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Abstract

A formula for smooth orbiforms originating from Euler can be adjusted to describe all sets of
constant width in 2d. Moreover, the formula allows short proofs of some laborious approximation
results for sets of constant width.

1 Introduction
Around 1774 Leonhard Euler considered curves, which he called ‘curva orbiformis’. A formula
describing such curves can be found in §10 of [9]. In a series of papers [10], [11], [12] in the
1950’s Hammer and Sobczyk recalled the formula to construct all ‘curves of constant breadth’ in
the plane. They started from a characterization of ‘outwardly simple line families’ F =

⋃
ϕ Fϕ,

with
Fϕ =

{
y ∈ R2; y ·

(
cosϕ
sinϕ

)
= q (ϕ)

}
for all

(
cosϕ
sinϕ

)
∈ S1.

Since the orientation of a line should play no role, the Lipschitz-continuous function q satisfies

q (ϕ+ π) = −q (ϕ) for all ϕ. (1)

They use q to define a curve x : [0, 2π]→ R2 of ‘constant breadth’ by

x (ϕ) =

(
c−

∫ ϕ

0

q (s) ds

)(
cosϕ
sinϕ

)
− q (ϕ)

(− sinϕ
cosϕ

)
. (2)

Indeed, for c large enough in (2), that is,

c ≥ sup
ϕ

{
Dq (ϕ) +

∫ ϕ

0

q (s) ds

}
, (3)

with Dq (ϕ) = lim suph→0
q(ϕ+h)−q(ϕ)

h , the function x describes a ‘curve of constant breadth’
and, moreover, each curve of constant breadth can be obtained this way. The detour through
‘outwardly simple line families’ and the result spread over three papers does not make it simple
for the reader.

Over the years mathematicians have been intrigued by sets of constant width and we would
like to mention some of the papers of a more general nature: [18, 19], [3], [7], [8], [16] and [15].
Also several books dealt with the subject [14], [13], [6]. Relatively elementary sets of constant
width in two dimensions that can be constructed geometricallly, are the so called Reuleaux
polygons. These sets are defined by having boundaries consisting of finitely many circular arcs.
See the two examples in Fig. 1. The obvious question is, whether one can approximate any set
of constant width by a set of constant width that is a Reuleaux polygon. In 1915 Blaschke [4]
proved such a result in two dimensions. In 1951 Jaglom and Boltjanski published in Russian
the result that all arcs in the approximating Reuleaux polygon can be choosen to have the same
curvature. Translations appeared in 1956 in German [14] and in 1961 in English. Their proof is
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purely geometrical and fills several pages. Also Meissner, who was interested in the applications
of sets of constant width, focused on geometry in [18, 19] around 1909. The approximations of
Tanno in [20] and Wegner in [21] went in the other direction, showing that any set of constant
width in two dimensions can be approximated by such sets having a smooth and even analytical
boundary.

Figure 1: Two sets of constant width with a boundary of circular arcs. On the left
the Reuleaux triangle. The segments connect boundary points with opposite normal
directions for which the constant width is attained. The points denote the centers of
rotation.

In 2 dimensions there are both the analytical approach originating from Euler as well as the
geometrical approach; for example from Meissner. We want to unify these approaches and we
will do so by modifying the formula in (2) to one that displays some geometrical quantities. The
modified formula is not entirely new. The rudimentary idea seems to be given by Barbier [2] in
1860, and Blaschke [4] sort of mentions it in footnote ∗∗ about an alternative way to describe
the area-minimisation problem for sets of constant width, but he does not give a derivation or
reference.

In Section 3 we will recall the modified formula. Section 4 is devoted to the converse, namely
that any set of constant width is described by this formula. Moreover, the formula will be more
convenient to give short proofs of the approximations we have just mentioned. This can be
found in Section 5.

Let us start by recalling what is today called a set of constant width in Rn.

Definition 1 A closed, bounded and convex set G ⊂ Rn is called ‘a set of constant width’
L ∈ R+ if the following holds for each x ∈ ∂G:

1. for all y ∈ G one has ‖x− y‖ ≤ L;
2. there exists y ∈ ∂G with ‖x− y‖ = L.

