Prof. Dr. B. Kawohl Dr. S. Littig M. Kühn, M.Sc.

Nichtlineare partielle Differentialgleichungen 6. Übung

Abgabeschluss ist Montag, der 5.12.2016, 10 Uhr

(in den Übungsbriefkasten "Nichtlineare partielle Differentialgleichungen" im Studierendenarbeitsraum)

Aufgabe 1 (7 Punkte):

Wir betrachten das Anfangswertproblem

$$\begin{cases} u_t + \sin(u)_x = 0 & \text{auf } (0, \infty) \times \mathbb{R}, \\ u(x, 0) = x & \text{für } x \in \mathbb{R}. \end{cases}$$

- (a) Geben Sie die projezierten Charakteristiken zur Gleichung an, und zeigen Sie, dass sie sich in den Bereichen $Z_k := (-\frac{3}{2}\pi + 2k\pi, \frac{1}{2}\pi + 2k\pi) \times (0, \infty)$ nicht schneiden, für $k \in \mathbb{Z}$.
- (b) Wegen (a) ist eine klassische Lösung u in allen Z_k festgelegt. Skizzieren Sie u (die Niveaumengen in $\mathbb{R} \times [0, \infty)$), und überprüfen Sie, ob dies auch eine Integrallösung ergibt, also ob die Rankine-Hugoniot-Bedingung auf den Trennlinien zwischen den Z_k erfüllt ist.

Aufgabe 2 (7 Punkte):

Sei $A, B \in C^1(\mathbb{R})$. Wir betrachten folgende Verallgemeinerung der skalaren Erhaltungsgleichung aus der Vorlesung:

$$A(u)_t + B(u)_x = 0$$
 in $\mathbb{R} \times \mathbb{R}$.

Sofern keine Anfangs- oder Randbedingung vorgegeben ist, bezeichnen wir u als Integrallösung hiervon, wenn

$$\int_{\mathbb{R}} \int_{\mathbb{R}} [A(u)v_t + B(u)v_x] dt dx = 0 \quad \text{für alle } v \in C_0^{\infty}(\mathbb{R}^2).$$

- (a) Leiten Sie die entsprechende Version der Rankine-Hugoniot-Bedingung her, die Integrallösungen u erfüllen müssen. (Wie in der Vorlesung wird angenommen, dass u sie bis auf eine C^1 -Kurve $C \subset \mathbb{R}^2$ glatt ist, und auf C links- und rechtsseitige Limiten besitzt, wobei "links" und "rechts" durch eine Normale ν auf C festgelegt wird.)
- (b) Wenn man die Burgers-Gleichung $(A_1(u) := u, B_1(u) := \frac{1}{2}u^2)$ mit u durchmultipliziert, lässt sich die so transformierte Gleichung wieder in die obige Form bringen, nun mit $A_2(u) = \frac{1}{2}u^2$, $B_2(u) := \frac{1}{3}u^3$. Formal sind diese beiden Gleichungen natürlich äquivalent (zumindest solange $u \neq 0$). Wie steht es mit den zugehörigen Rankine-Hugoniot-Bedingungen?

Aufgabe 3 (6 Punkte):

Zeigen Sie, dass

$$u(x,t) = \begin{cases} -\frac{2}{3} \left(t + \sqrt{(3x+t^2)} \right) & \text{falls } 4x + t^2 > 0\\ 0 & \text{falls } 4x + t^2 < 0 \end{cases}$$

eine (unbeschränkte) Entropielösung der Gleichung $u_t + \left(\frac{u^2}{2}\right)_x = 0$ ist.

Informationen zur Vorlesung und den Übungen gibt es auf der **Veranstaltungshomepage** (auf der Internetseite des Lehrstuhls Kawohl verlinkt unter "Lehre"):

http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/1617WS/NlPDE.html