseteq V(P; Q)$.

Definition

 $\exists \text{ bijection } f: \operatorname{Irr}(B) \to \operatorname{Irr}(B'), \quad \exists \text{ map } \epsilon: \operatorname{Irr}(B) \to \{\pm 1\}$

$$\mu(g,h) := \sum_{\chi \in \operatorname{Irr}(B)} \epsilon(\chi) \chi(g) f(\chi)(h) \qquad (g \in G, h \in H)$$

If μ satisfies the following, then we say that μ is *Q*-perfect isometry. (i) If $\mu(g, h) \neq 0$, then $(g_p, h_p) \in_{G \times H} (Q \times Q) \Delta(P)$. (ii) $p^{c(P;Q)} \mu(g, h) / |C_G(g)|$ and $p^{c(P;Q)} \mu(g, h) / |C_H(h)|$ lie in *O*.

Here $\Delta(P) = \{(u, u^{-1}) \mid u \in P\}.$

Conjecture

G, H: finite groups with common Sylow *p*-subgroup *P* B, B': the principal *p*-blocks of *G* and *H* If $\mathcal{F}_P(G) = \mathcal{F}_P(H)$, then *B* and *B'* are [*P*, *P*]-perfectly isometric.

Theorem (N-Uno)

G, H: finite groups with common Sylow *p*-subgroup $P \cong p_+^{1+2}$ B, B': the principal *p*-blocks of *G* and *H* Assume $\mathcal{F}_P(G) = \mathcal{F}_P(H)$. Then *B* and *B'* are [*P*, *P*]-perfectly isometric.

Theorem (N-Uno)

G, *H* : finite groups with common Sylow *p*-subgroup $P \cong p_+^{1+2}$ *B*, *B*' : the principal *p*-blocks of *G* and *H* Assume $\mathcal{F}_P(G) = \mathcal{F}_P(H)$. Then *B* and *B*' are [*P*, *P*]-perfectly isometric.

Remark

(Ruiz-Viruel) For $P \cong p_+^{1+2}$, saturated fusion systems over P are classified.

Theorem (N)

Let *B* be the principal *p*-block of finite simple *G* with T.I. Sylow *p*-subgroup *P* and let *b* be the principal *p*-block of $N_G(P)$. Then *B* and *b* are [*P*, *P*]-perfectly isometric.

We say $H \leq G$ is a trivial intersection (T. I.) set in G if $H \cap H^x = 1$ for $\forall x \in G \setminus N_G(H)$.