Prof. Dr. B. Kawohl PD Dr. S. Krömer M. Kühn, M.Sc.

Nichtlineare partielle Differentialgleichungen 10. Übung

Abgabe: Montag, 12.01.2015, bis 10:00 Uhr

(im Hörsaal am Anfang der Vorlesung oder in den Kasten für Übungsblätter im MI)

Aufgabe 1:

Sei $u \in C^2(\mathbb{R}^2)$, mit $\nabla u(x_0) \neq 0$ für ein $x_0 \in \mathbb{R}^2$. Nach dem Satz über implizite Funktionen gibt es dann eine Umgebung V von $x_0 \in \mathbb{R}^2$ und eine C^2 -Kurve $\gamma : \mathbb{R} \to \mathbb{R}^2$ mit $\gamma(0) = x_0$ und $\gamma'(0) \neq 0$, so dass für alle $x \in V$

$$u(x) = u(0) \iff x = \gamma(t)$$
 für genau ein $t \in \mathbb{R}$.

Zeigen Sie:

- (a) $\gamma'(0)$ steht senkrecht auf $\nabla u(x_0)$.
- (b) $\Delta u(x_0) = u_{\nu\nu} + |\gamma'(0)|^{-2} \frac{d^2}{dt^2} u(\gamma(t))|_{t=0} |\gamma'(0)|^{-2} \gamma''(0) \cdot \nabla u(x_0), \text{ mit } \nu := \frac{\nabla u(x_0)}{|\nabla u(x_0)|}.$
- (c) Aus (b) folgt $\Delta u(x_0) = u_{\nu\nu}(x_0) + Hu_{\nu}(x_0)$, mit $H := -|\gamma'(0)|^{-2}\gamma''(0) \cdot \nu \in \mathbb{R}$.

(1+3+2=6 Punkte)

Aufgabe 2:

Sei $1 , und <math>u \in g + W_0^{1,p}(\Omega)$ eine schwache Lösung zu

$$\begin{cases} -\Delta_p u = f & \text{in } \Omega \\ u = g & \text{auf } \partial \Omega, \end{cases}$$

es gelte also $\int\limits_{\Omega} |\nabla u|^{p-2} \, \nabla u \cdot \nabla \phi - f \phi \, \mathrm{d}x = 0$ für alle $\phi \in W^{1,p}_0(\Omega)$. Zeigen Sie:

(a)
$$\int_{\Omega} \frac{1}{p} |\nabla u|^p - fu \, dx \le \int_{\Omega} \frac{1}{p} |\nabla v|^p - fv \, dx \quad \forall v \in g + W_0^{1,p}(\Omega).$$

(b) Sind $f,g\geq 0$, so gilt für alle Funktionen $\eta\in W^{1,p}_0(\Omega)$ mit $0\leq \eta\leq 1$ und $\operatorname{supp}\eta\cap\operatorname{supp}f=\emptyset$

$$\int\limits_{\Omega} |\nabla u|^p \, \eta^p \, \mathrm{d}x \le p^p \int\limits_{\Omega} u^p \, |\nabla \eta|^p \, \, \mathrm{d}x.$$

(Tipp: Hölder-Ungleichung)

(2+4=6 Punkte)

Aufgabe 3:

Sei 1 und <math>a > 0. Berechnen Sie durch Integration die Lösung von

$$\begin{cases} -\left(|u'|^{p-2}u'\right)' = 1 & \text{in } (-a, a). \\ u(\pm a) = 0, \end{cases}$$

(3 Punkte)

Aufgabe 4:

Bestimmen Sie für 1 die Eulersche Gleichung zum Funktional

$$J_p(v) = \int_{\Omega} \frac{1}{p} \sum_{i=1}^n |v_{x_i}|^p - v \, dx$$

(3 Punkte)

Aufgabe 5:

Sei $\Omega = [-1, 1]^2 \subset \mathbb{R}^2$. Berechnen sie inf $\left\{\frac{|\partial A|}{|A|}\right\}$ unter allen $A \subset \Omega$ (mit hinreichend glattem Rand).

- (a) Zeigen Sie, dass das Infimum, sofern es angenommen wird, eine Menge Ω_c ist, die mindestens zwei gegenüberliegende Seiten des Quadrats berührt.
- (b) Ω_c ist konvex. Warum?
- (c) Falls sich ein Teil des Randes $\partial\Omega_c$ lokal durch eine Funktion y=f(x) beschreiben lässt (O.B.d.A.) und dieser Teil im Inneren von Ω verläuft, so handelt es sich um einen Kreisbogen oder ein Geradenstück. Warum?

Hinweis: Verwenden Sie Aufgabe 6.

- (d) Bestimmen sie Ω_c explizit, unter folgenden zusätzlichen (korrekten) Annahmen:
 - (i) Ω_c erbt die Symmetrie des Quadrats (spiegelsymmetrisch bzgl. der horizontalen, der vertikalen und den beiden diagonalen Achsen).
 - (ii) Jedes Randstück von $\partial\Omega_c$, das aus dem Inneren von Ω kommt, kann $\partial\Omega$ nur tangential berühren.

(3+3+2+4=12 Punkte)

Aufgabe 6: (freiwillig)

Die C^2 -Funktion $f:[0,1]\to (0,\infty)$ habe die Eigenschaft, dass Sie unter allen C^1 -Funktionen $g:[0,1]\to (0,\infty)$ mit g(0)=f(0), g(1)=f(1) und dem gleichen Volumen unterhalb des Graphen, also $\int_0^1 g(x)\,dx=\int_0^1 f(x)\,dx$, diejenige mit dem kürzesten Graphen ist, also

$$\int_0^1 \sqrt{f'(x)^2 + 1} \, dx \le \int_0^1 \sqrt{g'(x)^2 + 1} \, dx.$$

Zeigen Sie, dass der Graph von f dann konstante Krümmung hat (also entweder eine Gerade oder ein Kreisbogen ist), in folgenden Teilschritten:

(a) Für alle $\varphi \in C^1((0,1))$ mit $\varphi(0) = \varphi(1) = 0$ und $\int_0^1 \varphi = 0$ gilt

$$\int_0^1 (f'(x)^2 + 1)^{-\frac{1}{2}} f'(x) \varphi'(x) \, dx = 0.$$

(b) Aus (a) folgt, dass

$$H(x) := (f'(x)^{2} + 1)^{-\frac{3}{2}} f''(x) = \frac{d}{dx} [(f'(x)^{2} + 1)^{-\frac{1}{2}} f'(x)] = c,$$

für alle $x \in (0,1)$, mit einer Konstanten $c \in \mathbb{R}$.

Anmerkung: Geometrisch ist H(x) die Krümmung des Graphen von f. Konstante Krümmung charakterisiert Kreislinien bzw. Geradenstücke.

(2+3=5 Bonuspunkte)

Weitere Informationen und Aktuelles gibt es auf der Veranstaltungshomepage: http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1415WS/NlPDE.html