An equivalent way of defining a ‘set of constant width’ G is to say that the width of G in
direction ω ∈ Sn−1, given by

dG (ω) = max {x · ω;x ∈ G} −min {x · ω;x ∈ G} ,

does not depend on ω. Here Sn−1 = {ω ∈ Rn with |ω| = 1}. Again this can be reformulated by
defining for a closed bounded set G the support function pG : Sn−1 → R by

pG (ω) = max {x · ω;x ∈ G} . (4)

Note that dG (ω) = pG (ω) + pG (−ω).
Meissner [18] already knew that a closed, bounded and convex set G is a set of constant

width L if and only if
pG (ω) + pG (−ω) = L. (5)
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Figure 2: The relation between the directional width and the support function

Since being convex and of constant width implies being strictly convex, a set of constant
width G has for each ω ∈ Sn−1 a unique xω ∈ ∂G such that

pG (ω) = xω · ω (6)

and ω is an outer normal direction at xω. Note that x ∈ ∂G maybe reached by several ω ∈ Sn−1:
the set {

ω ∈ Sn−1;x = xω
}

is connected, but not necessarily single valued.

2 The construction by Euler
This corresponding formula, recalling (2),

x (ϕ) =

(
c−

∫ ϕ

0

q (s) ds

)(
cosϕ
sinϕ

)
− q (ϕ)

(− sinϕ
cosϕ

)
,

indeed yields the following result:

Theorem 2 (Euler, Hammer-Sobczyk) For any function q ∈ C0,1 (R) satisfying (1) and
for any constant c satisfying (3) the function x defined in (2) describes the boundary of a set of
constant width in R2.

Proof. Before giving the proof we should point out that the width 2r of this set can be expressed
in terms of q by (15) and (18) below. Notice that (1) implies that q is 2π-periodic and that

∫ ϕ+2π

ϕ

q (s) ds = 0 for all ϕ.

So x as in (2) is 2π-periodic and moreover, for q ∈ C1 (R) one finds that

x′ (ϕ) =

(
c− q′ (ϕ)−

∫ ϕ

0

q (s) ds

)(− sinϕ
cosϕ

)
. (7)

For q ∈ C0,1 (R) we want to use an approximation argument that preserves the conditions
in (1) and (3). To do so we consider the function g ∈ L∞ (R), defined by

g (ϕ) = q′ (ϕ) +

∫ ϕ

0

q (s) ds, (8)

which is differentiable almost everywhere The function q we recover from q (0) and g through

q (ϕ) = q (0) cosϕ+

∫ ϕ

0

cos (ϕ− s) g (s) ds. (9)
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Note that the 2π-periodicity of g shows the 2π-periodicity of q. Moreover, the formula in (9)
gives a solution to the integro-differential equation (8). Indeed,

q′ (ϕ) = −q (0) sin (ϕ)−
∫ ϕ

0

sin (ϕ− s) g (s) ds+ g (ϕ)

and
∫ ϕ

0

q (s) ds = q (0) sin (ϕ) +

∫ ϕ

0

∫ t

0

cos (t− s) g (s) dsdt

= q (0) sin (ϕ) +

∫ ϕ

0

∫ ϕ

s

cos (t− s) dt g (s) ds

= q (0) sin (ϕ) +

∫ ϕ

0

sin (ϕ− s) g (s) ds. (10)

Using a mollifier to approximate g by gn we find ‖gn − g‖Lp → 0 for all p and also ‖gn‖∞ ≤
‖g‖∞. Through (9) one finds from ‖gn − g‖Lp → 0 that ‖qn − q‖∞ → 0. For c satisfying (3) it
follows from ‖gn‖∞ ≤ ‖g‖∞ that

c− q′n (ϕ)−
∫ ϕ

0

qn (s) ds ≥ 0. (11)

Thus, the smooth function qn inherits the properties of q in (1) and satisfies (3) with the same
constant c as for q. Hence we may proceed by assuming that q is smooth. With the property in
(11) and the formula in (7) one finds that ϕ 7→ x (ϕ) rotates counterclockwise. Moreover, the
outside normal ν (ϕ) at x (ϕ), when |x′ (ϕ)| 6= 0, satisfies ν (ϕ) =

(
cosϕ
sinϕ

)
. The curvature satisfies

κ (ϕ) =
x′1 (ϕ)x′′2 (ϕ)− x′′1 (ϕ)x′2 (ϕ)
(
x′1 (ϕ)

2
+ x′2 (ϕ)

2
)3/2 =

1∣∣c− q′ (ϕ)−
∫ ϕ
0
q (s) ds

∣∣ ∈ (0,∞] .

