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Abstract

In a recent paper [12] a constructive formula was given for all two-dimensional sets of constant
width. Based on that result we derive here a formula for the parametrization of the boundary of
bodies of constant width in 3 dimensions, depending on one function de�ned on S2 and a large enough
constant. Moreover, it is proven that all bodies of constant width in 3d have such a parametrization.
The last result needs a tool that we describe as `shadow domain' and is explained in an appendix.
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1 Introduction and two dimensions

We start by recalling the de�nition of those sets. A closed convex set G ⊂ Rn is called a set of constant
width in Rn, if its directional width is constant. The width in direction ω ∈ Sn−1 := {x ∈ Rn; |x| = 1}
is given by

dG (ω) = max {〈ω, x〉 ;x ∈ G} −min {〈ω, x〉 ;x ∈ G} .
Thus, if dG (ω) = dG, a constant, then G is a set of constant width. In 3 dimensions G is called a
body of constant width.

The interest in the subject started with Leonhard Euler, who around 1774 considered 2d curves
of constant width, which he called `curva orbiformis'. He not only studied such sets for 2 dimensions
but also gave a formula describing such curves. See �10 of [5]. In 3 dimensions a ball is obviously the
classical example of a body of constant width but the famous Meissner bodies also have this property.
See [16, 17] or [13]. Quite simple examples can also be constructed by taking a symmetric 2d set of
constant width and rotating that around its axis of symmetry.

Let us mention that famous mathematicians such as Minkowski [19] and Hilbert [10] were intrigued
by the subject. The �rst interest of most scholars focused on deriving properties of such domains. A
wonderful survey on sets of constant width (up to 1983) was provided by Chakerian and Groemer in [3],
and a more recent updated and thorough treatment can be found in the book by Martini, Montejano
and Oliveros [15]. Let us recall that the 3d question, motivated by Blaschke's 2d result [2], as to which
body of constant �xed width has the smallest volume or, equivalently, the smallest surface area, is still
open.

In the last century Hammer and Sobczyk described a construction for 2 dimensions in [7, 8, 9],
based on a characterization of what they called `outwardly simple line families'. More recently a direct
concise formula was given in [12] to describe all those sets in two dimensions. In the present paper we
use that result to �nd a formula that describes all bodies of constant width in 3d.

Let us start by recalling the 2d formula, which we need for the 3d construction:
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Theorem 1 ([12, Theorem 3.2]) Let x0 ∈ R2, r ∈ R and a ∈ L∞ (R) satisfy

r ≥ ‖a‖∞ , (1)

a (ϕ+ π) = −a (ϕ) for all ϕ, (2)∫ π

0

a (s)

(
− sin s

cos s

)
ds =

(
0

0

)
. (3)

De�ne the closed curve x : [0, 2π]→ R2 by

x (ϕ) = x0 +

∫ ϕ

0

(r − a (s))

(
− sin s

cos s

)
ds. (4)

Then x describes the boundary of a set of constant width 2r.

Remark 1.1 If r > ‖a‖∞, then x̃ is a Jordan curve, meaning a continuous one-to-one mapping when

considered from S1 to ∂G. For r > a(ϕ) the outside normal at x (ϕ) is
(− sinϕ

cosϕ

)
. If r = a(ϕ) for

ϕ ∈ [ϕ1, ϕ2], then one �nds for ϕ ∈ [ϕ1, ϕ2] that x (ϕ) = x (ϕ1) and a family of outside `normals':{(
− sinϕ

cosϕ

)
;ϕ ∈ [ϕ1, ϕ2]

}
.

Not only does the formula in (4) describe the boundary of a 2d domain of constant width, one can
even show that all those sets are described this way:

Theorem 2 ([12, Theorem 4.1]) If G ⊂ R2 is a closed convex set of constant width 2r, then there
exists x0 and a as in Theorem 1, such that ∂G = x ([0, 2π]) with x as in (4).

We should mention that there have been previous attempts to provide a description of all 3d
bodies of constant width. In [14] Lachand-Robert and Oudet present a geometric construction that
generates 3d bodies of constant width from 2d sets of constant width. This construction, however,
does not capture all 3d bodies of constant width because a counterexample is provided in the paper
[4] by Danzer. In [20] Montejano and Roldan-Pensado generalize the construction of Meissner bodies
to generate so-called Meissner polyhedra. This construction does not generate all 3d bodies either,
because the rotated Reuleaux triangle is a counterexample. Furthermore Bayen, Lachand-Robert and
Oudet give a di�erent description of (all) 3d sets of constant width in Theorem 2 of [1]. Compared to
[1] our paper provides an alternative construction, based on the method from [12].

Most of the time we will use a column notation for vectors in Rn (n ∈ {2, 3}). For the standard
inner product of u, v ∈ Rn we use 〈u, v〉. The notation u · v is used for componentwise multiplication,
which includes but can be more general than the inner product.

2 A formula in three dimensions

Aside from our results from [12] for two dimensions we will use a result by Hadwiger in [6], which
can be roughly described as: convex bodies in Rn are uniquely determined by the projections in Rn−1

perpendicular to one �xed direction. The result holds for n ≥ 4 and, whenever the one �xed direction
is regular, also for n = 3. This last addendum is due to [11]. Regular means here, that the planes
perpendicular to that �xed direction which touch the convex domain, do that in precisely one point.
Since sets of constant width are necessarily strictly convex, this is obviously the case for sets of constant
width and any choice of the �xed direction.

Let us de�ne for ω ∈ S2 the orthogonal projection Pω on the plane Eω ⊂ R3 through 0 perpendicular
to ω. To exploit the result of Hadwiger we will use for a �xed u ∈ S2 all projections in the directions
ω ∈ S2 with 〈ω, u〉 = 0. See Figure 1. So we have

Pωx = 〈u, x〉u+ 〈u× ω, x〉 (u× ω) , (5)

and when identifying the projections on Eω with coordinates in R2 through

P̂ωx =

(
〈u, x〉
〈u× ω, x〉

)
. (6)

We may now explain the result by Hadwiger in [6] in more detail. He proved that for two convex
bodies G1 and G2 in R3 the following holds.
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Figure 1: The plane Eω for one ω and `all' planes Eω with ω such that 〈ω, u〉 = 0. Those Eω
contain u as a common direction.

� If PuG1 ' PuG2 and PωG1 ' PωG2 for all ω ∈ S2 with 〈ω, u〉 = 0, then G1 ' G2.

Here A ' B means that A equals B after a translation. In other words, there is a �xed v ∈ R3 such
that A = v + B. Groemer showed in [11] that one could drop the condition PuG1 ' PuG2, whenever
u is a regular direction for G1. Here regular means that max {〈u, x〉 ;x ∈ G1} is attained for a unique
x ∈ G1. Since domains G of constant width are precisely those domains for which

G∗ := 1
2G+ 1

2 (−G) :=
{

1
2x−

1
2y;x, y ∈ G

}
is a ball, which has only regular directions, one �nds that

(
P̃ωG

)∗
is a disc for all ω ∈ S2 with 〈ω, u〉 = 0,

if and only if G∗ is a ball. Necessarily those discs and the ball have the same radius. This implies that
a convex closed set G ⊂ R3 is a body of constant width if and only if there is a direction u ∈ S2, such
that for some �xed ρ > 0 one �nds(

P̃ωG
)∗ ' Dρ :=

{
y ∈ R2; |y| ≤ ρ

}
for all ω ∈ S2 with 〈ω, u〉 = 0.

