
ON SOME NONLOCAL VARIATIONAL PROBLEMS
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Abstract. We study uniqueness and non uniqueness of minimizers of functionals involv-
ing nonlocal quantities. We give also conditions which lead to a lack of minimizers and we
show how minimization on an infinite dimensional space reduces here to a minimization
on IR. Among other things, we prove that uniqueness of minimizers of functionals of the
form

∫
Ω

a(
∫
Ω

gudx)|∇u|2 dx− 2
∫
Ω

fudx is ensured if a > 0 and 1/a is stricly concave in
the sense that (1/a)′′ < 0 on (0,∞).

1. Introduction

Throughout this note, Ω is a bounded domain of IRN with boundary Γ. Let Ã : H1
0 (Ω) →

MN×N
+ be a map whose range is contained in the set MN×N

+ of N × N positive definite

matrices. We are interested in the case where Ã(u) has a nonlocal dependence in u. An
example could be

Ã(u) = A

(∫
Ω

gudx, ||∇u||L2(Ω)

)
for prescribed functions, say, g ∈ L2(Ω) and A : IR2 → MN×N

+ . In fact, later, we will relax
the assumption on g to g ∈ H−1(Ω). In the above we have denoted by ||∇u||L2(Ω) the norm

||∇u||L2(Ω) = {
∫

Ω

|∇u|2dx}
1
2

.

It is well known that solving the boundary value problem{
−div(Ã(u)∇u) = f in Ω,

u ∈ H1
0 (Ω),

(1.1)

reduces to solving a nonlinear sytem of equations in IR2, (see [2]). Up to now such a theory
was unavailable for the minimization of

J [u] :=
1

2

∫
Ω

Ã(u)∇u · ∇u dx−
∫

Ω

fu dx,

say on H1
0 (Ω) (in the above integral and below the scalar product between vectors will be

denoted by a dot). One of the goals of this note is to fill out this gap and to show for
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instance, that in the case when

Ã(u) = a

(∫
Ω

gudx

)
I

then the minimization of J on a linear space reduces to the minimization of a single function
on IR, i.e. to a problem in IR and not in an infinite dimensional space (see Section 2, I
denotes the identity matrix). One should note of course that (1.1) is not the Euler equation
corresponding to the minimization of J [u].

From the point of view of the applications and when

g =
1

|Ω|
,

with |Ω| denoting the Lebesgue measure of Ω, the minimization of J on H1
0 (Ω) corresponds

to the search of the displacement of an elastic membrane spanned along the boundary of Ω
and submitted to a force f . The elasticity coefficients, i.e. the entries of A, are supposed
to depend on the average displacement and on the elastic energy of this membrane.

Equation (1.1) has also its interpretation in population dynamics (see [3], [1] and the
references there). It gives in particular the stationary equilibria of an evolution process.

The experience gained in Section 2 in a simple situation allows us to give in Section 3
sharp existence and uniqueness results for the minimization of J on a closed convex set of
H1

0 (Ω).

2. The case A = aI

We denote by < ·, · > the duality pairing on H−1(Ω) × H1
0 (Ω) where H1

0 (Ω) is equipped
with the norm

||u||1 = ||∇u||L2(Ω).

Throughout this section
f, g ∈ H−1(Ω), (2.1)

and for each m ∈ IR we define

Km = {u ∈ H1
0 (Ω) : l(u) = m}, l(u) =< g, u > . (2.2)

We assume that a ∈ C(IR, (0, +∞]) and we set A = aI where I is the identity matrix.
We define

J [u] =
a(l(u))

2

∫
Ω

|∇u|2 dx− < f, u > (2.3)

and set
J̃(m) = Inf

Km

J [u]. (2.4)

As mentioned below in Section 3, Proposition 3.2, the existence of a minimizer of J over
H1

0 (Ω) or Km can be easily obtained by direct methods of the calculus of variations. Unique-
ness of a minimizer of J over H1

0 (Ω) needs to be justified whereas uniqueness of a minimizer
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um on Km is trivial. Since for all w ∈ K0, um + tw ∈ Km, as usual, one can simply deduce
that

d

dt
J [um + tw]|t=0 = 0

and obtain the following characterization of um :

Lemma 2.1. For every m in R, the unique minimizer um ∈ Km of J over Km is charac-
terized by the equation∫

Ω

a(m)∇um · ∇wdx =< f, w > ∀w ∈ K0. (2.5)

Theorem 2.2. Let S be the set of minimizers of J over H1
0 (Ω) and let S ′ be the set of

minimizers of J̃ over R. Then

l : u 7→ l(u)

is a one-to-one mapping from S onto S ′.