Being 2π-periodic, rotating to the left and κ > 0 imply that x ([0, 2π]) is the boundary of a
well-defined strictly convex domain.

Moreover, (2) implies with (1)

x (ϕ+ π)− x (ϕ) =

(
−c+

∫ ϕ+π

0

q (s) ds− c+

∫ ϕ

0

q (s) ds

)(
cosϕ
sinϕ

)
+

+ (q (ϕ+ π) + q (ϕ))
(− sinϕ

cosϕ

)
=

(
−2c+

∫ π

0

q (s) ds

)(
cosϕ
sinϕ

)

and, with pG as in (6),

pG
(
cos(ϕ+π)
sin(ϕ+π)

)
+ pG

(
cosϕ
sinϕ

)
=
(
−x (ϕ+ π) + x (ϕ)

)
·
(
cosϕ
sinϕ

)
= 2c−

∫ π

0

q (s) ds. (12)

A convex domain for which the expression (12) is constant is a set of constant width.

3 A modified construction
We will not use (2) directly. Our related formulation was inspired by a video on the educational
website [22]. After 3 minutes and 11 seconds this video shows an informative recipe for con-
structing sets of constant width consisting of circular arcs by rotating sticks of length 2r over
a variable center located on the stick with the center at a signed distance a (ϕ) from its center.
The video uses a piecewise constant function a. It is not mentioned how the values were chosen.
But obviously one cannot take arbitrary values if the curve has to be closed. As mentioned
before, the formula was known to Blaschke [3]. Even Barbier seems to explain the construction
as early as 1860, but only in words [2, Footnote on Page 279].

The video motivated us to ask a) under what condition on a does this construction work, b)
if one can generalise the construction to functions a ∈ L∞, and c) if all sets of constant width
can be constructed in this way. The first two questions are treated in this section and the last
one in the next section.
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Recipe 3 For a ∈ L∞ (R) with

a (ϕ+ π) = −a (ϕ) for all ϕ, (13)
∫ π

0

a (s)
(− sin s

cos s

)
ds =

(
0
0

)
, (14)

r ≥ ‖a‖∞ (15)

and x̃0 ∈ R2 set

x̃ (ϕ) = x̃0 +

∫ ϕ

0

(r − a (s))
(− sin s

cos s

)
ds. (16)

Blaschke must have known the formulation since only then does the remark in [4, Foot-
note**) on page 505f] showing conditions (14) and (15) make sense. He, however, gives no
reference, nor does he seem to make any further use of it.

For q smooth one may translate (2) into (16), with the assumptions in Recipe 3 satisfied,
through

x̃0 =
(

c
−q(0)

)
, r = c− 1

2

∫ π

0

q (s) ds and (17)

a (ϕ) = 1
2

∫ π

0

q (s) ds− q′ (ϕ)−
∫ ϕ

0

q (s) ds. (18)

So one finds that g from (8) is related to a by a + g = 1
2

∫ π
0
q (s) ds. However, instead of

transferring the formula in (16) back to (2) we prefer to give a direct proof that (16) describes
the boundary of a set of constant width.

Theorem 4 With a, r and x̃0 as in Recipe 3 the function x̃ : [0, 2π]→ R2 in (16) describes a
closed curve through x̃0 and x̃0 −

(
2r
0

)
, which is the boundary of a set of constant width 2r.

Examples relating a and x̃0 for r = ‖a‖∞ can be found in Fig. 3.

