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Variationsungleichungen

11. Übung

Abgabe: Freitag, 11.01.2013, bis 12:15 Uhr
(in den Briefkasten für Übungsblätter im “MI-Container” auf dem Parkplatz der Physik)

Aufgabe 1:
Es sei Ω ⊂ RN ein beschränktes Gebiet mit glattem Rand. Wir betrachten Newtons Funktional
des Strömungswiderstands eines Körpers mit Profil u in dünnen Medien:

R(u) :=

∫
Ω

1

1 + |∇u|2
dx

Die zugehörige Euler-Lagrange Gleichung in starker Form für glatte kritische Punkte u lautet

0 = 2 div

(
∇u

(1 + |∇u|2)2

)
= aij(∇u)uxixj in Ω. (1)

(Diese Gleichung erhält man nur, wenn man das Funktional nicht auf konkave oder beschränkte
Funktionen einschränkt!) Zeigen Sie:

(a) aij(ξ) = 2
(1+|ξ|2)2

δij − 8ξiξj
(1+|ξ|2)3

für ξ ∈ RN , wobei δij = 1 für i = j und δij = 0 für i 6= j.

(b) Der quasilineare Differentialoperator zweiter Ordnung u 7→ aij(∇u)uxixj heißt (lokal) ellip-
tisch bei einem ξ ∈ RN , wenn die Matrix A(ξ) := (aij(ξ))ij positiv definit oder negativ
definit ist. Für welche Werte von ξ ist dies der Fall, und wann ist A(ξ) indefinit?
Hinweis: Für ξ 6= 0 sind ξ und alle Vektoren senkrecht zu ξ Eigenvektoren von A(ξ).

Bemerkung: Wäre A(ξ) durchgehend negativ definit oder durchgehend positiv definit, würde man
den Differentialoperator als elliptisch bezeichnen. Hier handelt es sich um einen Operator wech-
selnden Typs. Die Funktion im Integranden von R, ξ 7→ g(ξ) := 1

1+|ξ|2 , erfüllt D
2g(ξ) = −A(ξ),

was lokale Konvexität von g mit der Elliptizität des Differentialoperators verknüpft.
(5 Punkte)

Aufgabe 2 (konvexe Relaxation in Lp):
Es sei Ω ⊂ RN messbar mit endlichem Maß, und f : RM → R stetig mit 0 ≤ f(µ) ≤ C(1 + |µ|p),
wobei 1 ≤ p <∞ und C > 0 Konstanten sind. Wegen dieser Wachstumsbedingung an f ist

F (u) :=

∫
Ω
f(u(x)) dx, u ∈ Lp(Ω;RM )

stets endlich. Ferner sei f∗∗ die konvexe Hülle von f , also die größte konvexe Funktion kleiner
oder gleich f . Nach einem Satz von Carathéodory kann man f∗∗ an jeder Stelle durch geeignete
Konvexkombinationen von Werten von f approximieren: Zu jedem µ ∈ RM und jedem ε > 0 gibt
es Zahlen θi ∈ [0, 1] und Vektoren ξi ∈ RM , i = 0, . . . , N , mit

N∑
i=0

θi = 1,

N∑
i=0

θiξi = µ und f∗∗(µ) ≤
N∑
i=0

θif(ξi) ≤ f∗∗(µ) + ε.

Zeigen Sie damit:
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(a) Für alle konstanten Funktionen u0 ∈ Lp(Ω;RM ) gilt

inf
u∈Lp

∫
Ω
f(u(x)) dx ≤

∫
Ω
f∗∗(u0(x)) dx ≤

∫
Ω
f(u0(x)) dx

Hinweis: Nach Voraussetzung ist u0 ≡ µ für ein µ ∈ RM . Verwenden Sie stückweise konstante
Funktionen u, mit den Werten ξi auf Teilmengen von Ω mit geeignetem Maß.

(b) Ist u0 ∈ Lp(Ω;RM ) ein Minimierer von F , der auf Ω konstant ist, so gilt F (u0) =∫
Ω f
∗∗(u0(x)) dx, und f(u0(x)) = f∗∗(u0(x)) für fast alle x ∈ Ω.

Bemerkung: Da man alle Funktionen in Lp durch Treppenfunktionen approximieren kann, folgen
die obigen Aussagen sogar für beliebiges, nichtkonstantes u0 ∈ Lp.

(5 Punkte)

Aufgabe 3:
Es sei B := B1(0) ⊂ R2 und M > 0 eine Konstante. Nach Ergebnissen der Vorlesung hat

R(v) :=

∫
B

1

1 + |∇v|2
dx, v ∈ K := {v : B → R | v konkav, 0 ≤ v ≤M}

einen Minimierer u in K ⊂ W 1,∞
loc (B). Wir wollen zeigen, dass u nicht radialsymmetrisch sein

kann. Angenommen, dies ist doch der Fall. Führen Sie die Annahme in folgenden Schritten zum
Widerspruch:

(a) Ist ϕ ∈ C∞0 (B) eine Funktion mit u+ tϕ ∈ K für alle t ∈ R mit hinreichend kleinem Betrag,
so gilt

0 ≤ d2

dt2
R(u+ tϕ)

∣∣∣
t=0

=

∫
B

2

(1 + |∇u|2)3

[
−(1 + |∇u|2) |∇ϕ|2 + 4(∇u · ∇ϕ)2

]
dx.

(b) Transformieren Sie das Integral in (a) in Polarkoordinaten x = r(cos θ, sin θ), mit u = u(r)
und dem Ansatz ϕk(r, θ) := η(r) sin(kθ), r ∈ (0, 1), θ ∈ [0, 2π). Zeigen Sie, dass für η ∈
C∞0 ((0, 1)) \ {0} das Vorzeichen des Integrals negativ wird, zumindest für große k ∈ N.
Hinweis:

∫ 2π
0 sin2(kθ) dθ =

∫ 2π
0 cos2(kθ) dθ = C1 > 0, mit C1 unabhängig von k ∈ N.

Bemerkung: Dies liefert noch nicht den gewünschten Widerspruch zu (a), da wir momentan
noch nicht wissen, ob überhaupt ein ϕk im Sinne von (a) zulässig ist. Dies zu zeigen ist das
Ziel von (c) und (d).

(c) Ist u nicht konstant, so gibt es ein r0 ∈ [0, 1) mit u′(r) ≤ −1 für fast alle r > r0.

(d) Ist u in einem Intervall [a, b] ⊂ [r0, 1] zweimal stetig differenzierbar mit u′′(r) < 0 für alle
r ∈ [a, b], so ist D2u(x) (Hessematrix bezüglich der Standardkoordinaten) negativ definit
auf der kompakten Menge {x : |x| ∈ [a, b]}. Daraus folgt, dass ein ε = ε(k, η) > 0 existiert,
so dass D2(u+tϕk)(x) = D2u(x)+tD2ϕk(x) negativ definit ist für alle |t| < ε. Insbesondere
bleibt u + tϕk auf B konkav und damit in K, sofern der Träger von η in [a, b] liegt und t
klein genug ist.
Bemerkung: Man kann den Minimierer in der Klasse der radialsymmetrischen Funktionen
explizit berechen, was wir uns hier sparen. Es zeigt sich, dass dieser tatsächlich u′′ < 0 auf
(r0, 1) erfüllt, womit die Annahme in (d) gerechtfertigt ist.

(3+3+2+2=10 Punkte)

Informationen zur Vorlesung und den Übungen gibt es auf der Veranstaltungshomepage (auf
der Internetseite des Lehrstuhls Kawohl verlinkt unter “Lehre”):

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1213WS/varungl.html
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