This means that all those PωG should be two-dimensional convex sets of constant width ρ. So by
taking u = (1, 0, 0) we �nd that the boundary of PωG is described by (4) with some a depending
on ω. This leads us to the result in Theorem 6 that will be formulated using an admittedly unusual
parametrization of S2, which we introduce next:

De�nition 3 We parametrize S2 = V (S) by taking S := [0, 2π]×
[
− 1

2π,
1
2π
]
and

V (ϕ, θ) :=

 cosϕ
sinϕ cos θ
sinϕ sin θ

 . (7)

/2 3 /2 2

- /2

- /4

/4

/2

Figure 2: The parametrization v and its (non)uniqueness
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Lemma 4 Concerning (non)uniqueness of the parametrization V : S → S2 from (7) the following
holds with

S◦ := ((0, π) ∪ (π, 2π))×
(
− 1

2π,
1
2π
)
. (8)

� The restriction V : S◦ → S2 is one-to-one.

� On S \ S◦ one has for all θ ∈
[
− 1

2π,
1
2π
]
:

V (0, θ) = V (2π, θ) =

 1
0
0

 , V (π, θ) =

 −1
0
0

 , (9)

and for all ϕ ∈ [0, π]: {
V
(
ϕ, 1

2π
)

= V
(
2π − ϕ,− 1

2π
)
,

V
(
ϕ,− 1

2π
)

= V
(
2π − ϕ, 1

2π
)
.

(10)

Remark 4.1 The factor a(·, ·) will determine through κ = (r − a(ϕ, θ))
−1

the curvature for �xed θ
along

ϕ 7→ V (ϕ, θ) , (11)

the twodimensional projection of the body on the plane E(0,− sin θ,cos θ). Necessary for a correct parame-
trization is |a(ϕ, θ)| ≤ r and this gives a supremum bound for a. For ϕ 6∈ {0, π, 2π} the `curvature'
in the other direction is determined through h but in a more intricate way that uses ∂θa(ϕ, θ). The
parametrization has two special points, namely the east- and westpole (±1, 0, 0). For ϕ ∈ {0, π, 2π} the
curvature in (±1, 0, 0) along the curve parametrized by (11) for �xed θ is determined by a(0, θ) and
although a(0, θ) refers to just one point for all θ ∈

[
− 1

2π,
1
2π
]
we maintain the dependence on θ.

So we have to identify
(
ϕ, 1

2π
)
with

(
2π − ϕ,− 1

2π
)
and (0, θ) with (2π, θ), but not take a constant

at these two points. This leads to the following non-standard Ck-di�erentiability on S2.

De�nition 5 If we say u ∈ Ckper(S), then we mean that ũ ∈ Ck(R2), where ũ is the periodic extension
of u, de�ned as follows:

1. for (ϕ, θ) ∈ S and ϕ̃ ∈ R set

u1(ϕ̃, θ) := u (ϕ, θ) if ϕ̃− ϕ ∈ 2πZ,

2. for (ϕ̃, θ) ∈ R×
[
− 1

2π,
1
2π
]
and θ̃ ∈ R set

ũ(ϕ̃, θ̃) := u1(ϕ̃, θ) if θ̃ − θ ∈ 2πZ,
ũ(ϕ̃, θ̃) := u1(2π − ϕ,−θ) if θ̃ − θ + π ∈ 2πZ.

The parametrization is illustrated in Fig. 2 and Fig. 3. The relations in (9) for ϕ ∈ {0, π, 2π} are
depicted in Fig. 2 by the yellow and light blue lines that coincide with the yellow and light blue dots
in Fig. 3; the red and green curves in both �gures relate to (10).

0 3 /2 2

- /2

- /4

/4

/2

Figure 3: This parametrization of S2 yields geodesics through the east- and westpole.
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Theorem 6 (Constructing bodies of constant width) Suppose a ∈ C2
per(S) satis�es

a (ϕ+ π, θ) = −a (ϕ, θ) for all (ϕ, θ) ∈ S, (12)∫ π

0

a (s, θ)

(
− sin s

cos s

)
ds =

(
0

0

)
for all θ ∈

[
− 1

2π,
1
2π
]
. (13)

1. Let h ∈ C(S) be de�ned for (ϕ, θ) ∈ S◦ by:

h (ϕ, θ) = −
∫ ϕ

0
sin (ϕ− s) ∂θa(s, θ) ds

sinϕ
. (14)

Then there exist r0(a) ≥ ‖a‖∞, such that for all

r ≥ r0(a) (15)

and X0 ∈ R3, the surface X(S), de�ned for (ϕ, θ) ∈ S by

X(ϕ, θ) = X0 +

∫ ϕ

0

(r − a (s, θ))

 − sin s
cos s cos θ
cos s sin θ

 ds+ h (ϕ, θ)

 0
− sin θ
cos θ

 (16)

describes the boundary of a convex body of constant width.

2. Moreover, with a as above, the function h in (14) is the unique possibility in order that X in
(16) describes the boundary of a body of constant width.

Remark 6.1 Our construction will be illustrated by an example in Section 3. Although a ∈ C2
per(S)

will imply that

(ϕ, θ) 7→ h (ϕ, θ)

(
− sin θ
cos θ

)
∈ C1

per(S)

and hence X ∈ C1
per(S), it does not mean that the parametrization S2 → ∂G is a di�eomorphism. This

will only be the case for r > r0(a) and in general not for r = r0(a). In the next section the example is
such that r = r0(a) = 1 and X will not be a di�eomorphism near (1, 0, 0).

We have stated that a ∈ C2
per(S), which is su�cient for describing a 3d set of constant width, but

certainly more than necessary for h andX to be well-de�ned. Necessary will be a(·, θ) ∈ L∞ (0, 2π) and
∂θa(·, θ) ∈ L1 (0, 2π). However, without more regularity the parametrization will not be di�erentiable
and, if correct at all, will display a nonsmooth surface. For the 2d case a necessary and su�cient
restriction appears, namely r ≥ r0(a) := ‖a‖∞. There is obviously no h in 2d and hence no further
restriction concerning regularity. To have a di�erentiable parametrization in 3d a bound appears that
contains ∂θh.

Lemma 7 With a ∈ C2
per(S) de�ned according to Remark 4.1, and such that (12) and (13) hold, one

�nds that h de�ned in (14) satis�es for all θ ∈
[
− 1

2π,
1
2π
]

h (ϕ, θ) = h (ϕ+ π, θ) for ϕ ∈ [0, π] , (17)

h (ϕ, θ) = 0 for ϕ ∈ {0, π, 2π} (18)

and
h
(
ϕ, 1

2π
)

= −h
(
2π − ϕ,− 1

2π
)

for all ϕ ∈ [0, 2π] . (19)

Moreover

h (ϕ, θ)

(
− sin θ
cos θ

)
∈ C1

per (S) . (20)

Remark 7.1 Note that h in Theorem 6 is de�ned only for (ϕ, θ) ∈ S◦. The lemma states that h can
be extended uniquely, �rst to a continuous function on S which then satis�es the above results.

