Hereditary Categories which are Fractionally Calabi-Yau

Adam-Christiaan van Roosmalen

Max-Planck-Institut für Mathematik

March 2, 2009

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Outline

Definitions and main result

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

・ 同 ト ・ ヨ ト ・ ヨ

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Outline

Definitions and main result

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Conventions and general definitions

Conventions

- We assume *k* is an algebraically closed field.
- All categories are *k*-linear.
- A will always be an abelian hereditary category.

Definition

- A category A is *hereditary* if Extⁱ(X, Y) = 0, for all i > 1, and for all X, Y ∈ Ob A.
- A category is *Ext-finite* if dim_k Extⁱ(X, Y) < ∞ for all i ∈ N and all X, Y ∈ Ob A.

イロト イポト イヨト イヨト

э

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Conventions and general definitions

Conventions

- We assume *k* is an algebraically closed field.
- All categories are *k*-linear.
- A will always be an abelian hereditary category.

Definition

- A category A is *hereditary* if Extⁱ(X, Y) = 0, for all i > 1, and for all X, Y ∈ Ob A.
- A category is *Ext-finite* if dim_k Extⁱ(X, Y) < ∞ for all i ∈ N and all X, Y ∈ Ob A.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Conventions and general definitions

Conventions

- We assume *k* is an algebraically closed field.
- All categories are *k*-linear.
- A will always be an abelian hereditary category.

Definition

- A category A is *hereditary* if Extⁱ(X, Y) = 0, for all i > 1, and for all X, Y ∈ Ob A.
- A category is *Ext-finite* if dim_k Extⁱ(X, Y) < ∞ for all i ∈ N and all X, Y ∈ Ob A.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Serre duality

Definition (Serre duality)

An Ext-finite abelian category \mathcal{A} has Serre duality if there is an autoequivalence $F: D^b \mathcal{A} \to D^b \mathcal{A}$ admitting natural isomorphisms

$$\operatorname{Hom}_{D^b\mathcal{A}}(X, Y) \cong \operatorname{Hom}_{D^b\mathcal{A}}(Y, FX)^*$$

where $(-)^*$ is the vector space dual.

Remarks

- A has Serre duality if and only if D^bA has Auslander-Reiten triangles. We have F ≅ τ[1]
- if A is hereditary, then A has Serre duality if and only if
 - A has almost split sequences, and
 - the Nakayama functor $N : \mathcal{P} \to \mathcal{I}$ is an equivalence.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Serre duality

Definition (Serre duality)

An Ext-finite abelian category \mathcal{A} has Serre duality if there is an autoequivalence $F: D^b \mathcal{A} \to D^b \mathcal{A}$ admitting natural isomorphisms

$$\operatorname{Hom}_{D^b\mathcal{A}}(X,Y)\cong\operatorname{Hom}_{D^b\mathcal{A}}(Y,FX)^*$$

where $(-)^*$ is the vector space dual.

Remarks

- A has Serre duality if and only if D^bA has Auslander-Reiten triangles. We have F ≅ τ[1].
- $\bullet\,$ if ${\cal A}$ is hereditary, then ${\cal A}$ has Serre duality if and only if
 - $\ensuremath{\mathcal{A}}$ has almost split sequences, and
 - the Nakayama functor $N : \mathcal{P} \to \mathcal{I}$ is an equivalence.

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Outline

Definitions and main result

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived categories

Main idea

Instead of objects, we consider complexes. Two complexes which are resolutions of the same object are identified.

Construction

In the category of complexes over A, all quasi-isomorphisms (=induce isomorphisms on the homologies) are formally inverted.

Remark

Although derived categories are generally not abelian, they have the structure of a triangulated category.

ъ

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived categories

Main idea

Instead of objects, we consider complexes. Two complexes which are resolutions of the same object are identified.

Construction

In the category of complexes over A, all quasi-isomorphisms (=induce isomorphisms on the homologies) are formally inverted.

Remark

Although derived categories are generally not abelian, they have the structure of a triangulated category.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived categories

Main idea

Instead of objects, we consider complexes. Two complexes which are resolutions of the same object are identified.

Construction

In the category of complexes over A, all quasi-isomorphisms (=induce isomorphisms on the homologies) are formally inverted.

