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Conventions and general definitions

Conventions

We assume k is an algebraically closed field.

All categories are k -linear.

A will always be an abelian hereditary category.

Definition

A category A is hereditary if Exti(X , Y ) = 0, for all i > 1,
and for all X , Y ∈ ObA.

A category is Ext-finite if dimk Exti(X , Y ) < ∞ for all i ∈ N

and all X , Y ∈ ObA.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau



Definitions and main result
Hereditary categories which are (fractionally) Calabi-Yau

Definitions
Derived categories and derived equivalences
(Fractionally) Calabi-Yau

Conventions and general definitions

Conventions

We assume k is an algebraically closed field.

All categories are k -linear.

A will always be an abelian hereditary category.

Definition

A category A is hereditary if Exti(X , Y ) = 0, for all i > 1,
and for all X , Y ∈ ObA.

A category is Ext-finite if dimk Exti(X , Y ) < ∞ for all i ∈ N

and all X , Y ∈ ObA.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau



Definitions and main result
Hereditary categories which are (fractionally) Calabi-Yau

Definitions
Derived categories and derived equivalences
(Fractionally) Calabi-Yau

Conventions and general definitions

Conventions

We assume k is an algebraically closed field.

All categories are k -linear.

A will always be an abelian hereditary category.

Definition

A category A is hereditary if Exti(X , Y ) = 0, for all i > 1,
and for all X , Y ∈ ObA.

A category is Ext-finite if dimk Exti(X , Y ) < ∞ for all i ∈ N

and all X , Y ∈ ObA.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau



Definitions and main result
Hereditary categories which are (fractionally) Calabi-Yau

Definitions
Derived categories and derived equivalences
(Fractionally) Calabi-Yau

Serre duality
Definition (Serre duality)

An Ext-finite abelian category A has Serre duality if there is an
autoequivalence F : DbA → DbA admitting natural
isomorphisms

HomDbA(X , Y ) ∼= HomDbA(Y , FX )∗

where (−)∗ is the vector space dual.

Remarks

A has Serre duality if and only if DbA has
Auslander-Reiten triangles. We have F ∼= τ [1].
if A is hereditary, then A has Serre duality if and only if

A has almost split sequences, and
the Nakayama functor N : P → I is an equivalence.
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Derived categories

Main idea

Instead of objects, we consider complexes. Two complexes
which are resolutions of the same object are identified.

Construction

In the category of complexes over A, all quasi-isomorphisms
(=induce isomorphisms on the homologies) are formally
inverted.

Remark
Although derived categories are generally not abelian, they
have the structure of a triangulated category.
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The hereditary case

Let A be an Ext-finite abelian hereditary category.
We may describe DbA by

Objects Ob DbA = add(
⋃

n∈Z
A[n])

Morphisms induced by

HomDbA(X [n], Y [m]) = Extm−n
A (X , Y )

where X , Y ∈ A[0].

A
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Derived equivalences (hereditary case)

Theorem ([1, 2])

Let A be a hereditary category, and let H be a strictly full
subcategory of DbA such that

Ob DbA = add(
⋃

n∈Z

H[n]).

If HomDbA(H[m],H[n]) = 0 for n > m, then H is hereditary and
DbA ∼= DbH as triangulated categories.

C. F. Berg, A.-C. van Roosmalen, Projective components in hereditary
categories with Serre duality, in preperation.

C. M. Ringel, Hereditary Triangulated Categories, accepted.
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Derived equivalences (hereditary case)

Theorem

Let A be a hereditary category, and let H be a strictly full
subcategory of DbA such that

Ob DbA = add(
⋃

n∈Z

H[n]).

If HomDbA(H[m],H[n]) = 0 for n > m, then H is hereditary and
DbA ∼= DbH as triangulated categories.

Notation

D≥i = add(
⋃

n≤i

H[n]) D≤i = add(
⋃

n≥i

H[n])
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Representations of x //// y

R1,0 : k
(1) //

(0)
// k

Indecomposable representations

Preprojective dim V (x) + 1 = dim V (y)

Preinjective dim V (x) − 1 = dim V (y)

Regular dim V (x) = dim V (y)
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Indecomposable representations
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Representations of x //// y

Ra,b : k
(a) //

(b)
// k

Indecomposable representations

Preprojective dim V (x) + 1 = dim V (y)

Preinjective dim V (x) − 1 = dim V (y)

Regular dim V (x) = dim V (y)

These representations are isomorphic
if and only if (a1 : b1) = (a2 : b2).
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Auslander-Reiten quiver of rep x //// y

Preprojective Px
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Relation between rep x //// y and coh P1
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P R I

coh P1

These categories are not equivalent,
but they are derived equivalent.
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coh P1

A[1]A
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coh P1

D≥1 D≤0

D≥0 D≤−1
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Calabi-Yau

Definition

An Ext-finite abelian category A is n-Calabi-Yau if
[n] : DbA → DbA is a Serre functor.

Remark

Since F ∼= τ [1], an abelian category is 1-Calabi-Yau if τ ∼= id .

Theorem

An abelian n-Calabi-Yau category has global dimension n.
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Fractionally Calabi-Yau

Definition

An Ext-finite abelian category A. If DbA has a Serre functor
F : DbA → DbA and F n ∼= [m] where n > 0, then we say A is
fractionally Calabi-Yau of dimension m

n .

Remark

Since F ∼= τ [1], a category is fractionally Calabi-Yau if
τn ∼= [m − n].

Remark

A is fractionally Calabi-Yau of dimension 1 if and only if τn ∼= id .
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rep • // • // •
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A[−1]

A[−2]

Thus τ4 = [−2], or equivalently F 4 = [2].