Remark 7.2 The formula in (16) for X is de�ned on S and should be such that the points in S \S◦,
that correspond to the same element in S2, give the same result. That is, X needs to satisfy (9) and
(10). One may check that this indeed holds true by the conditions on a in (12) and (13) and the results
for h in Lemma 7.
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Proof of Lemma 7. A straightforward computation shows, using (12) and (13), that (17) holds:

h (ϕ+ π, θ) = −
∫ ϕ+π

0
sin (ϕ+ π − s) ∂θa (s, θ) ds

sin (ϕ+ π)
= −

∫ ϕ+π

0
sin (ϕ− s) ∂θa (s, θ) ds

sinϕ

= −
(

cosϕ
sinϕ

)
· ∂θ

∫ π
0

(− sin s
cos s

)
a (s, θ) ds+

∫ ϕ+π

π
sin (ϕ− s) ∂θa (s, θ) ds

sinϕ

= −
0 +

∫ ϕ
0

sin (ϕ− s− π) ∂θa (s+ π, θ) ds

sinϕ
= h (ϕ, θ) .

To prove (18) note that the de�nition of h from a implies that h is C1(S) plus a possible singularity
at ϕ ∈ {0, π, 2π}. We �nd by (13) with k ∈ {1, 2} that∫ ϕ

0

sin (ϕ− s) a(s, θ) ds =

∫ ϕ

kπ

sin (ϕ− s) a(s, θ) ds.

By taking k ∈ {0, 1, 2} such that |ϕ− kπ| ≤ 1
2π, one �nds∣∣∣∣∫ ϕ

0

sin (ϕ− s) ∂θa(s, θ) ds

∣∣∣∣ ≤ ‖∂θa‖∞ ∣∣∣∣∫ ϕ

kπ

|sin (ϕ− s)| ds
∣∣∣∣

= 2 ‖∂θa‖∞
(

sin
(
kπ−ϕ

2

))2

≤ ‖∂θa‖∞ |sinϕ|
2
.

We used that
∣∣√2 sin (ϕ/2)

∣∣ ≤ |sinϕ| for ϕ ∈ [−π/2, π/2]. Thus it follows that

|h (ϕ, θ)| ≤ ‖∂θa‖∞ |sinϕ| (21)

and h (ϕ, θ) = 0 for ϕ ∈ {0, π, 2π} is the continuous extension, which implies h ∈ C1(S) with the
appropriate extension in the ϕ-direction.

For (19) one should notice that a ∈ C1
per (S), de�ned as in De�nition 5, means

a (ϕ, θ) = a (2π − ϕ, θ − π)

and implies
∂θa

(
ϕ, 1

2π
)

= ∂θa
(
2π − ϕ,− 1

2π
)
, (22)

and hence, by using consecutively (12), (13), a substitution and (22), that

h
(
2π − ϕ,− 1

2π
)

= −
∫ 2π−ϕ

0
sin (2π − ϕ− s) ∂θa

(
s,− 1

2π
)
ds

sin (2π − ϕ)

=

((− cosϕ
sinϕ

)
· ∂θ

∫ 2π

0

(− sin s
cos s

)
a (s, θ) ds

)
sin (2π − ϕ)

[θ = − 1
2π]−

∫ 2π−ϕ
2π

sin (2π − ϕ− s) ∂θa
(
s,− 1

2π
)
ds

sin (−ϕ)

= −
∫ 2π−ϕ

2π
sin (2π − ϕ− s) ∂θa

(
s,− 1

2π
)
ds

sin (−ϕ)
=

∫ ϕ
0

sin (s− ϕ) ∂θa
(
2π − s,− 1

2π
)
ds

sin (−ϕ)

=

∫ ϕ
0

sin (ϕ− s) ∂θa
(
s, 1

2π
)
ds

sin (ϕ)
= −h

(
ϕ, 1

2π
)
.

Checking (20) is straightforward. The only delicate point is the last condition in De�nition 5, but this
follows from (19). In particular the last term in (16) is thus in C1

per(S).

The following theorem states that (16) describes not only some but all sets of constant width.

Theorem 8 (All bodies of constant width are represented by (16))

1. Each body of constant width is described by (16) for some a ∈ L∞(S) satisfying (12) and (13),
with some r ≥ ‖a‖L∞(S) and with h such that (17), (18), (19) and

h (ϕ, θ) =
limε→0

∫ ϕ
0
a(s,θ)−a(s,θ+ε)

ε sin (ϕ− s) ds
sinϕ

. (23)

2. Concerning regularity we have

h (ϕ, θ)

(
− sin θ
cos θ

)
∈ C0,1

per (S)

and moreover,

i. if a, ∂θa ∈ C0
per(S), then also (14) holds true;

ii. if a, ∂θa ∈ C1
per(S), then also (20) holds true.
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3 An example

The formulas are rather technical and in order to illustrate that the formula does deliver a body of
constant width, we give an actual construction in a case that is computable. The example yields a body
of constant width connecting two triangular 2d-domains of constant width based on the 2d-formula.
In addition to x0 = 0 and r = 1 we use in Fig. 4:

� for the �gure on the left: a(s) = a1(s) := − cos(3s);

� for the �gure in the middle: a(s) = a2(s) := sin(3s).

The �gure on the right of Fig. 4 combines these two curves in a 3d-setting in orthogonal planes
with the red line as common intersection. In order to �nd a smooth perturbation from the horizontal
to the vertical curve by curves whose projections will be 2d-curves of constant width 1, we use the
following:

a (ϕ, θ) := (cos θ)
2
a1(ϕ) + (sin θ)

2
a2(ϕ). (24)

-2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

1.0

-2.0 -1.5 -1.0 -0.5

-1.5

-1.0

-0.5

0.5

Figure 4: The 2d sets with a1 and a2, showing the common axis, and the combination in 3d
by joining the red axes with the �rst curve horizontally and the second vertically

Figure 5: The intermediate construction without h and the �nal result. By the special choice
of the θ-dependence in (24) the curves from Fig. 4 remain unmodi�ed. They appear in blue.
The surface on the right is not everywhere smooth.

The a in (24) is used to produce the sketch on the left in Fig. 5 using the formula in (16) without
the h-term. Each intersection with a plane containing the horizontal (red) line {λ(1, 0, 0);λ ∈ R} will
produce a 2d set of constant width although the body itself will not be a 3d set of constant width.
Only after the modi�cation which includes the additional h-term in (16) does one indeed �nd a 3d set
of constant width.
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The 2d-curves from Figure 4 appear in the horizontal and a vertical plane in blue. The special
choice of (cos θ)

2 and (sin θ)
2 in (24) implies that ∂θa (ϕ, 0) = 0 = ∂θa (ϕ,±π/2) for all ϕ. Therefore

h (ϕ, 0) = 0 = h (ϕ,±π/2) for all ϕ or, in other words, those two curves remain unmodi�ed.

So in the left part of Fig. 5 one �nds rotated 2d-domains of constant width `rotating' from the the
2d �gure with a1 to the 2d �gure with a2. Since that rotated form is not even convex it cannot be a
3d-body of constant width. On the right one �nds the same projections as on the left but the curves
are now moved in a perpendicular direction with factor h. The function h in (14) is the one and only
such that the �gure on the right is a 3d-body of constant width.

