Dr. S. Krömer Dr. A. Stylianou

Funktionalanalysis ...

3. Übung

Abgabe: Dienstag, 26.04.2011, bis 10:00 Uhr

(in den rechten oberen Kasten für Übungsblätter im Keller des MI)

Aufgabe 1:

Sei H ein Hilbertraum und $K \subset H$ eine abgeschlossene und konvexe Menge. Nach dem Projektionssatz existiert für jedes $u \in H$ ein eindeutig bestimmtes $v \in K$, so dass $\|u-v\| = \inf_{w \in K} \|u-w\|$; wir definieren damit $P_K(u) := v$. Zeigen Sie die folgenden Aussagen:

- (a) $P_K: H \to H$ ist eine "Projektion", d.h. $P_K(P_K(u)) = P_K(u)$.
- (b) Für jedes $v \in K$ und jedes $u \in H$ gilt $(u P_K(u), v P_K(u)) \le 0$. **Hinweis:** Es gilt $||u - P_K(u)|| \le ||u - w||$ für jedes $w \in K$ (warum?). Diskutieren Sie nun für $w(t) := (1 - t)P_K(u) + tv$, $t \in [0, 1]$, die Funktion $t \mapsto ||u - w(t)||^2$ in der Nähe von t = 0.
- (c) Für alle $u_1, u_2 \in H$ gilt $||P_K(u_1) P_K(u_2)|| \le ||u_1 u_2||$. **Hinweis:** Nutzen Sie (b) zweimal, mit u_1 bzw. u_2 anstelle von u und jeweils geeignet gewähltem v, und verwenden Sie auch die Cauchy-Schwarzsche Ungleichung.

(5 Punkte)

Aufgabe 2:

Für $x = (x_1, x_2) \in \mathbb{R}^2$ sei

$$||x||_1 := |x_1| + |x_2|, \quad ||x||_2 := (|x_1|^2 + |x_2|^2)^{\frac{1}{2}}, \quad ||x||_{\infty} := \max\{|x_1|, |x_2|\}.$$

Für $p=1,2,\infty$ und $A\in\mathbb{R}^{2\times 2}$ ist die zugehörige Operatornorm definiert durch

$$\|A\|_p := \sup_{x \in \mathbb{R}^2 \setminus \{0\}} \frac{\|Ax\|_p}{\|x\|_p} = \max_{x \in \mathbb{R}^2, \|x\|_p = 1} \|Ax\|_p.$$

Finden Sie für $A:=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$ und $p=1,2,\infty$ je einen Vektor $y\in\mathbb{R}^2\setminus\{0\}$, so dass $\|A\|_p\,\|y\|_p=\|Ay\|_p$ gilt, und geben Sie $\|A\|_p$ an.

(5 Punkte)

Aufgabe 3:

- (a) Sei H ein reeller Hilbertraum und $a, b \in H \setminus \{0\}$ mit (a, b) = 0. Wir definieren den linearen Operator $T: H \to H$ mit Tx := (x, b)a + (x, a)b. Zeigen Sie, dass ||T|| = ||a|| ||b|| gilt.
- (b) Berechnen Sie ||T||, wenn $T: L^2(0,\pi) \to L^2(0,\pi)$ durch

$$(Tu)(x) := \sin x \int_0^{\pi} u(t) \cos t \, dt + \cos x \int_0^{\pi} u(t) \sin t \, dt$$

gegeben ist.

(5 Punkte)

Aufgabe 4:

Es sei $(a,b) \subset \mathbb{R}$ ein beschränktes offenes Intervall und $u \in C^1(a,b)$. Ferner sei

$$||u||_{C([a,b])} := \sup_{t \in (a,b)} |u(t)|, \quad ||u||_{W^{1,p}(a,b)} := \left(\int_a^b \left(|u'(t)|^p + |u(t)|^p\right) dt\right)^{\frac{1}{p}} \text{ für } 1 \le p < \infty.$$

Zeigen Sie die folgenden Abschätzungen (wobei Sie stets annehmen dürfen, dass die jeweilige rechte Seite endlich ist):

- (a) $|u(x)| \le \int_a^b |u'(t)| dt + |u(y)|$ für alle $x, y \in (a, b)$.
- (b) $||u||_{C([a,b])} \le \int_a^b |u'(t)| dt + \frac{1}{b-a} \int_a^b |u(t)| dt \le C_1 ||u||_{W^{1,1}(a,b)},$ mit der Konstante $C_1 := \max \{1, \frac{1}{b-a}\}.$
- (c) $\|u\|_{C([a,b])}^2 \leq \left((b-a)^{\frac{1}{2}}\|u'\|_{L^2(a,b)} + (b-a)^{-\frac{1}{2}}\|u\|_{L^2(a,b)}\right)^2 \leq C_2 \|u\|_{W^{1,2}(a,b)}^2,$ mit der Konstante $C_2 := \max\left\{b-a, \frac{1}{b-a}\right\} + 1.$ **Hinweis**: Für $v \in L^2(a,b)$ ist $\int_a^b |v(t)| dt = (|v|,1)_{L^2(a,b)} \leq \|v\|_{L^2(a,b)} \|1\|_{L^2(a,b)}.$

Auf den folgenden Übungsblättern werden wir die Ergebnisse dieser Aufgabe wieder aufgreifen, in mehreren Aufgaben, in denen wir Eigenschaften von $W^{1,2}(a,b)$ näher besprechen. (5 Punkte)

Aktuelle Informationen gibt es auf der Veranstaltungshomepage:

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1111SS/FA.html