Proof: Let u be a minimizer of J on H1
0 (Ω). Let m0 = l(u). One has

J̃(m0) = J [u] = Inf
Km0

{
a(m0)

2

∫
Ω

|∇u|2dx− < f, u >

}
≤ J [v] ∀ v ∈ H1

0 (Ω). (2.6)

In particular, if m ∈ IR and um ∈ Km minimizes J over Km, (2.6) implies that

J̃(m0) ≤ J [um] = J̃(m). (2.7)

Hence, m0 = l(u) is a minimizer of J̃ . This proves that the range of l is contained in S ′.
To show that l is surjective, we choose an arbitrary m0 minimizer of J̃ and denote by

um0 the unique minimizer of J over Km0 . If v ∈ H1
0 (Ω) and m = l(v) we have that

J [um0 ] = J̃(m0) ≤ J̃(m) ≤ J [v]

This proves that um0 is a minimizer of J over H1
0 (Ω) and J [um0 ] = J̃(m0). Thus, l is

surjective. If u1, u2 are two minimizers with l(u1) = l(u2) then (under an obvious abuse of
notation) clearly u1 = u2 = ul(ui) and the injectivity is proved. QED

Let us define θg to be the unique weak solution of{
−∆θg = g in Ω,

θg ∈ H1
0 (Ω).

(2.8)

Lemma 2.3. Given m ∈ R and g 6≡ 0, let um be the unique minimizer of J over Km.
Then um satisfies

−a(m)∆um = f + cmg in D′(Ω), (2.9)

where cm is the constant given by

cm =
a(m)m− < f, θg >

l(θg)
. (2.10)
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Proof: Since g 6≡ 0, θg 6= 0 and from (2.8) we deduce

l(θg) =< g, θg >=

∫
Ω

|∇θg|2dx > 0.

Let D(Ω) be the set of C∞ functions whose support is contained in Ω. We may find
% ∈ D(Ω) such that

l(%) = 1.

For each v ∈ D(Ω), w = v − l(v)% ∈ K0 and so, by (2.5)

< −a(m)∆um − f, v > =

∫
Ω

a(m)∇um · ∇vdx− < f, v >

=

∫
Ω

l(v)a(m)∇um · ∇%dx− < f, l(v)% >

= l(v){
∫

Ω

a(m)∇um · ∇%dx− < f, % >} := cml(v) ∀ v ∈ D(Ω).

Setting cm =
∫

Ω
a(m)∇um · ∇%dx− < f, % >, we have proven that

< −a(m)∆um − f − cmg, v >= 0 (2.11)

for all v ∈ D(Ω) and so,

a(m)∆um + f + cmg = 0 in D′(Ω). (2.12)

We choose v = θg in (2.11) to obtain that

0 =< −a(m)∆um − f − cmg, θg >= a(m) < um,−∆θg > − < f, θg > −cml(θg),

and thus

cml(θg) = a(m)l(um)− < f, θg >= a(m)m− < f, θg > .

This concludes the proof. QED

Remark 2.4. Note that if Ã(u) = a(l(u))I, then by (2.9) the solutions of (1.1) are of the
form um with a(m)m =< f, θg > or cm = 0.

Theorem 2.5. We have

J̃(m) =
1

2 < g, θg >

{
(a(m)m− < f, θg >)2− < g, θg >< f, θf >

a(m)

}
. (2.13)

Proof: By (2.9)

∆
(
a(m)um − θf − cmθg

)
= 0.

By the uniqueness of the solution of the Dirichlet problem we conclude that

a(m)um = θf + cmθg. (2.14)

Testing (2.9) with um and recalling (2.2) we obtain

a(m)

∫
Ω

|∇um|2dx =< f, um > +cmm.
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Thus

J̃(m) =
a(m)

2

∫
Ω

|∇um|2dx− < f, um >=
1

2
{cmm− < f, um >}. (2.15)

We apply f to (2.14) to obtain that

a(m) < f, um >=< f, θf > +cm < f, θg > . (2.16)

We combine (2.10) (2.15) and (2.16) to conclude after easy computations that

J̃(m) =
1

2 < g, θg >

a(m)2m2 − 2a(m)m < f, θg > + < f, θg >2 − < g, θg >< f, θf >

a(m)
.

