Variationsungleichungen

2. Übung

Abgabe: Freitag, 19.10.2013, bis 12:15 Uhr

(in den Briefkasten für Übungsblätter im "MI-Container" auf dem Parkplatz der Physik)

Aufgabe 1:

Es sei $K \subset \mathbb{R}^2$ eine abgeschlossene, konvexe, beschränkte Menge, und P_K die Projektion auf K. Ferner sei S der Rand einer Kreisscheibe, die K enthält, und $\gamma:[0,2\pi)\to S$ die Standardparametrisierung von S in Polarkoordinaten bezüglich des Kreismittelpunkts. Zeigen Sie, dass die stetige Kurve $\eta=P_K\circ\gamma:[0,2\pi)\to\partial K$ rektifizierbar ist, d.h., die Länge

$$L := \sup \left\{ \sum_{i=1}^{m} |\eta(t_i) - \eta(t_{i-1})| \mid m \in \mathbb{N}, \ 0 = t_0 < t_1 < \dots < t_m = 2\pi \right\}$$

der Kurve η (also der Umfang von K) ist endlich. Hier bezeichnet $|\cdot|$ die euklidische Norm eines Vektors im \mathbb{R}^2 .

(5 Punkte)

Aufgabe 2:

Es seien $K_2 \subset K_1 \subset \mathbb{R}^2$ abgeschlossene, konvexe, beschränkte Mengen. Zeigen Sie, dass der Umfang von K_1 (im Sinne von Aufgabe 1) mindestens so groß ist wie der von K_2 .

(5 Punkte)

Aufgabe 3:

Finden Sie ein Beispiel einer stetigen Abbildung $F:K\to (\mathbb{R}^N)'$, mit einer geeigneten konvexen und abgeschlossenen Menge $K\subset \mathbb{R}^N$, für die die Variationsungleichung

$$\langle F(x), y - x \rangle > 0$$
 für alle $y \in K$

mehr als eine Lösung $x \in K$ hat.

(5 Punkte)

Aufgabe 4:

Es seien $K_2 \subset K_1 \subset \mathbb{R}^N$ abgeschlossene, konvexe Mengen (die aber nicht beschränkt sein müssen), und $F: K_1 \to (\mathbb{R}^N)'$ stetig und strikt monoton. Ferner nehmen wir an, dass zwei Lösungen $x_j \in K_j$, j = 1, 2, von

$$\langle F(x_j), y - x_j \rangle \ge 0$$
 für alle $y \in K_j$

existieren. Zeigen Sie:

- (a) Ist $F(x_2) = 0$, so folgt $x_1 = x_2$.
- (b) Ist $F(x_2) \neq 0$ und $x_1 \neq x_2$, so liegen x_1 und K_2 auf verschiedenen Seiten der Hyperfläche

$$H := \left\{ y \in \mathbb{R}^N \mid \langle F(x_2), y - x_2 \rangle = 0 \right\}.$$

Genauer gesagt gilt

$$\langle F(x_2), x_1 - x_2 \rangle < 0 \le \langle F(x_2), y - x_2 \rangle$$
 für alle $y \in K_2$.

(5 Punkte)

Informationen zur Vorlesung und den Übungen gibt es auf der **Veranstaltungshomepage** (auf der Internetseite des Lehrstuhls Kawohl verlinkt unter "Lehre"):

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1213WS/varungl.html