Remark

Although derived categories are generally not abelian, they have the structure of a triangulated category.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived categories

Main idea

Instead of objects, we consider complexes. Two complexes which are resolutions of the same object are identified.

Construction

In the category of complexes over A, all quasi-isomorphisms (=induce isomorphisms on the homologies) are formally inverted.

Remark

Although derived categories are generally not abelian, they have the structure of a triangulated category.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

The hereditary case

Let ${\mathcal A}$ be an Ext-finite abelian hereditary category. We may describe $D^b{\mathcal A}$ by

Objects Ob $D^b \mathcal{A} = \operatorname{add}(\bigcup_{n \in \mathbb{Z}} \mathcal{A}[n])$ Morphisms induced by

 $\operatorname{Hom}_{D^{b}\mathcal{A}}(X[n], Y[m]) = \operatorname{Ext}_{\mathcal{A}}^{m-n}(X, Y)$

where $X, Y \in \mathcal{A}[0]$.

$$\mathcal{A}$$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

The hereditary case

Let \mathcal{A} be an Ext-finite abelian hereditary category. We may describe $D^b \mathcal{A}$ by

Objects Ob $D^b \mathcal{A} = \operatorname{add}(\bigcup_{n \in \mathbb{Z}} \mathcal{A}[n])$ forphisms induced by

 $\operatorname{Hom}_{D^{b}\mathcal{A}}(X[n], Y[m]) = \operatorname{Ext}_{\mathcal{A}}^{m-n}(X, Y)$

where $X, Y \in \mathcal{A}[0]$.

$$\mathcal{A}$$

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

ヘロト ヘアト ヘビト ヘビト

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

The hereditary case

Let \mathcal{A} be an Ext-finite abelian hereditary category. We may describe $D^b \mathcal{A}$ by

Objects Ob $D^b \mathcal{A} = \operatorname{add}(\bigcup_{n \in \mathbb{Z}} \mathcal{A}[n])$

Morphisms induced by

 $\operatorname{Hom}_{D^{b}\mathcal{A}}(X[n], Y[m]) = \operatorname{Ext}_{\mathcal{A}}^{m-n}(X, Y)$

where $X, Y \in \mathcal{A}[0]$.

$$\mathcal{A}[-1]$$
 $\mathcal{A}[0]$ $\mathcal{A}[1]$

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

ヘロト 人間 ト 人目 ト 人目 トー

3

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

The hereditary case

Let \mathcal{A} be an Ext-finite abelian hereditary category. We may describe $D^b \mathcal{A}$ by

Objects Ob $D^b \mathcal{A} = \operatorname{add}(\bigcup_{n \in \mathbb{Z}} \mathcal{A}[n])$ Morphisms induced by

 $\operatorname{Hom}_{D^{b}\mathcal{A}}(X[n], Y[m]) = \operatorname{Ext}_{\mathcal{A}}^{m-n}(X, Y)$

where $X, Y \in \mathcal{A}[0]$.

$$\mathcal{A}[-1]$$
 $\mathcal{A}[0]$ $\mathcal{A}[1]$

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

ヘロト 人間 ト 人目 ト 人目 トー

3

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

The hereditary case

Let \mathcal{A} be an Ext-finite abelian hereditary category. We may describe $D^b \mathcal{A}$ by

Objects $Ob D^b \mathcal{A} = add(\bigcup_{n \in \mathbb{Z}} \mathcal{A}[n])$ Morphisms induced by

$$\operatorname{Hom}_{D^b\mathcal{A}}(X[n], Y[m]) = \operatorname{Ext}_{\mathcal{A}}^{m-n}(X, Y)$$

where $X, Y \in \mathcal{A}[0]$.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived equivalences (hereditary case)

Theorem ([1, 2])

Let \mathcal{A} be a hereditary category, and let \mathcal{H} be a strictly full subcategory of $D^b \mathcal{A}$ such that

$$\mathsf{Ob}\, D^{b}\mathcal{A} = \mathsf{add}(\bigcup_{n\in\mathbb{Z}}\mathcal{H}[n]).$$

If $\text{Hom}_{D^b\mathcal{A}}(\mathcal{H}[m], \mathcal{H}[n]) = 0$ for n > m, then \mathcal{H} is hereditary and $D^b\mathcal{A} \cong D^b\mathcal{H}$ as triangulated categories.