This completes the proof. QED

Remark 2.6. If we set

< f, θg >= α < g, θg >< f, θf >= ||f ||2−1 ||g||2−1 = β > 0 (2.17)

the minimization of J̃ reduces to the minimization of

J (m) =
(a(m)m− α)2 − β

a(m)
. (2.18)

Since

< f, θg >=

∫
Ω

∇θf · ∇θgdx, < g, θg >= ||∇θg||2L2(Ω), < f, θf >= ||∇θf ||2L2(Ω),

by the Cauchy-Schwarz inequality, α2 ≤ β. It is clear that J̃ and J are continuous functions
of m if a is continuous. Recall that a is assumed to be positive throughout the paper.

Note that J (0) = {α2 − β}/a(0) ≤ 0 and so,

J̃(0) ≤ 0

We have shown in Theorem 2.2 that J admits minimizers iff J admits minimizers on R.
This leads us to:

Theorem 2.7. Suppose that a ∈ C(IR; (0,∞]).
(i) If for |m| large enough

a(m) ≥ δ

|m|
, (2.19)

where δ is a positive constant such that

(δ − |α|)2 > β, (2.20)

then J [·] and J admit minimizers.
(ii) If for |m| large enough

a(m) =
δ

|m|
with (δ − |α|)2 < β, then J [·] fails to have minimizers.
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Proof: If (2.19) holds for |m| large enough, we use the fact that α2 ≤ β to obtain that

J (m) = a(m)m2−2αm+
α2 − β

a(m)
≥ δ

|m|
m2−2αm+

α2 − β

δ
|m| = δ|m|−2αm+

α2 − β

δ
|m|.

This, together with (2.20) yields that

J (m) ≥ δ|m| − 2|α||m|+ α2 − β

δ
|m|

= |m|{(δ − |α|)2 − β

δ
} → +∞ when |m| → +∞.

Thus the minimization of J reduces to a minimization on a compact set and since J is a
continuous function, a minimizer does exist.

In the case where a(m) = δ
|m| for |m| large enough, we have

J (m) = δ|m| − 2αm +
α2 − β

δ
|m|

= |m|{(δ − |α|)2 − β

δ
} for sign(m) = sign(α).

and J is not bounded below for (δ − |α|)2 < β. This completes the proof of the theorem.
QED

Remark 2.8. It is clear that (2.19) holds for instance when

a(m) ≥ δ > 0

or more generally when
a(m) ≥ δ|m|−γ for |m| large,

γ being a constant such that 0 < γ < 1, δ being here an arbitrary positive constant.

In case where the continuity of a fails we can show:

Theorem 2.9. Suppose that
a ≥ δ > 0. (2.21)

Then if a is discontinuous J [·] might fail to have a minimizer.

Proof: Indeed let a be a continuous function satisfying (2.21). Then J admits minimizers.
Let m0 be one of them. One has

J (m0) = a(m0)m
2
0 − 2αm0 +

α2 − β

a(m0)
.

If m0 and (α2 − β) are not both zero, the function

a → am2
0 − 2αm0 +

α2 − β

a

is clearly increasing and one can change the value of a(m0) in such a way that m0 is no
longer a minimizer. For this new (and discontinuous) a the functional J has no minimizer
since the function J has none. QED
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Regarding uniqueness we have

Theorem 2.10. If J is strictly convex then J [·] admits a unique minimizer. Otherwise J
can have as many minimizers as we wish – even for a smooth coefficient function a.

Proof: The first point is clear. Note that

J (m) = a(m)m2 − 2αm +
α2 − β

a(m)

and this function is strictly convex, in particular when

J ′′(m) = a′′m2 + 4a′m + 2a− (α2 − β)

a2
{a′′ − 2

a′2

a
} > 0.

This is in particular the case when

a′′ > 2
a′2

a
, (2.22)

i.e. when 1
a

is strictly concave. Indeed the inequality is clear when m = 0 (recall that
α2 − β ≤ 0). For m 6= 0 we have

J ′′(m) > 2
a′2

a
m2 + 4a′m + 2a =

2

a
{a′m + a}2 ≥ 0.

