Prof. Dr. B. Kawohl M. Kühn, M.Sc. Dr. S. Littig

Funktionalanalysis

5. Übung

Abgabe: Montag, 11.05.2015, bis 10:00 Uhr

(in den Kasten für Übungsblätter im Studierendenarbeitsraum)

Aufgabe 1:

Beweisen Sie Satz 5.2 der Vorlesung, das heißt: Sind H_1 und H_2 reelle oder komplexe Hilberträume und ist $A: H_1 \to H_2$ ein linearer und beschränkter Operator, so gilt

- (i) Die Operatornormen von A und A^* erfüllen stets $||A|| = ||A^*||$.
- (ii) Es gilt $A^{**} := (A^*)^* = A$.

(4 Punkte)

Aufgabe 2:

Finden Sie für die gegebenen Abbildungen jeweils deren adjungierte Abbildung und die Norm jeweils beider Abbildungen:

- (a) $A: l^2(\mathbb{N}) \to L^2(0, \infty)$ $(\xi_i)_{i=1}^{\infty} \mapsto f(x) = \xi$, falls $x \in (i-1, i), i \in \mathbb{N}$.
- (b) $B: L^2(0,\infty) \to l^2(\mathbb{N})$ $f \mapsto \left(\int_{i-1}^i h(x) f(x) \, \mathrm{d}x \right)_{i=1}^\infty, \text{ wobei } h \text{ eine messbare, beschränkte Funktion auf } (0,\infty) \text{ ist.}$

(4 Punkte)

Aufgabe 3:

Sei H ein Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

(a) Seien $N \in \mathbb{N}$ und $x_1, \dots x_N \in H$ mit $\langle x_i, x_j \rangle = 0$ für $i \neq j$. Zeigen Sie, dass dann gilt:

$$\left\| \sum_{n=1}^{N} x_n \right\|^2 = \sum_{n=1}^{N} \|x_n\|^2.$$

(b) Sei $S=\{x_1,x_2,\dots\}$ ein Orthonormalsystem in H. Zeigen Sie, dass für $y\in H$ die folgende Ungleichung gilt:

$$\sum_{n=1}^{\infty} |\langle y, x_n \rangle|^2 \le ||y||^2.$$

(1+3 Punkte)

Aufgabe 4:

Sei H ein Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, $S = \{x_1, x_2, \dots\}$ ein Orthonormalsystem in H und $V := \overline{\operatorname{span} S}$.

(a) Nach dem Projektionssatz gibt es zu jedem $y \in H$ eine eindeutige Zerlegung

$$y = v + w, \quad v \in V, \quad w \in V^{\perp}.$$

Zeigen Sie, dass die Fourierreihe $\sum_{n=1}^{\infty} \langle y, x_n \rangle x_n$ von y bezüglich S gegen v konvergiert.

Zeigen Sie dazu zunächst, dass die Folge der Partialsummen (s_n) mit $s_i = \sum_{n=1}^i \langle y, x_n \rangle x_n$ eine Cauchyfolge bilden und dann, dass der Grenzwert v ist.

(b) Zeigen Sie die Äquivalenz der folgenden Aussagen:

(i)
$$\forall x \in H : x = \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n$$

(ii)
$$\forall x \in H : \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2 = ||x||^2$$

(iii)
$$V = H$$

(iv)
$$\langle x, x_n \rangle = 0 \ \forall n \in \mathbb{N} \implies x = 0$$

Ein Orthonormalsystem mit diesen Eigenschaften nennt man eine Orthonormalbasis.

(4+4 Punkte)