Variationsungleichungen 11. Übung

Abgabeschluss ist Montag, der 04.07.2016, 10 Uhr

(in den Übungsbriefkasten Variationsungleichungen im Studierendenarbeitsraum)

Aufgabe 1 (5 Punkte):

Es sei H ein Hilbertraum und a(u, v) eine stetige nichtnegative Bilinearform auf H. Zeigen Sie, dass $u \mapsto a(u, u)$ unterhalbstetig bezüglich der schwachen Konvergenz in H ist, also dass für alle Folgen $(u_n) \subset H$ folgendes gilt:

$$u_n \underset{n \to \infty}{\rightharpoonup} u \implies \liminf_{n \to \infty} a(u_n, u_n) \ge a(u, u)$$

Aufgabe 2 (5 Punkte):

Es sei $\Omega \subset \mathbb{R}^N$ ein beschränktes Gebiet mit glattem Rand. Dann gilt folgende *elliptische a-priori* Abschätzung:

$$||u||_{H^2(\Omega)} \le C \left(||\Delta u||_{L^2(\Omega)} + ||u||_{L^2(\Omega)} \right), \quad \text{für alle } u \in H^2(\Omega) \cap H^1_0(\Omega),$$

mit einer Konstanten C > 0. Benutzen Sie dies, um zu zeigen, dass

$$a(u,v) := \int_{\Omega} \Delta u \Delta v \, dx$$

eine auf $H^2(\Omega) \cap H^1_0(\Omega)$ koerzitive Bilinearform ist.

Hinweis: Zeigen Sie zunächst für beliebige $\varepsilon > 0$:

$$\|\nabla u\|_{L^{2}}^{2} \leq \|\Delta u\|_{L^{2}} \|u\|_{L^{2}} \leq \frac{1}{2\varepsilon} \|\Delta u\|_{L^{2}}^{2} + \frac{\varepsilon}{2} \|u\|_{L^{2}}^{2}$$

Aufgabe 3 (10 Punkte):

Sei $\Omega := B_R(0) \setminus \bar{B}_{\varrho}(0) \subset \mathbb{R}^2$ mit $0 < \varrho < R$, und $u \in W^{1,1}(\Omega)$ eine schwache Lösung der Minimalflächengleichung, also

$$\int_{\Omega} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \cdot \nabla \varphi \, dx = 0 \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega), \tag{1}$$

mit den Randbedingungen u = 0 auf $\partial B_R(0)$, u = h auf $\partial B_{\varrho}(0)$ (im Sinne der Spur), wobei h > 0 eine Konstante ist.

- (a) Zeigen Sie, dass u radialsymmetrisch ist, also dass für alle orthogonalen Matrizen $Q \in \mathbb{R}^{2 \times 2}$ $u = u_Q$ f.ü. in Ω gilt, wobei $u_Q(x) := u(Qx)$.

 Hinweis: $u_Q \in W^{1,1}(\Omega)$ mit $\nabla u_Q(x) = (\nabla u)(Qx)Q$, und u_Q erfüllt die gleichen Randbedingungen wie u. Zeigen Sie zunächst, dass auch u_Q eine Lösung von (1) ist.
- (b) Man kann sich überlegen, dass wegen der Radialsymmetrie von u ein $v \in W^{1,1}((\varrho, R)) \cap C^0([\varrho, R])$ existiert, so dass u(x) = v(|x|) für fast alle $x \in \Omega$ gilt. Zeigen Sie, dass damit (1) äquivalent ist zu

$$\int_{\varrho}^{R} \frac{v'(r)}{\sqrt{1+|v'(r)|^{2}}} \cdot \eta'(r)r \, dr = 0 \quad \text{für alle } \eta \in C_{0}^{\infty}((\varrho, R)).$$
 (2)

Ohne Begründung: Die entsprechenden Randbedingungen für v sind $v(\varrho) = h$, v(R) = 0 (im klassischen Sinne).

(c) Zeigen Sie: Ist v eine Lösung von (2), so gilt

$$\frac{v'(r)}{\sqrt{1+|v'(r)|^2}} = \frac{d}{r} \quad \text{für fast alle } \varrho < r < R,$$

mit einer Konstanten $d \in \mathbb{R}$. Ist $d \leq \varrho$, so ist zudem v' stetig auf $(\varrho, R]$ (bzw., fast überall gleich einer stetigen Funktion, die im Folgenden auch als v' bezeichnet wird).

<u>Hinweis</u>: $g: \mathbb{R} \to (-1,1), \quad g(s) := s(1+s^2)^{-\frac{1}{2}}$ ist stetig invertierbar. (Wieso?)

Bemerkung: Da der Hauptsatz der Intergralrechnung in $W^{1,1}((\varrho,R))$ gilt, folgt aus der Stetigkeit von v', dass $v(r) := \int_r^R v'(s) dx$ ein stetig differenzierbarer Repräsentant von v ist.

(d) Berechnen Sie alle Lösungen $v \in C^1((\varrho, R)) \cap C^0([\varrho, R])$ von (2) mit v(R) = 0. Wann ist unter den Lösungen eine, die auch die zweite Randbedingung $v(\varrho) = h$ erfüllt? <u>Hinweis</u>: $\operatorname{arcosh}(t)$ ist eine Stammfunktion zu $(t^2 - 1)^{-\frac{1}{2}}$ für t > 1.

Informationen zur Vorlesung und den Übungen gibt es auf der **Veranstaltungshomepage** (auf der Internetseite des Lehrstuhls Kawohl verlinkt unter "Lehre"):

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1616SS/VU.html