- C. F. Berg, A.-C. van Roosmalen, *Projective components in hereditary categories with Serre duality*, in preparation.
 - C. M. Ringel, *Hereditary Triangulated Categories*, accepted.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Derived equivalences (hereditary case)

Theorem

Let \mathcal{A} be a hereditary category, and let \mathcal{H} be a strictly full subcategory of $D^b \mathcal{A}$ such that

$$\mathsf{Ob}\, D^b\mathcal{A} = \mathsf{add}(\bigcup_{n\in\mathbb{Z}}\mathcal{H}[n]).$$

If $\text{Hom}_{D^b\mathcal{A}}(\mathcal{H}[m], \mathcal{H}[n]) = 0$ for n > m, then \mathcal{H} is hereditary and $D^b\mathcal{A} \cong D^b\mathcal{H}$ as triangulated categories.

Notation

$$D^{\geq i} = \operatorname{add}(\bigcup_{n \leq i} \mathcal{H}[n])$$

$$D^{\leq i} = \operatorname{add}(\bigcup_{n \geq i} \mathcal{H}[n])$$

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Representations of $x \Longrightarrow y$

Indecomposable representations

Preprojective dim $V(x) + 1 = \dim V(y)$ Preinjective dim $V(x) - 1 = \dim V(y)$ Regular dim $V(x) = \dim V(y)$

$$R_{1,0}: k \xrightarrow{(1)} k$$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Representations of $x \Longrightarrow y$

Indecomposable representations

Preprojective dim $V(x) + 1 = \dim V(y)$ Preinjective dim $V(x) - 1 = \dim V(y)$ Regular dim $V(x) = \dim V(y)$

$$R_{1,1}: k \xrightarrow{(1)} k$$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Representations of $x \Longrightarrow y$

Indecomposable representations

Preprojective dim $V(x) + 1 = \dim V(y)$ Preinjective dim $V(x) - 1 = \dim V(y)$ Regular dim $V(x) = \dim V(y)$

$$R_{0,1}: k \xrightarrow{(0)} k$$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Representations of $x \Longrightarrow y$

$R_{a,b}: k \xrightarrow{(a)} (b) \\ k \xrightarrow{(b)} (b) \\ k \xrightarrow{(b)} (b) \\ k \xrightarrow{(a)} (b) \\ k \xrightarrow{(b)} \\ k \xrightarrow{(b$

These representations are isomorphic if and only if $(a_1 : b_1) = (a_2 : b_2)$.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Auslander-Reiten quiver of rep $x \Longrightarrow y$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Auslander-Reiten quiver of rep $x \Longrightarrow y$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Auslander-Reiten quiver of rep $x \Longrightarrow y$

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Relation between rep $x \Longrightarrow y$ and coh \mathbb{P}^1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Relation between rep $x \Longrightarrow y$ and coh \mathbb{P}^1

イロト 不得 とくほと くほとう

3

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Relation between rep $x \Longrightarrow y$ and coh \mathbb{P}^1

but they are derived equivalent.

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau

・ロ と く 厚 と く 思 と く 思 と

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Relation between rep $x \Longrightarrow y$ and coh \mathbb{P}^1

These categories are not equivalent,

but they are derived equivalent.

Adam-Christiaan van Roosmalen Hereditary Ca

Hereditary Categories which are Fractionally Calabi-Yau

・ロット (雪) (山) (山)

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Relation between rep $x \Longrightarrow y$ and coh \mathbb{P}^1

These categories are not equivalent, but they are derived equivalent.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

くロト (得) (目) (日)

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

ъ

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

イロト 不得 とくほ とくほ とう

3

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

ヘロト 人間 とく ヨン 人 ヨン

ъ

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

くロン 人間と 人造と 人造とい

ъ
Definitions and main result

Hereditary categories which are (fractionally) Calabi-Yau

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Outline

Definitions and main result

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} is *n*-Calabi-Yau if $[n]: D^b \mathcal{A} \to D^b \mathcal{A}$ is a Serre functor.