4 Proofs of the two theorems

Let us start by introducing three vectors for a more concise notation:

Ξ =

 1
0
0

 , Θ =

 0
cos θ
sin θ

 and Ψ =

 0
− sin θ
cos θ

 . (25)

These three directions constitute a θ-dependent orthonormal basis in R3 that turns out to be convenient
for our parametrization. Also note that

V (ϕ, θ) =

 cosϕ
sinϕ cos θ
sinϕ sin θ

 = cosϕ Ξ + sinϕ Θ =

(
cosϕ
sinϕ

)
·
(

Ξ
Θ

)
(26)

and that the identities
∂θΘ = Ψ and ∂θΨ = −Θ (27)

hold true.

The notation with · in (26) might seem arti�cial. However, it coincides with the usual de�nition
of `scalar' product and is most convenient for a concise formulation of the following proofs.

Proof of Theorem 6. We will have to show that X in (16) is a regular parametrization and
secondly, that the resulting surface will yield a body of constant width. For both aspects we need to
consider ∂ϕX (ϕ, θ) and ∂θX (ϕ, θ).

I Computation of ∂ϕX and ∂ϕX. We will check �rst that X in (16) is a regular parametrization
for r large enough, that is

X̃ : S2 → ∂G de�ned by X̃ (ω) := X (ϕ, θ) (28)

is C1, one-to-one and onto and even a di�eomorphism. With the notation from (25) we can rewrite
(16) in

X (ϕ, θ) = X0 +

∫ ϕ

0

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
+ h(ϕ, θ) Ψ. (29)

One computes that

∂ϕX (ϕ, θ) = (r − a(ϕ, θ))

(
− sinϕ
cosϕ

)
·
(

Ξ
Θ

)
+ ∂ϕh(ϕ, θ) Ψ

and

∂θX (ϕ, θ) = −
∫ ϕ

0

∂θa(s, θ)

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
− h(ϕ, θ) Θ +(∫ ϕ

0

(r − a(s, θ)) cos s ds+ ∂θh(ϕ, θ)

)
Ψ.

I Invariant normal direction. Before continuing with showing that the parametrization is appro-
priate, notice that one directly �nds whenever this is the case, then the outward normal at X (ϕ, θ)
satis�es:

V
(
X̃ (ω)

)
= ω for all ω ∈ S2. (30)
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Indeed, with ω = cosϕ Ξ + sinϕ Θ we �nd

ω · ∂ϕX (ϕ, θ) = 0 (31)

and by the de�nition of h:

ω · ∂θX (ϕ, θ) =

∫ ϕ

0

∂θa(s, θ) sin (s− ϕ) ds− h(ϕ, θ) sinϕ = 0. (32)

Note that for the inverse of ω 7→X (ϕ, θ) to be the Gauss map of the body of constant width we need
(32) to be zero and hence this is the only possible de�nition of h.

I Well de�ned parametrization. For a ∈ C2 (S) Lemma 7 implies that h is well-de�ned and lies in
C1(S). So with (12) and (13) also the expression in (29) lies in C1(S).

In order to have a regular parametrization it is su�cient that:

� ∂ϕX × ∂θX is nontrivial on {(ϕ, θ) ∈ S;ϕ 6∈ {0, π, 2π}}, and
� ∂ϕX (ϕ, 0)× ∂ϕX

(
ϕ, 1

2π
)
is nontrivial for ϕ ∈ {0, π, 2π}.

Let us start with the second case for ϕ = 0, with ϕ ∈ {π, 2π} similarly:

∂ϕX(ϕ, 0)× ∂ϕX(ϕ, 1
2π) =

 0
r − a(0, 0)
∂ϕh (0, 0)

×
 0
−∂ϕh

(
0, 1

2π
)

r − a(0, 1
2π)

 =:

 T
0
0

 ,

where
T = (r − a(0, 0))

(
r − a(0, 1

2π)
)

+ ∂ϕh (0, 0) ∂ϕh
(
0, 1

2π
)
. (33)

Since

∂ϕh(ϕ, θ) =

∫ ϕ
0

sin s ∂θa(s, θ)ds

(sinϕ)
2 (34)

one obtains as in (21)
|∂ϕh(ϕ, θ)| ≤ ‖∂θa‖L∞(S) .

A su�cient condition for T > 0 is

r > ‖a‖L∞(S) + ‖∂θa‖L∞(S) .

For ϕ 6∈ {0, π, 2π}, using (31) and (32), which state that ω is perpendicular to ∂ϕX and ∂θX, a
simple way of checking that ∂ϕX × ∂θX is nontrivial, is to show ω · (∂ϕX × ∂θX) 6= 0. With the
orthonormal basis {Ξ,Θ,Ψ} we obtain

ω ·
(
∂ϕX(ϕ, θ)× ∂θX(ϕ, θ)

)
= det

 cosϕ − (r − a(ϕ, θ)) sinϕ
∫ ϕ

0
∂θa(s, θ) sin s ds

sinϕ (r − a(ϕ, θ)) cosϕ −h(ϕ, θ)−
∫ ϕ

0
∂θa(s, θ) cos s ds

0 ∂ϕh(ϕ, θ) ∂θh(ϕ, θ) +
∫ ϕ

0
(r − a(s, θ)) cos s ds



= (r − a(ϕ, θ))

(
∂θh(ϕ, θ) +

∫ ϕ

0

(r − a(s, θ)) cos s ds

)
+

∂ϕh(ϕ, θ)

(
cosϕ h(ϕ, θ) + cosϕ

∫ ϕ

0

∂θa(s, θ) cos s ds+

∫ ϕ

0

∂θa(s, θ) sinϕ sin sds

)
= (35)

Using the expression for h from (14) we obtain

(35) = (r − a(ϕ, θ))

(
∂θh(ϕ, θ) +

∫ ϕ

0

(r − a(s, θ)) cos s ds

)
+

∂ϕh(ϕ, θ)

(
cosϕ

−
∫ ϕ

0
sin (ϕ− s) ∂θa(s, θ) ds

sinϕ
+

∫ ϕ

0

∂θa(s, θ)

(
cosϕ
sinϕ

)
·
(

cos s
sin s

)
ds

)
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= (r − a(ϕ, θ))

(
∂θh(ϕ, θ) +

∫ ϕ

0

(r − a(s, θ)) cos s ds

)
+

∂ϕh(ϕ, θ)

(
cosϕ

sinϕ

(
− sinϕ
cosϕ

)
+

(
cosϕ
sinϕ

))
·
∫ ϕ

0

(
cos s
sin s

)
∂θa(s, θ) ds

= (r − a(ϕ, θ))

(
∂θh(ϕ, θ) +

∫ ϕ

0

(r − a(s, θ)) cos s ds

)
+

∂ϕh(ϕ, θ)

((
(cosϕ)

2

sinϕ
+

(sinϕ)
2

sinϕ

)∫ ϕ

0

sin s ∂θa(s, θ) ds

)

= (r − a(ϕ, θ))

(
∂θh(ϕ, θ) +

∫ ϕ

0

(r − a(s, θ)) cos s ds

)
+ ∂ϕh(ϕ, θ)

∫ ϕ
0

sin s ∂θa(s, θ)ds

sinϕ
= (36)

In (34) we computed ∂ϕh(ϕ, θ) and since

∂θh(ϕ, θ) =
−
∫ ϕ

0
sin (ϕ− s) ∂2

θa(s, θ)ds

sinϕ

we may continue by

(36) = (r − a(ϕ, θ))

(∫ ϕ

0

(r − a(s, θ)) cos s ds−
∫ ϕ

0
sin (ϕ− s) ∂2

θa(s, θ)ds

sinϕ

)
+

(∫ ϕ
0

sin s ∂θa(s, θ)ds
)2

(sinϕ)
3 . (37)

With the bounds based on (12) and (13) we get:∣∣∣∣∫ ϕ

0

sin s ∂θa(s, θ)ds

∣∣∣∣ ≤ |sinϕ|2 ‖∂θa‖L∞(S) ,∣∣∣∣∫ ϕ

0

sin (ϕ− s) ∂2
θa(s, θ)ds

∣∣∣∣ ≤ |sinϕ|2 ∥∥∂2
θa
∥∥
L∞(S)

.