Proof. Setting

u (ϕ) :=

∫ ϕ

0

(r − a (s)) sin (ϕ− s) ds = r (1− cosϕ)−
∫ ϕ

0

a (s) sin (ϕ− s) ds (19)

one finds

u′ (ϕ) =

∫ ϕ

0

(r − a (s)) cos (ϕ− s) ds = r sinϕ−
∫ ϕ

0

a (s) cos (ϕ− s) ds,

and u′′ (ϕ) = r − a (ϕ)− u (ϕ) a.e. (20)

Since a satisfies (13), one finds that u is periodic with period 2π. With some straightforward
calculations it follows that x̃ from (16) can be rewritten to

x̃ (ϕ) = x̃0 + u (ϕ)
(
cosϕ
sinϕ

)
+ u′ (ϕ)

(− sinϕ
cosϕ

)
, (21)

showing that x̃ is periodic. The derivative of x̃ is defined almost everywhere and then satisfies

x̃′ (ϕ) = (r − a (ϕ))
(− sinϕ

cosϕ

)
and κ (ϕ) =

1

r − a (ϕ)
. (22)

Since r ≥ ‖a‖∞, it follows from the sign of the integrand in (19) that u (ϕ) ≥ 0 for ϕ ∈ [−π, π]
and hence on R and with (22) that x̃ rotates counterclockwise. Since the curvature satisfies

κ (ϕ) ∈
[

1

r + ‖a‖ ,∞
]
,
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Figure 3: Graphs of the functions a in Recipe 3 with the corresponding sets of constant
width for r = ‖a‖∞.

the set x ([0, 2π]) is the boundary of a well-defined strictly convex domain. From (21), (19) and
(13), (14) we also find that

p
(
cos(ϕ+π)
sin(ϕ+π)

)
+ p
(
cosϕ
sinϕ

)
= (−x̃ (ϕ+ π) + x̃ (ϕ)) ·

(
cosϕ
sinϕ

)
=

= u (ϕ+ π) + u (ϕ) = r (1− cos (ϕ+ π)) + r (1− cosϕ) = 2r.

By (5) this implies that the enclosed domain is a set of constant width. The conditions u (0) =
u′ (0) = 0 imply x̃ (0) = x̃0. Since u (π) = 2r and u′ (π) = 0 imply x̃ (π) = x̃0 −

(
2r
0

)
, the claim

follows.

As mentioned above one can see the construction in (16) of Recipe 3 as the rotation of a stick
of length 2r over a variable center located on the stick with the center of rotation at a distance
a (ϕ) from its center. The inequality in (15) takes care that this center of rotation indeed lies
inside the stick. In fact this rotation center reaches r as the smallest distance to one of the
ends when r = ‖a‖∞. One also finds that the maximal curvature of the set of constant width is
(r − ‖a‖∞)

−1 for r > ‖a‖∞ and infinity for r = ‖a‖∞. The minimal curvature is (r + ‖a‖∞)
−1.

The conditions in (13) and (14) make sure that ends meet.

If one wraps a set G of constant width L in a layer of width ε, i.e. if

Gε := {x+ y ; x ∈ G, y ∈ Bε(0)}

is the Minkowski sum of G with a ball of radius ε, then Gε has constant width L+ 2ε. So one
may modify r and mollify corners by adding any positive constant ε to find that r+ ε also gives
a set of constant width.

6



In the case that a is piecewise constant, one finds a set of constant width with a boundary
consisting of finitely many circular arcs. This is nicely illustrated in [22].

4 From the set of constant width to the function a

In this section we will show the converse of the result in Theorem 4.

Theorem 5 Let G ⊂ R2 be a set of constant width. Then there exist a, r and x̃ as in Recipe
3 such that x̃ ([0, 2π]) = ∂G. More precisely:

1. For x̃0 the point on ∂G with maximal x1-coordinate and x̃∗ the point on ∂G with minimal
x1-coordinate, one has r = 1

2 ‖x̃0 − x̃∗‖.
2. For κmin ∈ R+ the minimal curvature of ∂G and κmax ∈ (0,∞] the maximal curvature,

one has ‖a‖∞ = 1
2

(
κ−1min − κ−1max

)
and r ≥ 1

2

(
κ−1min + κ−1max

)
.

Remark 5.1 The Reuleaux triangle in Fig. 1 has r = 1 and

a(t) :=





−1 for t ∈
(
0, 13π

)
,

1 for t ∈
(
1
3π,

2
3π
)
,

−1 for t ∈
(
2
3π, π

)
.

(23)

One finds κ−1min = 2 and κ−1max = 0.

Proof. Fix x̃0, x̃∗ and r as stated in the theorem. Since G is a set of constant width, for each
ω =

(
cosϕ
sinϕ

)
∈ S1 there is a unique point xω ∈ ∂G such that

x · ω < xω · ω for all x ∈ ∂G \ {xω} .

