Prof. Dr. B. Kawohl PD Dr. S. Krömer M. Kühn, M.Sc.

Nichtlineare partielle Differentialgleichungen $3.\ \ddot{\mathrm{U}}\mathrm{bung}$

Abgabe: Montag, 27.10.2014, bis 10:00 Uhr

(im Hörsaal am Anfang der Vorlesung oder in den Kasten für Übungsblätter im MI)

Aufgabe 1:

Sei $\Gamma = \{(x_1, 0) \mid x_1 \in \mathbb{R}\}$, und $a_1, a_2\mathbb{R}^2 \to \mathbb{R}$ beschränkte C^{∞} -Funktionen. Wir betrachten das lineare Randwertproblem

$$\begin{cases} a_1(x)u_{x_1} + a_2(x)u_{x_2} = 0 & \text{in } \mathbb{R}^2, \\ u = u_0 & \text{auf } \Gamma, \end{cases}$$

mit $u_0 \in \mathbb{C}^{\infty}(\Gamma)$. Ferner gelte $a_2 \neq 0$ auf Γ .

- (a) Zeigen Sie, dass eine Lösung u in einer Umgebung von Γ existiert.
- (b) Finden Sie ein Beispiel für a_1 , a_2 und u_0 , so dass *keine* globale C^1 -Lösung u (also auf ganz \mathbb{R}^2) existiert.

(3+3=6 Punkte)

Aufgabe 2:

Wir betrachten das Anfangswertproblem

$$\begin{cases} u_t + [F(u)]_x = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g & \text{auf } \mathbb{R} \times \{t = 0\}. \end{cases}$$
 (1)

Zeigen sie: Gilt

$$1 + tg'(x - tF'(u))F''(u) \neq 0$$

für alle $(x,t) \in \mathbb{R} \times (0,\infty)$ mit gegebenen $F \in C^{\infty}(\mathbb{R})$ und $g \in C^{1}(\mathbb{R})$, so ist durch

$$u(x,t) = g(x - tF'(u))$$

eine Funktion u(x,t) eindeutig (implizit) definiert und eine klassische Lösung zu (1). (4 Punkte)

Aufgabe 3: Es sei $L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ gegeben durch

$$L(q, x) := \Psi(x) f(|q|) - \Phi(x),$$

wobei $f \in C^2([0,\infty))$ mit f'(0) = 0 und $f'' \ge \delta > 0$ auf $[0,\infty)$ für eine Konstante δ , sowie $\Phi, \Psi \in C^\infty(\mathbb{R}^n)$ mit $0 < \Psi \le \frac{1}{\delta}$ in \mathbb{R}^n .

(a) Bestimmen Sie die Euler-Lagrange-Gleichung für den Minimierer x^* von

$$\int_0^T L(\dot{x}(t), x(t)) dt, \quad x(0) = 0, \ x(T) = x_T$$

(unter allen C^2 -Funktionen $x:[0,T]\to\mathbb{R}^n$ mit gegebenem T>0 und $x_T\in\mathbb{R}^n$).

- (b) Zeigen Sie, dass die Abbildung $q \mapsto D_q L(q, x)$, $\mathbb{R}^n \to \mathbb{R}^n$, für jedes x bijektiv ist, und bestimmen Sie eine explizite Formel für die zur Lagrange-Funktion L gehörige Hamilton-Funktion H.
- (c) Sei nun $\Phi \geq 0$ und $f(r) = r^{2k}$ ($k \in \mathbb{N}$ fest). Geben Sie H für diesen Spezialfall an, und zeigen Sie damit, dass es eine Konstante C gibt, die nur von $\dot{x}^*(0)$, $\Phi(x^*(0))$, k und δ abhängt, so dass $|\dot{x}^*| \leq C$ auf [0,T].

(2+3+5=10 Punkte)