So we may estimate∣∣∣∣(37)− (r − a(ϕ, θ))

∫ ϕ

0

(r − a(s, θ)) cos s ds

∣∣∣∣ ≤ (2r
∥∥∂2

θa
∥∥
L∞(S)

+ ‖∂θa‖2L∞(S)

)
|sinϕ|

which shows that whenever ϕ ∈ (0, π) for r large enough the expression in (37) is positive. Whenever
ϕ ∈ (π, 2π) for r large enough the expression in (37) is negative. Note that the orientation of dϕ ∧ dθ
changes on S2 for ϕ = π, which explains the sign change. Moreover, for each (ϕ, θ) ∈ S with ϕ ∈ [0, π]
and r ≥ ‖a‖L∞(S) the function r 7→ (37) is increasing, meaning that once (37) > 0 is satis�ed for
r = r0 it is so for r > r0. The same holds for (33). So there exists a minimal r0(a) such that the
parametrization is well-de�ned for all r > r0(a). For r = r0(a) the parametrization no longer is C1

or one-to-one. However, since for all r > r0(a) one �nds a body of constant width and all functions
involved are continuous, also the limit by taking t ↓ r0(a) gives a body of constant width.

I Homotopy to the sphere. The parametrization is well-de�ned for all r > r0(a) and to consider
the explicit dependence on r we use for the expression in (16) in this paragraph

Xe (r, ϕ, θ) := X (ϕ, θ) .

With X̃e as in (28) we de�ne

(0, 1]× S2 3 (ρ, ω) 7→ Ỹ (ρ, ω) :=
1

r
X̃e

(
ρ−1r, ω

)
∈ R3.

One �nds that

Ỹ (1, ω) =
1

r
X̃e (r, ω) and Ỹ (0, ω) := lim

ρ↓0
Ỹ (ρ, ω) = ω

with all Ỹ (ρ, ·) being regular parametrizations satisfying

ν
(
Ỹ (ρ, ω)

)
= ω for all ω ∈ S2. (38)
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So R3 \ X̃e

(
1,S2

)
has precisely two connected components. The bounded one we call A.

I Convexity. Since the extreme value of X̃(S2) in the direction ω has normal ω, and since νX̃(ω) =

ω, that extreme point is X̃ (ω). So for each ω it holds that X̃(S2), except for X̃ (ω) itself, is on one
side of that tangen plane. Hence Ā lies on one side of all the tangent planes for ∂A = X̃(S2), which
implies that Ā is convex. See also the proof of Hadamard's Theorem [18, page 194].

I Body of constant width. According to the results proved above it is su�cient to show that

X̃ (ω)− X̃ (−ω) = 2rω for all ω ∈ S2.

For the parametrization X with V as in (7) this coincides with

X(ϕ, θ)−X(ϕ+ π, θ) = 2r V (ϕ, θ) for all (ϕ, θ) ∈ S.

Using (29) we �nd with (12), (13) and (17) that

X(ϕ+ π, θ)−X(ϕ, θ)

=

∫ ϕ+π

ϕ

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
+ (h(ϕ+ π, θ)− h(ϕ, θ)) Ψ

= r

(
cos (ϕ+ π)− cosϕ
sin (ϕ+ π)− sinϕ

)
·
(

Ξ
Θ

)
= −2r V (ϕ, θ) ,

as desired.

Proof of Theorem 8, the derivation of the formula with some h. Suppose that G is a
body of constant width. De�ne X0 ∈ R3 as the point on ∂G with the largest x1-coordinate. Taking
u = (1, 0, 0)

T and ω = (0,− sin θ, cos θ)
T the result of Hadwiger, extended by the remark of Groemer

that bodies of constant width have only regular boundary points, states that is is su�cient that the
projections PωG of G on the planes

Eω := c1

 1
0
0

+ c2

 0
cos θ
sin θ


with θ ∈

[
− 1

2π,
1
2π
]
are curves of constant width dP̃ωG

= 2r. Thus all those sets can be described by
the formula in Recipe 1 with for each θ some function a as in Recipe 1 depending on θ as a parameter.
The value of r is the same for all projections and does not depend on θ. In other words, a �xed r exists
and for each θ a mapping ϕ 7→ a(ϕ, θ) ∈ L∞(0, 2π) such that for the corresponding x as in Theorem
1 we have

∂P̃ωG = x ([0, 2π] , θ)

with some x (0, θ) ∈ R2 and sup {|a (ϕ; θ)| ; 0 ≤ ϕ ≤ π} ≤ r for all θ ∈ [−π/2, π/2]. Moreover, the
mapping ϕ 7→ a(ϕ, θ) satis�es (2) and (3). Hence (12), (13) and r0(a) ≥ ‖a‖L∞(S) are necessary
conditions.

Since G ⊂ PωG+ [ω] with [ω] = {λω;λ ∈ R}, it follows that for each

X∗ ∈ ∂G ∩ (∂PωG+ [ω])

there is (ϕ, θ) ∈ S and h (ϕ, θ) ∈ R with

h (ϕ, θ) = h (ϕ+ π, θ) for all (ϕ, θ) ∈ S (39)

such that

X∗ = x(ϕ, θ) ·
(

Ξ
Θ

)
+ h (ϕ, θ) Ψ. (40)

Here (39) follows from the fact that the line through the points of farthest distance is perpendicular
to the plane through (0, 0, 0), (1, 0, 0) and (0, cos θ, sin θ). Since for ϕ ∈ {0, π, 2π} the X∗ in (40) does
not depend on θ, one �nds for all θ ∈ [− 1

2π,
1
2π], that

h (0, θ) = h (π, θ) = h (2π, θ) = 0

and
x(0, 0) = x(0, θ) = x(2π, θ) = x(π, θ) + 2rΞ.
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The �rst vector on the right in (40) inherits the conditions of the two-dimensional formula and
so ϕ 7→ x(ϕ, θ) is for each θ ∈ [− 1

2π,
1
2π] as in (4), and the formula in (40) gives a parametrization

X : S → R3 of ∂G given by

X(ϕ, θ) = X0 +

∫ ϕ

0

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
+ h (ϕ, θ) Ψ. (41)

Since the two vector functions in X (ϕ, θ) have independent directions, each one should be contin-
uous on S and with Θ and Ψ reversing sign in θ = ±π/2, hence

(ϕ, θ) 7→
∫ ϕ

0

(r − a(s, θ)) sin s ds ∈ C0
per (S) ,

(ϕ, θ) 7→
∫ ϕ

0

(r − a(s, θ)) cos s ds

(
cos θ
sin θ

)
∈ C0

per (S) ,

(ϕ, θ) 7→ h (ϕ, θ)

(
cos θ
sin θ

)
∈ C0

per (S) .

