Prof. Dr. B. Kawohl PD Dr. S. Krömer M.Sc. M. Kühn

Nichtlineare partielle Differentialgleichungen 2. Übung

Abgabe: Montag, 20.10.2014, bis 10:00 Uhr

(im Hörsaal am Anfang der Vorlesung oder in den Kasten für Übungsblätter im MI)

Aufgabe 1:

Sei $\Gamma := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 = 0\}$ und $u_0(x_1, x_2) = x_1^2$. Lösen Sie das quasilineare Randwertproblem

$$\begin{cases} u_{x_1} + u_{x_2} = u^2 \\ u(x_1, x_2) = u_0(x_1, x_2) & \text{für } (x_1, x_2) \in \Gamma \end{cases}$$

in einer Umgebung von Γ .

(4 Punkte)

Aufgabe 2:

Lösen Sie mit dem charakteristischen Verfahren:

(a)
$$\begin{cases} x_1 u_{x_1} + 2x_2 u_{x_2} + u_{x_3} = 3u \\ u(x_1, x_2, 0) = g(x_1, x_2), \end{cases}$$

wobei $g \in C^1(\mathbb{R}^2, \mathbb{R})$ gegeben sei.

(b)
$$\begin{cases} (x_2 + u)u_{x_1} + x_2u_{x_2} = x_1 - x_2 \\ u(x_1, 1) = 1 + x_1. \end{cases}$$

(3+3=6 Punkte)

Aufgabe 3:

Sind $\alpha: \mathbb{R}^n \to (0, \infty)$, $b: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ und $c: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ gegebene, hinreichend glatte Funktionen, so haben die quasilinearen Gleichungen

$$b(x, u(x)) \cdot Du(x) + c(x, u(x)) = 0 \quad \text{in } \mathbb{R}^n$$
 (1)

und

$$b_{\alpha}(x, u(x)) \cdot Du(x) + c_{\alpha}(x, u(x)) = 0 \quad \text{in } \mathbb{R}^n, \tag{2}$$

wobei

$$b_{\alpha}(x,z) := \alpha(x)b(x,z)$$
 und $c_{\alpha}(x,z) := \alpha(x)c(x,z)$,

offensichtlich die gleichen Lösungen u. Wie spiegelt sich das in den zu (1) und (2) gehörigen charakteristischen Systemen gewöhnlicher Differentialgleichungen wider (in denen mit Hilfe der quasilinearen Struktur p eliminiert wurde)? Die Lösungsfunktionen (x, z) und (x_{α}, z_{α}) davon sind zwar nicht mehr paarweise gleich, aber es gibt eine natürliche bijektive Beziehung zwischen ihnen. Welche ist das?

Hinweis: Verwenden Sie die eindeutig bestimmte (warum?) Lösung t von

$$\frac{dt(s)}{ds} = \alpha(x(t(s))), \quad t(0) = 0.$$

(5 Punkte)

Aufgabe 4:

Es sei $\Gamma := \partial B(0,1)$ die Einheitskreislinie im \mathbb{R}^2 und $g \in C^1(\mathbb{R}^2)$. Wir betrachten für $u \in C^1(\mathbb{R}^2)$ die Gleichung

$$-x_2 u_{x_1} + x_1 u_{x_2} = 0 \quad \text{in } \mathbb{R}^2,$$

$$u = g \quad \text{auf } \Gamma.$$
(3)

Zeigen Sie:

- (a) Ist g = c auf Γ mit einer Konstante $c \in \mathbb{R}$, so hat (3) unendlich viele Lösungen. **Hinweis:** Wie sehen die Charakteristiken von (3) aus?
- (b) Ist y ein Punkt in Γ und U eine offene Umgebung von y im \mathbb{R}^2 , so dass $\Gamma \cap U$ zusammenhängend und g auf $\Gamma \cap U$ nicht konstant ist, so hat (3) keine Lösung in U.
- (c) Wieso widerspricht (b) nicht dem Satz über die lokale Existenz von Lösungen aus der Vorlesung?

(2+2+1=5 Punkte)

Weitere Informationen und Aktuelles gibt es auf der Veranstaltungshomepage: http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1415WS/NlPDE.html