Remark

Since $F \cong \tau[1]$, an abelian category is 1-Calabi-Yau if $\tau \cong id$.

Theorem

An abelian n-Calabi-Yau category has global dimension n.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} is *n*-Calabi-Yau if $[n]: D^b \mathcal{A} \to D^b \mathcal{A}$ is a Serre functor.

Remark

Since $F \cong \tau$ [1], an abelian category is 1-Calabi-Yau if $\tau \cong id$.

Theorem

An abelian n-Calabi-Yau category has global dimension n.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} is *n*-Calabi-Yau if $[n]: D^b \mathcal{A} \to D^b \mathcal{A}$ is a Serre functor.

Remark

Since $F \cong \tau$ [1], an abelian category is 1-Calabi-Yau if $\tau \cong id$.

Theorem

An abelian n-Calabi-Yau category has global dimension n.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Fractionally Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} . If $D^b\mathcal{A}$ has a Serre functor $F: D^b\mathcal{A} \to D^b\mathcal{A}$ and $F^n \cong [m]$ where n > 0, then we say \mathcal{A} is fractionally Calabi-Yau of dimension $\frac{m}{n}$.

Remark

Since $F \cong \tau[1]$, a category is fractionally Calabi-Yau if $\tau^n \cong [m - n]$.

Remark

 \mathcal{A} is fractionally Calabi-Yau of dimension 1 if and only if $\tau^n \cong id$.

イロト 不得下 イヨト イヨト

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Fractionally Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} . If $D^b\mathcal{A}$ has a Serre functor $F: D^b\mathcal{A} \to D^b\mathcal{A}$ and $F^n \cong [m]$ where n > 0, then we say \mathcal{A} is fractionally Calabi-Yau of dimension $\frac{m}{n}$.

Remark

Since $F \cong \tau$ [1], a category is fractionally Calabi-Yau if $\tau^n \cong [m - n]$.

Remark

 \mathcal{A} is fractionally Calabi-Yau of dimension 1 if and only if $\tau^n \cong id$.

Definitions Derived categories and derived equivalences (Fractionally) Calabi-Yau

Fractionally Calabi-Yau

Definition

An Ext-finite abelian category \mathcal{A} . If $D^b\mathcal{A}$ has a Serre functor $F: D^b\mathcal{A} \to D^b\mathcal{A}$ and $F^n \cong [m]$ where n > 0, then we say \mathcal{A} is fractionally Calabi-Yau of dimension $\frac{m}{n}$.

Remark

Since $F \cong \tau$ [1], a category is fractionally Calabi-Yau if $\tau^n \cong [m - n]$.

Remark

 \mathcal{A} is fractionally Calabi-Yau of dimension 1 if and only if $\tau^n \cong id$.

くロト (得) (目) (日)

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Outline

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

< □ > < 同 > < 回 > < 回 > < 回

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Thus $\tau^4 = [-2]$, or equivalently $F^4 = [2]$.

This category is fractionally Calabi-Yau of dimension $\frac{2}{4} = \frac{1}{2}$.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

<ロ> (日) (日) (日) (日) (日)

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Thus $\tau^4 = [-2]$, or equivalently $F^4 = [2]$.

This category is fractionally Calabi-Yau of dimension $\frac{2}{4} = \frac{1}{2}$.

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

<ロ> (日) (日) (日) (日) (日)

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

A quick example

Thus $\tau^4 = [-2]$, or equivalently $F^4 = [2]$.

This category is fractionally Calabi-Yau of dimension $\frac{2}{4} = \frac{1}{2}$.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Outline

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

Related to representations of Dynkin quivers

Related to tubes

- Related to elliptic curves
- Related to weighted projective lines

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of $\bullet f$

Indecomposable objects :

1-dimensional $f \mapsto (\circ)$ 2-dimensional $f \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 3-dimensional $f \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau

ヘロト 人間 ト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

ヘロト 人間 ト イヨト イヨ

Nilpotent representations of $\bullet f$

Indecomposable objects :

1-dimensional $f \mapsto (0)$

2-dimensional $f \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

3-dimensional $f \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Auslander-Reiten Quiver

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of $\bullet f$

Indecomposable objects :

- 1-dimensional $f \mapsto (0)$
- 2-dimensional $f \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
- 3-dimensional $f \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