For later use we will also de�ne

Xoh(ϕ, θ) := X0 +

∫ ϕ

0

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ

Θ(θ)

)
. (42)

We now have shown the formula in (16) but without a more speci�c formula for h. In order to �nd
(23) we need some additional tools we explain next.

The �rst step to address formula for h of Theorem 8 is to �nd a formulation of how Lipschitz-
continuity on S2 translates to our parametrization that uses S. This translation into our (or any)
spherical coordinates (ϕ, θ) ∈ S is however not so obvious. The formulation is found in Lemma 10 of
Appendix A.

It is not clear how to show directly that the parametrization ω 7→ X̃(ω) is Lipschitz. Instead of
a direct approach we make a detour through ω 7→ X̃oh(ω) from (42) that turns out to be something
that parametrizes what we will call a shadow domain. See Appendix B. Without loss of generality
we may assume that the domain satis�es the assumptions in De�nition 13. There one also �nds the
de�nition of ShΞ(Ω).

Lemma 9 Suppose that X from (41) parametrizes the body of constant width. Let Xoh be as in (42),
V as in (7) and Ψ as in (25). Then the function

ω 7→ X̃oh(ω) : S2 → R3

de�ned by X̃oh(V (ϕ, θ)) := Xoh(ϕ, θ) for (ϕ, θ) ∈ S is Lipschitz-continuous and satis�es

1. PΨ(θ)

(
X(ϕ, θ)

)
= Xoh(ϕ, θ) and

2. if Ω ⊂ R3 is the bounded domain with ∂Ω = X̃(S2) then the 3d-shadow satis�es

∂ShΞ(Ω) = X̃oh(S2).

Remark 9.1 The sketch on the left of Figure 5 shows such a domain with boundary X̃oh(S2).

Proof. From our construction one �nds that the function X̃oh : S2 → R3 parametrizes the collection
of boundaries of `2d-shadows' in the directions Ψ(θ) for θ ∈

[
− 1

2π,
1
2π
]
and gives a bounded two-

dimensional manifold in R3.
Each 2d-shadow PΨ(θ)(Ω) for ∂Ω = X(θ,S1)PΨ(θ)

(
X(θ,S1)

)
Xoh(θ, ϕ) is a two-dimensional set

of constant width. The 3d-domain bounded by these curves is in general not a body of constant width
and not even convex. In fact, if we rotate a body G of constant width around the axis through e1

and −e1, assuming G has width 2 and lies between these points, we may use that each projection is
a curve of constant width. Moreover, its boundary lies between the extreme cases of two-dimensional
curves of constant width. These extreme cases are the Reuleaux triangle pointing upwards and the
one pointing downwards. See Fig. 6.

Writing P(ϕ; θ) for the boundary of the projection of G in the direction (0, cos θ, sin θ) we �nd for
both points on the same side, that

|P(ϕ; θ)− P(ϕ; θ0)| ≤
√

4− (1 + |x|)2 |θ − θ0|

≤ 2
√

1− x2 |θ − θ0| ≤ 2 |sinϕ| |θ − θ0| ,
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Figure 6: The axis in red with the shaded parts showing the possible areas for the projections

where x = cosϕ. Moreover, since all projections have boundaries that are curves of equal width 2 and
the Lipschitz constant with respect to the ϕ-variable is uniform with respect to θ, there exists L ∈ R+,
independent of θ, such that

|P(ϕ; θ0)− P(ϕ0; θ0)| ≤ L |ϕ− ϕ0| .

Combining the last two estimates shows the Lipschitz-condition for P with ϕ and ϕ0 on the same side.
If ϕ and ϕ0 are such that points are on opposite sides, a similar argument gives the estimate of the
expression in (51). Hence P̃ : S2 → R3 is Lipschitz-continuous according to Lemma 10.

Continued proof of Theorem 8, a formula for h and regularity. If S2 3 ω 7→ R(ω)ω for
a positive R describes the boundary of a convex domain, then this function is Lipschitz continuous.
Such a result does not hold if one just has that ω 7→ X̃(ω) describes the boundary of a convex domain.
To show the Lipschitz-continuity of this function, we use the 3d-shadow domain from De�nition 13 in
Appendix B. It is proven in Lemma 9 that the function X̃oh, de�ned by

S 3 (ϕ, θ) 7→Xoh(ϕ, θ) = PΨ(θ)

(
X(ϕ, θ)

)
, (43)

is Lipschitz-continuous on S2. It remains to show that this tranfers to X̃. Note that for Θ and Ψ as
functions of θ:

Θ(θ + ε) = cos ε Θ(θ) + sin ε Ψ(θ) and Ψ(θ + ε) = cos ε Ψ(θ)− sin ε Θ(θ). (44)

When there is no misunderstanding we skip the θ-dependence of Θ and Ψ and use only Θ = Θ(θ)
and Ψ = Ψ(θ) . Thus one computes

Xoh(ϕ, θ + t)−Xoh(ϕ, θ) =∫ ϕ

0

(r − a(s, θ + t))

(
− sin s
cos s

)
ds ·

(
Ξ

cos t Θ + sin t Ψ

)
−
∫ ϕ

0

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
.

Hence for t 6= 0 and small enough such that θ + t ∈ [−π/2, π/2], it holds by the Lipschitz-continuity
that

Xoh(ϕ, θ + t)−Xoh(ϕ, θ)

t sinϕ
·Ψ =

sin t

t sinϕ

∫ ϕ

0

(r − a(s, θ + t)) cos s ds, (45)

is bounded and moreover positive for ϕ 6∈ {0, π, 2π}. The contribution by h in (41) is in the ±Ψ-
direction but, contrary to Xoh, has no a-priori �xed direction although the directions in ϕ and ϕ+ π
are the same since h(ϕ, θ) = h(ϕ + π, θ). Since the paramerization X as a function of θ has to be
pointing in the direction of sinϕ in order to be well-de�ned, we obtain

Xoh(ϕ+π,θ+t)−Xoh(ϕ+π,θ)
t ·Ψ ≤ h(ϕ,θ+t)−h(ϕ,θ)

t ≤ Xoh(ϕ,θ+t)−Xoh(ϕ,θ)
t ·Ψ.

This estimate implies, since |sin t| ≤ |t|, that∣∣∣h(ϕ,θ+t)−h(ϕ,θ)
t

∣∣∣ ≤ 2r |sinϕ| .
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So X = Xoh + hΨ is Lipschitz-continuous and we �nd

X(ϕ, θ + ε)−X(ϕ, θ) =

∫ ϕ

0

(r − a(s, θ + ε))

(
− sin s
cos s

)
ds ·

(
Ξ

cos ε Θ + sin ε Ψ

)
+

+ h (ϕ, θ + ε) (cos ε Ψ− sin ε Θ)−
∫ ϕ

0

(r − a(s, θ))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
− h (ϕ, θ) Ψ

=

∫ ϕ

0

(a(s, θ)− a(s, θ + ε))

(
− sin s
cos s

)
ds ·

(
Ξ
Θ

)
+ (h (ϕ, θ + ε)− h (ϕ, θ)) Ψ +

− 2 sin(ε/2)

(
h (ϕ, θ + ε)

(
cos(ε/2)
sin(ε/2)

)
+

∫ ϕ

0

(r − a(s, θ + ε)) cos sds

(
sin(ε/2)
− cos(ε/2)

))
·
(

Θ
Ψ

)
.

