Variationsungleichungen

5. Übung

Abgabe: Freitag, 09.11.2013, bis 12:15 Uhr

(in den Briefkasten für Übungsblätter im "MI-Container" auf dem Parkplatz der Physik)

Aufgabe 1: (Glättung durch Faltung, Teil 3)

Es sei $1 \leq p < \infty$, $u \in W^{1,p}(\mathbb{R}^N)$, $\eta \in C^{\infty}(\mathbb{R}^N)$ eine Funktion mit

$$\eta \ge 0$$
, $\eta(x) = 0$ für alle $|x| \ge 1$ und $\int_{\mathbb{R}^N} \eta(x) \, dx = 1$.

Ferner sei $\eta_m(x) := m^N \eta(mx)$.

- (a) Zeigen Sie, dass $u * \eta_m \in W^{1,p}(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$, mit $\partial_i(u * \eta_m) = (\partial_i u) * \eta_m$, $i = 1, \ldots, N$.
- (b) Mit Hilfe der Resultate der Aufgaben 1 und 2 von Blatt 4 kann man sich überlegen, dass

$$\|v * \eta_m - v\|_{L^p(\mathbb{R}^N)} \xrightarrow[m \to \infty]{} 0$$
 für alle $v \in L^p(\mathbb{R}^N)$.

Folgern Sie daraus, dass

$$||u*\eta_m-u||_{W^{1,p}(\mathbb{R}^N)} \underset{m\to\infty}{\longrightarrow} 0,$$

wobei
$$||w||_{W^{1,p}(\mathbb{R}^N)} := \left(\int_{\mathbb{R}^N} |w|^p \ dx + \sum_{i=1}^N \int_{\mathbb{R}^N} |\partial_i w|^p \ dx \right)^{\frac{1}{p}}$$
.

(5 Punkte)

Aufgabe 2:

Es sei $\Omega:=B_1(0)\subset\mathbb{R}^N$. Für $N\geq 2$ gilt die auf den ersten Blick verwunderliche Ungleichung

$$-1 \ge 0$$
 auf $E := \{0\}$ im Sinne von $H^1(\Omega)$.

Zeigen Sie dies für $N \geq 3$, mit Hilfe der Funktionenfolge

$$u_n(x) := \min\{0, -1 + |nx|^{-\alpha}\}\$$

mit einem geeigneten $\alpha > 0$.

<u>Hinweis</u>: Verwenden Sie, dass u_n für $\alpha < N-1$ schwach differenzierbar ist (vgl. Aufgabe 2 auf Blatt 3), mit

$$\partial_i u_n(x) = \begin{cases} -\alpha n^{-\alpha} \frac{x_i}{|x|^{\alpha+2}} & \text{für } |nx|^{-\alpha} < 1, \\ 0 & \text{für } |nx|^{-\alpha} > 1. \end{cases}$$

Wann gilt $u_n \to -1$ in $H^1(B_1(0)) = W^{1,2}(B_1(0))$?

(5 Punkte)

Aufgabe 3:

Es sei $\Omega \subset \mathbb{R}^N$ ein beschränktes Gebiet mit glattem Rand, $f \in L^2(\Omega)$ und $\psi \in H^1(\Omega)$. Wir betrachten die Variationsungleichung

$$\int_{\Omega} u_{x_i}(v-u)_{x_i} dx \ge \int_{\Omega} f(v-u) dx \text{ für alle } v \in K := \{ v \in H_0^1(\Omega) \mid v \ge \psi \text{ in } \Omega \}.$$
 (1)

Sei nun $u \in H^2(\Omega) \cap K$. Zeigen Sie, dass u genau dann Lösung von (1) ist, wenn

$$-\Delta u - f \ge 0$$
, $u - \psi \ge 0$, und $-(\Delta u + f)(u - \psi) = 0$ f.ü. in Ω . (2)

<u>Hinweis zu "⇒"</u>: Verwenden Sie folgende Variante des Fundamentallemmas der Variationsrechnung: Für jedes $w \in L^2(\Omega)$ gilt

$$\int_{\Omega} w\varphi\,dx \geq 0 \ \text{ für alle } \varphi \in C_0^\infty(\Omega) \ \text{mit } \varphi \geq 0 \ \text{in } \Omega \quad \Longrightarrow \quad w \geq 0 \ \text{f.\"{u}. in } \Omega.$$

(5 Punkte)

Aufgabe 4:

Es sei $\Omega \subset \mathbb{R}^N$ ein beschränktes Gebiet mit glattem Rand, und $\varphi = (\varphi^1, \varphi^2) \in H^1(\Omega; \mathbb{R}^2)$ mit $\varphi^1 \geq \varphi^2$ in Ω , wobei $H^1(\Omega; \mathbb{R}^2) := \{v = (v^1, v^2) \mid v^1, v^2 \in H^1(\Omega)\}$ Hilbertraum bezüglich des Skalarprodukts $(u, v) := (u^1, v^1)_{H^1(\Omega)} + (u^2, v^2)_{H^1(\Omega)}$ ist. Ferner sei

$$K := \left\{ v = (v^1, v^2) \in H^1(\Omega; \mathbb{R}^2) \mid v^1 \ge v^2 \text{ in } \Omega, \ v = \varphi \text{ auf } \partial\Omega \right\},\,$$

 $f_1, f_2 \in H^{-1}(\Omega)$ und

$$a(v,w) := \int_{\Omega} \left(v_{x_i}^1 w_{x_i}^1 + v_{x_i}^2 w_{x_i}^2 \right) dx + \int_{\Omega} \left(\lambda v^1 w^1 + \mu v^2 w^2 \right) dx,$$

mit Parametern $\lambda, \mu \in \mathbb{R}$. Weisen Sie unter geeigneten Voraussetzungen an λ und μ die Existenz und Eindeutigkeit der Lösung $u \in K$ folgender Variationsungleichung nach:

$$a(u, v - u) > \langle f_1, v^1 - u^1 \rangle + \langle f_2, v^2 - u^2 \rangle$$
 für alle $v \in K$.

(5 Punkte)

Informationen zur Vorlesung und den Übungen gibt es auf der Veranstaltungshomepage (auf der Internetseite des Lehrstuhls Kawohl verlinkt unter "Lehre"):

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1213WS/varungl.html