Suppose now – this is of course always possible

α2 − β < 0.

Then consider a function J having as many minimizers as we wish (even a continuum). It
is always possible to find a positive a such that

2aJ (m) = (am− α)2 − β ⇐⇒ a2m2 − 2a(αm + J (m)) + α2 − β = 0.

Indeed the discriminant of this equation is

∆ = 4{(αm + J (m))2 −m2(α2 − β)} (2.23)

and it has its roots in R. Moreover since α2 − β < 0 the roots do not have the same
signs and one is positive. We call it a(m). It varies of course, continuously with m, and
for the corresponding problem of minimizing (2.3) one has as many solutions as J has of
minimizers. We can also have an arbitrary number of minimizers in the case where β = α2.
Let j ∈ C2(IR) be a function having the number of minimizers that we wish and which
satisfies the following conditions:

j(m) > 2αm ∀m 6= 0, j(0) = 0, j′(0) = −2α, j
′′
(0) > 0.

It is clear that there are infinitely many functions j satisfying these assumptions. We set

a(m) =


2αm+j(m)

m2 if m 6= 0

1

2
j

′′
(0) if m = 0.

We have that a ∈ C1(IR). In fact, the smoothness of a does not matter. Checking that
J = j we conclude the proof.

QED
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Example 2.11. In biological applications it is often a-priori known that the average pop-
ulation density mis nonnegative. In that case a typical example of a coefficient function a
for which J̃ has at most one minimizer is

a(m) =

{
m−γ if m > 0

+∞ if m ≤ 0,

where γ ∈ (0, 1). Clearly 1
a

is strictly concave on [0,∞) and solutions with nonnegative
mean value cannot exist because they are penalized with infinite costs.

3. The general case

The main issue in this section is not the existence of minimizers for the class of variational
problems that we consider. They are given by standard and direct methods of the calculus
of variations which we briefly describe. We will instead keep our focus on uniqueness of
these minimizers. In the sequel,

∅ 6= K ⊂ H1
0 (Ω) is closed under the weak H1

0 (Ω) topology (3.1)

and

f, g ∈ H−1(Ω).

For each m ∈ IR we define

Km = {u ∈ K : l(u) = m}, l(u) =< g, u > .

We set

J [u] =
1

2

∫
Ω

A(l(u)) ∇u · ∇u dx − < f, u >, (3.2)

where A is a matrix-valued map

A ∈ C(IR,MN×N
+ ) (3.3)

such that there exist positive constants λ, δ with

A(m)ξ · ξ ≥ min{λ,
δ

|m|
} |ξ|2 (3.4)

for all ξ ∈ IRN and all m ∈ IR.

Remark 3.1. Since A is continuous, if there exists M > 0 such that

A(m)ξ · ξ ≥ δ

|m|
|ξ|2

for all |m| ≥ M and all ξ ∈ IRN , then (3.4) holds.
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If (3.4) holds and {un}+∞
n=1 ⊂ K converges weakly to u then {l(un)}+∞

n=1 converges to
l(u) and so {A(l(un))}+∞

n=1 converges to A(l(u)). Similarly, {< f, un >}+∞
n=1 converges to

< f, u > . Using that ξ → |ξ|2 is convex and that A(l(un)) > 0, we conclude that J is
weakly lower semicontinous on K. By (3.4), for u ∈ K

J [u] ≥ 1

2
min{λ,

δ

|l(u)|
}||u||21 − ||f ||−1||u||1. (3.5)

Thus for every constant C > 0 we have that

{u ∈ K : J [u] ≤ C} ⊂ U1 ∪ U2, (3.6)

where

U1 = {u ∈ K :
λ

2
||u||21 ≤ C + ||g||−1 ||u||1}

and

U2 = {u ∈ K :
δ

2
||u||21 ≤ |C|||g||−1 ||u||1 + ||f ||−1 ||g||−1||u||21}.

Using the fact that J is weakly lower semicontinous on K, we exploit (3.5) and (3.6) to
obtain the following proposition (see [4]).