Since X(ϕ, θ) describes the surface of a body of constant width 2r and

X(ϕ, θ)−X(ϕ+ π, θ) = 2rV (ϕ, θ)

we need that for all ε

|X(ϕ, θ + ε)−X(ϕ+ π, θ)| ≤ |X(ϕ, θ)−X(ϕ+ π, θ)| . (46)

Note that

(X(ϕ, θ + ε)−X(ϕ+ π, θ)) · V (ϕ, θ) = (X(ϕ, θ + ε)−X(ϕ, θ)) · V (ϕ, θ) + 2r

and thus we need
(X(ϕ, θ + ε)−X(ϕ, θ)) · V (ϕ, θ) ≤ 0. (47)

Since V (ϕ, θ) = cosϕ Ξ + sinϕ Θ we �nd, using the Lipschitz-continuity of θ 7→X(ϕ, θ), that

(X(ϕ, θ + ε)−X(ϕ, θ)) · V (ϕ, θ) =

∫ ϕ

0

(a(s, θ)− a(s, θ + ε)) sin (ϕ− s) ds

− sinϕ

(
sin ε h (ϕ, θ + ε) + 2 (sin(ε/2))

2
∫ ϕ

0

(r − a(s, θ + ε)) cos s ds

)

= ε

(∫ ϕ

0

a(s, θ)− a(s, θ + ε)

ε
sin (ϕ− s) ds− sinϕ h (ϕ, θ)

)
+O

(
ε2
)
.

For (47) to hold it follows that for all ε small:∫ ϕ

0

a(s, θ)− a(s, θ + ε)

ε
sin (ϕ− s) ds− sinϕ h (ϕ, θ) = O (ε) .

And with h being Lipschitz-continuous itself, we �nd

h (ϕ, θ) =
limε→0

∫ ϕ
0
a(s,θ)−a(s,θ+ε)

ε sin (ϕ− s) ds
sinϕ

. (48)

It remains to show the regularity properties stated in the second item of the theorem. These follow
rather immediately. Whenever a, ∂θa ∈ C0

per(S) one �nds from (48) that

h (ϕ, θ) = −
∫ ϕ

0
aθ (s, θ) sin (ϕ− s) ds

sinϕ

as in (14). With h satisfying (14) one �nds for a, ∂θa ∈ C1
per(S) that also (20) is satis�ed.

A Lipschitz-continuity on the sphere

By de�nition a function Z̃ : S2 → R3 is Lipschitz-continuous, if there exists L̃ > 0 such that∣∣∣Z̃(ω)− Z̃(ω0)
∣∣∣ ≤ L̃ |ω − ω0| for all ω, ω0 ∈ S2. (49)

With the parametrisation ω = V (ϕ, θ) as in (2) and (ϕ, θ) ∈ S we want to reformulate the Lipschitz-
continuity in (49) for Z : S → R3 de�ned by Z(ϕ, θ) = Z̃(ω). The formulation using (ϕ, θ) instead of
ω is somewhat elaborate.
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Lemma 10 Setting ω = V (ϕ, θ) and ω0 = V (ϕ0, θ0), one �nds that:

� for ϕ,ϕ0 ∈ [0, π] or ϕ,ϕ0 ∈ [π, 2π]:

|ω − ω0| ≤ |ϕ− ϕ0|+ |θ − θ0|min (|sinϕ| , |sinϕ0|) ≤ π |ω − ω0| ; (50)

� for ϕ ∈ [0, π] and ϕ0 ∈ [π, 2π], or vice versa:

|ω − ω0| ≤ |2π − ϕ− ϕ0|+ (π − |θ − θ0|) min (|sinϕ| , |sinϕ0|) ≤ π |ω − ω0| . (51)

Proof. Assuming ϕ,ϕ0 ∈ [0, π] or ϕ,ϕ0 ∈ [π, 2π] one considers as an intermediate point ω∗ = V (ϕ0, θ)
and uses the following estimates:

� The triangle inequality in R3: |ω − ω0| ≤ |ω − ω∗|+ |ω∗ − ω0|.
� Comparing the length via the circle with �xed ϕ0 on the sphere through the points ω and ω∗
with the straight line in R3 through those points gives:

|ω − ω∗| ≤ |ϕ− ϕ0| ≤ π
2 |ω − ω∗| .

� A direct computation shows that

|ω∗ − ω0| = 2 |sinϕ0|
∣∣sin ( 1

2 (θ − θ0)
)∣∣

and since θ − θ0 ∈ [−π, π] one �nds
2
π |θ − θ0| ≤ 2

∣∣sin ( 1
2 (θ − θ0)

)∣∣ ≤ |θ − θ0| ,

implying
|ω∗ − ω0| ≤ |θ − θ0| |sinϕ0| ≤ π

2 |ω∗ − ω0| .
� Both ω∗ and ω0 lie on the circle on the unit sphere with �xed ϕ0. Since ω∗ is the point on that
circle that is closest to ω, one obtains

|ω − ω∗| ≤ |ω − ω0| .

A similar argument now for the circle on the unit sphere with �xed θ0 shows

|ω∗ − ω0| ≤ |ω − ω0| . (52)

Combining these inequalities gives the estimates in (50). By symmetry we may replace |sinϕ0| by
min (|sinϕ| , |sinϕ0|).

0

*

0

**

Figure 7: For (50) see left and for (51) see right.

For the second case we assume ϕ ∈ [0, π], ϕ0 ∈ [π, 2π] as in Fig. 7 on the right. We consider
the shortest path from ω to ω0 through ω∗ = V (2π − ϕ0, θ) and the top or bottom boundary of S.
Obviously |ω − ω0| ≤ |ω − ω∗|+ |ω∗ − ω0| still holds. As before one �nds

|ω − ω∗| ≤ |2π − ϕ0 − ϕ| ≤ π
2 |ω − ω∗|

and since

|ω∗ − ω0| = 2 |sinϕ0| sin
(
π − |θ − θ0|

2

)
with 0 ≤ π − |θ − θ0| ≤ π one obtains

|ω∗ − ω0| ≤ (π − |θ − θ0|) |sinϕ0| ≤ π
2 |ω∗ − ω0| .

Also as before we have
|ω − ω∗| ≤ |ω − ω0|

but the last inequality (52) holds if |sinϕ0| ≤ |sinϕ|. So in (51) the minimum term is necessary if one
wants to keep the same constant. See Fig. 7.
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B Shadow domains

De�nition 11 Suppose that Ω ⊂ R2 is a bounded, simply connected domain with 0 ∈ Ω. We de�ne
RΩ : R→ R+ by

RΩ(ψ) := sup

{
x cosψ + y sinψ;

(
x

y

)
∈ Ω

}
(53)

and de�ne the shadow domain of Ω by

Sh(Ω) :=

{(
r cosψ

r sinψ

)
; 0 ≤ r < RΩ(ψ) and ψ ∈ [0, 2π]

}
.