This category is fractionally Calabi-Yau of dimension 2
4 = 1

2 .
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Tubes in hereditary categories

Definition

A tube in an abelian hereditary category A with Serre duality is
the essential image of an embedding i : Nilp Ãn → A where i
commutes with τ .

Theorem

Let A be a hereditary category with Serre duality.

Every τ -periodic element lies in a tube, and

a tube T is directing in the sense that, if there is a path

X0 → · · · → Xn

in DbA with X0, Xn ∈ T , then Xi ∈ T , for all i .
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Definition of elliptic curve

Definition

An elliptic curve is a smooth curve in P2
k of genus 1.

Equation (char k 6= 2)

y2 = x(x − 1)(x − λ) with λ ∈ k .

Example Example
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Description of coh E

coh E is 1-Calabi-Yau.

Every Auslander-Reiten component is a homogeneous
tube.

Every tube T has a slope, µ(T ), which lies in Q ∪ {∞}.

The tubes with infinite slope are in 1-1-correspondence
with the points of V .

For two different tubes, T1, T2, we have

Hom(T1, T2) 6= 0 ⇔ µ(T1) < µ(T2).

Denote by Aµ the additive category given by all tubes of
slope µ.
For all µ, µ′ ∈ Q ∪ {∞}, we have Aµ

∼= Aµ′ .
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Categories derived equivalent with coh E

Theorem ([1])

Let A = coh E. All bounded t-structures on DbA whose heart is
derived equivalent to A may be given by

θ ∈ Q ∪ {∞}, n ∈ Z, and a set S of tubes in Aθ[n]

θ ∈ R \ Q, n ∈ Z.

A.L. Gorodentsev, S.A. Kuleshov, A.N. Rudakov t-stabilities and
t-structures on triangulated categories, Izv. Math. 68 (2004), no. 4,
749-781.
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Hereditary categories derived equivalent with coh X

t-structure (θ ∈ Q ∪ {∞})

D≤0D≥1

D≥0 D≤−1

Heart
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Projective line X

The quiver Q

•

•

??�����������
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coh X

rep Q
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Canonical algebras

Definition

A canonical algebra is the path algebra of a quiver of the form

L(1)
1

f1 // L(1)
2

f1 // · · ·
f1 // L(1)

p1−1

f1

��<
<<

<<
<<

<<

L(2)
1 f2

// L(2)
2 f2

// · · ·
f2

// L(2)
p2−1

f2 &&MMMMMM

L

f1

BB��������� f2

99tttttt

ft %%JJJJJJ .
.
.

.

.

.
L1

L(t)
1

ft // L(t)
2

ft // · · ·
ft // L(t)

pt−1

ft

88qqqqqq

with relations f pi
i = f p2

2 − λi f
p1
1 , for all 2 ≤ i ≤ t , where λi 6= λj

for i 6= j .
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Weighted projective lines

Definition ([1, 2])

A connected Ext-finite abelian hereditary noetherian category
with a tilting complex and no nonzero projectives is said to be a
category of coherent sheaves coh X over a weighted projective
line X.

W. Geigle, H. Lenzing A class of weighted projectives lines arising in the
representation theory of finite dimensional algebras, Lect. Notes Math.
1273 (1987), 265–297.

H. Lenzing Hereditary Noetherian categories with a tilting complex,

Proc. Amer. Math. Soc. 125 (1997), 1893–1901.
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Quivers of ‘tubular’ canonical algebras

·

��8
88

88
88

8

·

%%KKKKKK

·

BB��������
99ssssss

%%KKKKKK

��8
88

88
88

8 ·

·

99ssssss

·

BB��������

· // ·

%%KKKKKK

·

99ssssss //

%%KKKKKK · // · // ·

· // ·

99ssssss

·

**UUUUUUUUUUUU

· //

44iiiiiiiiiiii

%%KKKKKK · // · // · // ·

· // · // ·

99ssssss

·

**UUUUUUUUUUUU

· //

22fffffffffffffffffff

%%KKKKKK · // · // ·

· // · // · // ·

99ssssss
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Properties of coh X where X is tubular

coh X is fractionally Calabi-Yau of dimension 1.

Every Auslander-Reiten component is a tube.

Every tube T has a slope, µ(T ), which lies in Q ∪ {∞}.

The tubes with infinite slope are in 1-1-correspondence
with the points of X.

For two different tubes, T1, T2, we have

Hom(T1, T2) 6= 0 ⇔ µ(T1) < µ(T2).

Denote by Aµ the additive category given by all tubes of
slope µ.
For all µ, µ′ ∈ Q ∪ {∞}, we have Aµ

∼= Aµ′ .
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For two different tubes, T1, T2, we have

Hom(T1, T2) 6= 0 ⇔ µ(T1) < µ(T2).

Denote by Aµ the additive category given by all tubes of
slope µ.
For all µ, µ′ ∈ Q ∪ {∞}, we have Aµ

∼= Aµ′ .
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Hereditary categories derived equivalent with coh X

Theorem

Let A = coh X. All bounded t-structures on DbA whose heart is
hereditary and derived equivalent to A may be given by

θ ∈ Q ∪ {∞}, n ∈ Z, and a set S of tubes in Aθ[n]

θ ∈ R \ Q, n ∈ Z.
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t-structure (θ ∈ Q ∪ {∞})

D≤0D≥1

D≥0 D≤−1

Heart
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Theorem
Let A be a connected abelian hereditary category which is
fractionally Calabi-Yau, then A is derived equivalent to either

1 the category of nilpotent representations of the one-loop
quiver, or

2 the category of coherent sheaves on an elliptic curve, or
3 the category of nilpotent representations of Ãn with n ≥ 1,

or
4 the category of coherent sheaves over a weighted

projective line of tubular type, or
5 the category of finite presented modules mod Q over a

Dynkin quiver Q.
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