< ロ > < 同 > < 回 > < 回</p>

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of $\bullet f$

Indecomposable objects :

- 1-dimensional $f \mapsto (0)$
- 2-dimensional $f \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

3-dimensional
$$f \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

ヘロマ ヘヨマ ヘヨア ヘ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Auslander-Reiten quiver

イロト イポト イヨト イヨ

This category is 1-Calabi-Yau.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Auslander-Reiten quiver

イロト イポト イヨト イヨ

This category is 1-Calabi-Yau.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of $\bullet f$

Auslander-Reiten quiver

イロト イポト イヨト イヨ

This category is 1-Calabi-Yau.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of $\bullet \bigcirc f$

Representation

Auslander-Reiten quiver

イロト イポト イヨト イヨ

This category is 1-Calabi-Yau.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Representation

Auslander-Reiten quiver

イロト イポト イヨト イヨ

This category is 1-Calabi-Yau.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Auslander-Reiten quiver

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Auslander-Reiten quiver

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

Auslander-Reiten quiver

< ロ > < 同 > < 三 >

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

イロト イ押ト イヨト イヨト

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Nilpotent representations of •

イロト イ押ト イヨト イヨト

This category is not 1-Calabi-Yau but it is fractionally Calabi-Yau of dimension 1.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Tubes in hereditary categories

Definition

A tube in an abelian hereditary category \mathcal{A} with Serre duality is the essential image of an embedding i: Nilp $\tilde{A}_n \to \mathcal{A}$ where icommutes with τ .

Theorem

Let A be a hereditary category with Serre duality.

- Every τ -periodic element lies in a tube, and
- a tube \mathcal{T} is directing in the sense that, if there is a path

$$X_0 \rightarrow \cdots \rightarrow X_n$$

in $D^b\mathcal{A}$ with $X_0, X_n \in \mathcal{T}$, then $X_i \in \mathcal{T}$, for all i.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Tubes in hereditary categories

Definition

A tube in an abelian hereditary category \mathcal{A} with Serre duality is the essential image of an embedding i: Nilp $\tilde{A}_n \to \mathcal{A}$ where icommutes with τ .

Theorem

Let A be a hereditary category with Serre duality.

- Every τ-periodic element lies in a tube, and
- a tube T is directing in the sense that, if there is a path

$$X_0 \rightarrow \cdots \rightarrow X_n$$

in $D^b \mathcal{A}$ with $X_0, X_n \in \mathcal{T}$, then $X_i \in \mathcal{T}$, for all i.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Tubes in hereditary categories

Definition

A tube in an abelian hereditary category \mathcal{A} with Serre duality is the essential image of an embedding i: Nilp $\tilde{A}_n \to \mathcal{A}$ where i commutes with τ .

Theorem

Let A be a hereditary category with Serre duality.

- Every τ-periodic element lies in a tube, and
- $\bullet\,$ a tube ${\cal T}\,$ is directing in the sense that, if there is a path

$$X_0 \rightarrow \cdots \rightarrow X_n$$

in $D^b\mathcal{A}$ with $X_0, X_n \in \mathcal{T}$, then $X_i \in \mathcal{T}$, for all *i*.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Outline

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Definition of elliptic curve

Definition

An *elliptic curve* is a smooth curve in \mathbb{P}^2_k of genus 1.

Equation (char $k \neq 2$)

$$y^2 = x(x-1)(x-\lambda)$$
 with $\lambda \in k$.

Example	Example

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau
Description of $\operatorname{coh} \mathbb{E}$

och E is 1-Calabi-Yau.

- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, T_1, T_2 , we have

$$Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$$

Description of $\operatorname{coh} \mathbb{E}$

- $\operatorname{coh} \mathbb{E}$ is 1-Calabi-Yau.
- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, T_1, T_2 , we have

$$Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$$

Description of $\operatorname{coh} \mathbb{E}$

- $\operatorname{coh} \mathbb{E}$ is 1-Calabi-Yau.
- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, T_1, T_2 , we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Description of $\operatorname{coh} \mathbb{E}$

- $\operatorname{coh} \mathbb{E}$ is 1-Calabi-Yau.
- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, T_1, T_2 , we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Description of $\operatorname{coh} \mathbb{E}$

- $\operatorname{coh} \mathbb{E}$ is 1-Calabi-Yau.
- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, $\mathcal{T}_1, \mathcal{T}_2$, we have

$$Hom(\mathcal{T}_1,\mathcal{T}_2)\neq 0 \Leftrightarrow \mu(\mathcal{T}_1)<\mu(\mathcal{T}_2).$$

Description of $\operatorname{coh} \mathbb{E}$

- $\operatorname{coh} \mathbb{E}$ is 1-Calabi-Yau.
- Every Auslander-Reiten component is a homogeneous tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of *V*.
- For two different tubes, $\mathcal{T}_1, \mathcal{T}_2$, we have

$$\mathsf{Hom}(\mathcal{T}_1,\mathcal{T}_2) \neq \mathbf{0} \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$$

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of $\operatorname{coh} \mathbb{E}$

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

イロト イ押ト イヨト イヨト

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of $\operatorname{coh} \mathbb{E}$

Auslander-Reiten Quiver

イロト イポト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of $\operatorname{coh} \mathbb{E}$

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Categories derived equivalent with $\operatorname{coh}\mathbb{E}$

Theorem ([1])

Let $\mathcal{A} = \operatorname{coh} \mathbb{E}$. All bounded t-structures on $D^b \mathcal{A}$ whose heart is derived equivalent to \mathcal{A} may be given by

- $\theta \in \mathbb{Q} \cup \{\infty\}$, $n \in \mathbb{Z}$, and a set S of tubes in $\mathcal{A}_{\theta}[n]$
- $\theta \in \mathbb{R} \setminus \mathbb{Q}$, $n \in \mathbb{Z}$.
- A.L. Gorodentsev, S.A. Kuleshov, A.N. Rudakov t-stabilities and t-structures on triangulated categories, Izv. Math. 68 (2004), no. 4, 749-781.

イロト 不得 トイヨト イヨト

3

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

t-structure ($\theta \in \mathbb{Q} \cup \{\infty\}$)

Heart

Adam-Christiaan van Roosmalen

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

Heart

Adam-Christiaan van Roosmalen

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

Heart

Adam-Christiaan van Roosmalen

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

Heart

Adam-Christiaan van Roosmalen

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Outline

- Definitions
- Derived categories and derived equivalences
- (Fractionally) Calabi-Yau

2 Hereditary categories which are (fractionally) Calabi-Yau

- Related to representations of Dynkin quivers
- Related to tubes
- Related to elliptic curves
- Related to weighted projective lines

イロト イポト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Beilinson's equivalence and weighted projective lines

イロト イポト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Beilinson's equivalence and weighted projective lines

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Beilinson's equivalence and weighted projective lines

イロト イポト イヨト イヨ

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Beilinson's equivalence and weighted projective lines

イロト イポト イヨト イヨ

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Beilinson's equivalence and weighted projective lines

イロト イ押ト イヨト イヨト

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Canonical algebras

Definition

A canonical algebra is the path algebra of a quiver of the form

with relations $f_i^{p_i} = f_2^{p_2} - \lambda_i f_1^{p_1}$, for all $2 \le i \le t$, where $\lambda_i \ne \lambda_j$ for $i \ne j$.

イロト 不得 トイヨト イヨト 二日 二

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Weighted projective lines

Definition ([1, 2])

A connected Ext-finite abelian hereditary noetherian category with a tilting complex and no nonzero projectives is said to be a category of coherent sheaves $\operatorname{coh} X$ over a weighted projective line X.

- W. Geigle, H. Lenzing A class of weighted projectives lines arising in the representation theory of finite dimensional algebras, Lect. Notes Math. 1273 (1987), 265–297.
- H. Lenzing Hereditary Noetherian categories with a tilting complex, Proc. Amer. Math. Soc. **125** (1997), 1893–1901.

イロト イポト イヨト イヨト

Quivers of 'tubular' canonical algebras

Adam-Christiaan van Roosmalen

Properties of coh X where X is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, T₁, T₂, we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ Q ∪ {∞}, we have A_μ ≅ A_{μ'}.