Remark 11.1 The intersection of Sh(Ω) with the line

`(ψ) :=

{
t

(
cosψ

sinψ

)
; t ∈ R

}
gives precisely the shadow of Ω with the light at in�nity in the direction

(− sinψ
cosψ

)
. See Fig. 8 in the case

of a triangle.

Figure 8: On the left a triangle, ψ 7→ RΩ(ψ) in the middle as the maximum of the three
functions and on the right the shadow domain of the triangle

Lemma 12 Let Ω be as in De�nition 11. The function RΩ in (53) is Lipschitz-continuous with
Lipschitz-constant at most

L = sup {‖x‖ ; x ∈ Ω} . (54)

Proof. Let co(Ω) denote the convex hull of Ω. It holds that Rco(Ω)(ψ) = RΩ(ψ). Note that taking
the convex hull also does not change L. Hence we may assume without loss of generality that Ω is
convex. The boundary of a bounded convex domain in R2 with 0 ∈ Ω can be parametrized in polar
coordinates with r(t) > 0 as follows:

∂Ω =

{
r(t)

(
cos t

sin t

)
; t ∈ [0, 2π]

}
.

For such a parametrization one �nds

RΩ(ψ) = sup {r(t) cos t cosψ + r(t) sin t sinψ; t ∈ [0, 2π]}
= sup {r(t) cos (ψ − t) ; t ∈ [0, 2π]} . (55)

The function ψ 7→ r(t) cos (ψ − t) is Lipschitz-continuous with constant ‖r‖∞ = L as in (54). A func-
tion de�ned as the supremum of Lipschitz-functions with a uniform constant is Lipschitz-continuous
with that same constant.

Remark 12.1 Notice that (55) leads to

RΩ(ψ) = sup
{
r(ψ − s) cos (s) ; |s| < 1

2π
}
,

which again explains, why we call Sh(Ω) the shadow domain.

Next we extend this shadow in 2 dimensions to 3d-shadows of a bounded convex domain Ω ⊂ R3.
With the basis {Ξ,Θ(θ),Ψ(θ)} as in (25) we de�ne PΨ(θ) : R3 → R3, consistent with (5), by

PΨ(θ)

 x1

x2

x3

 :=
〈
Ξ, x

〉
Ξ +

〈
Θ(θ), x

〉
Θ(θ) =

 x1

(cos θ x2 + sin θ x3) cos θ
(cos θ x2 + sin θ x3) sin θ

 .
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De�nition 13 Supposing that Ω ⊂ R3 is convex, bounded and such that

� the domain lies in the Ξ-direction between −1 and 1:

−1 = inf {〈Ξ, x〉 ;x ∈ Ω} and sup {〈Ξ, x〉 ;x ∈ Ω} = 1,

� with Ξ, −Ξ ∈ ∂Ω,

then we de�ne the 3d-shadow domain in the directions perpendicular to the Ξ-axis by

ShΞ(Ω) :=
⋃{

PΨ(θ)(Ω); |θ| ≤ 1
2π
}
.

One may notice that this 3d-shadow domain is related to the 2d-shadows for �xed x1 through the
formula

ShΞ(Ω) =
⋃
|x1|<1

(
x1

Sh
(
P̂Ξ (Ω ∩ x1Ξ)

) )
, (56)

with P̂Ξ as in (6).

References

[1] T. Bayen, T. Lachand-Robert and É. Oudet, Analytic parametrization of three-dimensional bodies
of constant width, Arch. Ration. Mech. Anal., 186 (2007), 225�249.

[2] W. Blaschke, Einige Bemerkungen über Kurven und Flächen von konstanter Breite, Ber. Verh.
Sächs. Akad. Leipzig, 67 (1915), 290�297.

[3] G.D. Chakerian, H. Groemer, Convex Bodies of Constant Width, in: Convexity and its Applica-
tions, ed. P. M. Gruber and J. M. Wills, Birkhauser, 1983, p. 49-96.

[4] L. Danzer, Über die maximale Dicke der ebenen Schnitte eines konvexen Körpers, Archiv der
Mathematik, 8 (1957), 314�316.

[5] L. Euler, De curvis triangularibus. Acta Academiae Scientarum Imperialis Petropolitinae 1778,
1781, pp. 3-30 (Opera Omnia: Series 1, Volume 28, pp. 298�321)
http://eulerarchive.maa.org//docs/originals/E513.pdf

[6] H. Hadwiger, Seitenrisse konvexer Körper und Homothetie. (German) Elem. Math. 18 (1963),
97�98.

[7] P.C. Hammer, A. Sobczyk, Planar line families. I. Proc. Amer. Math. Soc. 4, (1953), 226�233.

[8] P.C. Hammer, A. Sobczyk, Planar line families. II. Proc. Amer. Math. Soc. 4, (1953), 341�349.

[9] P.C. Hammer, Constant breadth curves in the plane. Proc. Amer. Math. Soc. 6, (1955), 333�334.

[10] D. Hilbert and St. Cohn-Vossen, Geometry and the Imagination, AMS Chelsea, Providence, R.I.,
1952 (transl. from the German: Anschauliche Geometrie, Springer, Berlin, 1932).

[11] H. Groemer, On the determination of convex bodies by translates of their projections. Geom.
Dedicata 66 (1997), no. 3, 265�279.

[12] B. Kawohl, G. Sweers, On a formula for sets of constant width in 2D. Commun. Pure Appl. Anal.
18 (2019), no. 4, 2117�2131

[13] B. Kawohl, Ch. Weber, Meissner's Mysterious Bodies, The Mathematical Intelligencer 33 (2011),
94�101.

[14] T. Lachand-Robert and É. Oudet, Bodies of constant width in arbitrary dimension, Mathe-
matische Nachrichten, 280 (2007), 740�750.

[15] H. Martini, L. Montejano, D. Oliveros, Bodies of constant width. An introduction to convex
geometry with applications. Birkhäuser/Springer, Cham, 2019.

[16] E. Meissner, Über die Anwendung der Fourier-Reihen auf einige Aufgaben der Geometrie und
Kinematik, Vierteljahrsschr. Nat.forsch. Ges. Zür., 54 (1909), 309�329.
http://www.archive.org/stream/vierteljahrsschr54natu#page/308/mode/2up

[17] E. Meissner, Über Punktmengen konstanter Breite, Vierteljahrsschr. Nat.forsch. Ges. Zür., 56
(1911), 42�50.
http://www.archive.org/stream/vierteljahrsschr56natu#page/n53/mode/2up.

17



[18] R.S. Millman, G.D. Parker, Elements of Di�erential Geometry, Prentice-Hall, Englewood Cli�s,
1977.

[19] H. Minkowski, On the bodies of constant width, Mat. Sbornik 25 (1905), 505-508. (in Russian)

[20] L. Montejano, E. Roldan-Pensado, Meissner Polyhedra, Acta Math. Hungar., 151 (2017), 482�494.

18


	Introduction and two dimensions
	A formula in three dimensions
	An example
	Proofs of the two theorems
	Lipschitz-continuity on the sphere
	Shadow domains