Proposition 3.2. Assume that (3.3) and (3.4) hold.
(i) If Km is nonempty then J admits a unique minimizer over Km.
(ii) If in addition δ > 2||f ||−1 ||g||−1 then J admits a minimizer over K.

Remark 3.3.
(i) Uniqueness of the minimizer over Km results from the fact that the restriction of J over
Km is simply u →

∫
Ω

A(m)∇u · ∇udx− < f, u >, which is strictly convex.
(ii) To obtain uniqueness of minimizers of J over K, we will need to impose additional
assumptions on A.

Suppose now that A is symmetric. Let us denote by A′ the matrix whose entries are
derivatives of the entries of A. Note that A′, A

′′
and A′A−1A′ are symmetric. If ξ ∈ IRN

then

A′A−1A′ξ · ξ = A−1(A′ξ) · (A′ξ) ≥ 0

since A−1 is positive definite. Thus, A′A−1A′ is nonnegative definite. We denote by M the
set of minimizers of J over K. One remarks from (3.5), (3.6) that M is a priori bounded.
We have:

Theorem 3.4. Assume that E ⊂ IR is an open interval, that A ∈ C(IR) ∩ C2(E) is
symmetric in E, that the range `(K ∩M) of K ∩M is contained in E, that (3.4) holds and
that

A
′′

> 2A′A−1A′ on E.

Then, if K is convex, J has at most one minimizer over K. (The above inequality means
simply that A

′′ − 2A′A−1A′ is positive definite, and it is the matrix version of (2.22).)
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Proof: It suffices to show that if u, v are two distinct elements of K ∩ M then t →
J [u + t(v − u)] is strictly convex on (0, 1). For that, it suffices to show that

t → I[ut] =

∫
Ω

A(l(ut))∇ut · ∇ut dx

is strictly convex on (0, 1), where ut = u + t(v − u). Note that {l(ut) : t ∈ [0, 1]} is a
compact subset of IR and so, the fact that A

′′
> 2A′A−1A′ implies the existence of some

λo > 2 such that A
′′
(l(ut)) > λoA

′(l(ut))A
−1(l(ut))A

′(l(ut)) for t ∈ [0, 1].
Direct computations give that

d

dt
I[ut] =

∫
Ω

(
A′(l(ut))∇ut · ∇ut l(v − u) + 2A(l(ut))∇ut · ∇(v − u)

)
dx

and that

d2

dt2
I[ut] =

∫
Ω

(A
′′
(l(ut))∇ut · ∇ut)(l(v − u))2dx

+ 4

∫
Ω

A′(l(ut))∇ut · ∇(v − u)l(v − u)dx (3.7)

+ 2

∫
Ω

A(l(ut))∇(v − u) · ∇(v − u)dx. (3.8)

We apply the Cauchy-Schwarz and the Young inequalities to estimate the term in (3.7) as
follows:

|A′∇ut · ∇(v − u) l(v − u)| = |A− 1
2 A′∇ut · A

1
2∇(v − u)l(v − u)|

≤ |A− 1
2 A′∇ut| |A

1
2∇(v − u)| |l(v − u)|

≤ λo

4
|A− 1

2 A′∇ut|2l2(v − u) +
1

λo

|A
1
2∇(v − u)|2 (3.9)

=
λo

4
A′A−1A′∇ut · ∇ut l2(v − u) (3.10)

+
1

λo

A∇(v − u) · ∇(v − u). (3.11)

To obtain (3.10) from (3.9), we have used the fact that A is symmetric. We next use (3.8),
(3.11) and the fact that

A
′′
(l(ut)) > λoA

′l(ut)A
−1l(ut)A

′l(ut)
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for t ∈ [0, 1] to conclude that

d2

dt2
I[ut] ≥

∫
Ω

(A
′′
(l(ut))∇ut · ∇ut)(l(v − u))2dx

− λo

∫
Ω

A′A−1A′∇ut · ∇ut l2(v − u)dx

+ (2− 4

λo

)

∫
Ω

A(l(ut))∇(v − u) · ∇(v − u)dx

≥
∫

Ω

(
A

′′
(l(ut))− λoA

′A−1A′)∇ut · ∇ut(l(v − u))2dx

+ (2− 4

λo

)

∫
Ω

A(l(ut))∇(v − u) · ∇(v − u)dx > 0, (3.12)

if ∇(v − u) 6≡ 0. QED
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