ヘロト 不得 とくほ とくほとう

Properties of $coh \mathbb{X}$ where \mathbb{X} is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, T₁, T₂, we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ Q ∪ {∞}, we have A_μ ≅ A_{μ'}.

イロト 不得 トイヨト イヨト

Properties of $coh \mathbb{X}$ where \mathbb{X} is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, T₁, T₂, we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ Q ∪ {∞}, we have A_μ ≅ A_{μ'}.

イロト 不同 トイヨト イヨト

Properties of coh \mathbb{X} where \mathbb{X} is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, T₁, T₂, we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ Q ∪ {∞}, we have A_μ ≅ A_{μ'}.

イロト 不得 とくほと くほとう

3

Properties of coh \mathbb{X} where \mathbb{X} is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, $\mathcal{T}_1, \mathcal{T}_2$, we have

 $Hom(\mathcal{T}_1,\mathcal{T}_2) \neq 0 \Leftrightarrow \mu(\mathcal{T}_1) < \mu(\mathcal{T}_2).$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ Q ∪ {∞}, we have A_μ ≃ A_{μ'}.

イロト 不得 とくほと くほとう

3

Properties of coh \mathbb{X} where \mathbb{X} is tubular

- $\operatorname{coh} X$ is fractionally Calabi-Yau of dimension 1.
- Every Auslander-Reiten component is a tube.
- Every tube \mathcal{T} has a slope, $\mu(\mathcal{T})$, which lies in $\mathbb{Q} \cup \{\infty\}$.
- The tubes with infinite slope are in 1-1-correspondence with the points of X.
- For two different tubes, $\mathcal{T}_1, \mathcal{T}_2$, we have

$$\operatorname{Hom}(\mathcal{T}_1,\mathcal{T}_2)\neq 0 \Leftrightarrow \mu(\mathcal{T}_1)<\mu(\mathcal{T}_2).$$

Denote by A_μ the additive category given by all tubes of slope μ.
For all μ, μ' ∈ ℚ ∪ {∞}, we have A_μ ≅ A_{μ'}.

・ロト ・ 理 ト ・ ヨ ト ・

э.

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of coh X

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

イロト イ押ト イヨト イヨト

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of coh X

Auslander-Reiten Quiver

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

イロト イポト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of coh X

Auslander-Reiten Quiver

イロト イポト イヨト イヨ

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Auslander-Reiten Quiver of coh X

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau

(日)

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

Theorem

Let $A = \operatorname{coh} X$. All bounded t-structures on $D^b A$ whose heart is hereditary and derived equivalent to A may be given by

- $\theta \in \mathbb{Q} \cup \{\infty\}$, $n \in \mathbb{Z}$, and a set S of tubes in $\mathcal{A}_{\theta}[n]$
- $\theta \in \mathbb{R} \setminus \mathbb{Q}$, $n \in \mathbb{Z}$.

イロト 不得 トイヨト イヨト

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

t-structure ($\theta \in \mathbb{Q} \cup \{\infty\}$)

Adam-Christiaan van Roosmalen

Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

イロト イポト イヨト イヨト

Hereditary categories derived equivalent with coh X

Adam-Christiaan van Roosmalen Hereditary Categories which are Fractionally Calabi-Yau
Definitions and main result Hereditary categories which are (fractionally) Calabi-Yau Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

t-structure ($\theta \in \mathbb{Q} \cup \{\infty\}$)

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau

Definitions and main result Hereditary categories which are (fractionally) Calabi-Yau Related to representations of Dynkin quivers Related to tubes Related to elliptic curves Related to weighted projective lines

Hereditary categories derived equivalent with coh X

Adam-Christiaan van Roosmalen

Hereditary Categories which are Fractionally Calabi-Yau

Theorem

Let \mathcal{A} be a connected abelian hereditary category which is fractionally Calabi-Yau, then \mathcal{A} is derived equivalent to either

- the category of nilpotent representations of the one-loop quiver, or
- the category of coherent sheaves on an elliptic curve, or
- subscript{the category of nilpotent representations of \tilde{A}_n with $n \ge 1$, or
- the category of coherent sheaves over a weighted projective line of tubular type, or
- the category of finite presented modules mod Q over a Dynkin quiver Q.

イロト イポト イヨト イヨト