Instead of G we consider Gε =
⋃{

Bε (x);x ∈ G
}
, which is again a set of constant width 2r+2ε.

Moreover, if xεω denotes the point with

x · ω < xεω · ω for all x ∈ ∂Gε \ {xεω} ,

we find xεω = xω + εω. Since Gε is convex, Alexandrov’s Theorem implies that the curvature
of ∂Gε is defined almost everywhere. Moreover, since each xεω ∈ ∂Gε lies on the boundary of
Bε (xω) and some B2r+ε (x−ω) with

Bε (xω) ⊂ Gε ⊂ B2r+ε (x−ω), (24)

the curvature κ (xεω) of ∂Gε at xεω lies in the interval
[
(2r + ε)

−1
, ε−1

]
. See Fig 4.

Proof. Fix x̃0, x̃∗ and r as stated in the Proposition. Since G is a set of constant width, for
each ω =

(
cosϕ
sinϕ

)
∈ S1 there is a unique point xω ∈ ∂G such that

x · ω < xω · ω for all x ∈ ∂G \ {xω} .

Instead of G we consider Gε =
⋃{

Bε (x);x ∈ G
}
, which is again a set of constant width 2r+2ε.

Moreover, if xεω denotes the point with

x · ω < xεω · ω for all x ∈ ∂Gε \ {xεω} ,

we find xεω = xω + εω. Since Gε is convex, Alexandrov’s Theorem implies that the curvature
of ∂Gε is defined almost everywhere. Moreover, since each xεω ∈ ∂Gε lies on the boundary of
Bε (xω) and some B2r+ε (x−ω) with

Bε (xω) ⊂ Gε ⊂ B2r+ε (x−ω) (22)

the curvature κ (xεω) of ∂Gε at xεω lies in the interval
[
(2r + ε)

−1
, ε−1

]
. See Fig 4.

Figure 4: G and Gε with the auxiliary circles

Letting ω0 =
(
cosϕ0

sinϕ0

)
∈ S1 be some direction and xεω0

be the corresponding boundary point,
one may parametrize the boundary locally by

t 7→ Xε (t) := xεω0
+ t
(− sinϕ0

cosϕ0

)
− y (t)

(
cosϕ0

sinϕ0

)
,
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where y is a C1,1-function with y (0) = y′ (0) = 0 and y′′ defined almost everywhere. One finds
for the outside normal and curvature:

n (Xε (t)) = 1√
1+y′(t)2

((
cosϕ0

sinϕ0

)
+ y′ (t)

(− sinϕ0

cosϕ0

))
, (25)

κ (Xε (t)) = 1

(1+y′(t)2)
3/2 y

′′ (t) ∈
[
(2r + ε)

−1
, ε−1

]
a.e. (26)

Then the angle ϕ is parameterised by

ϕ = Φε (t) := ϕ0 + arcsin

(
y′(t)√
1+y′(t)2

)

and Φε ∈ C0,1 is differentiable almost everywhere with

Φ′ε (t) = y′′(t)

1+y′(t)2
a.e.,

which is strictly positive and bounded for t small by (26). So locally Φinv
ε exists, lies in C0,1,

is differentiable almost everywhere and locally near ϕ0 with a strictly positive and bounded
derivative where it is defined. By choosing several ϕ0 we may parameterise ∂Gε by a function
ϕ 7→ xε (ϕ) : [0, 2π]→ ∂Gε that lies in C0,1 and is diffferentiable almost everywhere.

The construction of xε is such that

(xε (ϕ)− xε (ϕ+ π)) ·
(
cosϕ
sinϕ

)
= |xε (ϕ)− xε (ϕ+ π)| = 2r + 2ε, (27)

(xε (ϕ)− xε (ϕ+ π)) ·
(− sinϕ

cosϕ

)
= 0 and (28)

x′ε (ϕ) ·
(− sinϕ

cosϕ

)
= |x′ε (ϕ)| a.e. (29)

By differentiating (28) and using (27) we find that

(x′ε (ϕ)− x′ε (ϕ+ π)) ·
(− sinϕ

cosϕ

)
= 2r + 2ε a.e.

and hence by (29)

|x′ε (ϕ+ π)|+ |x′ε (ϕ)| = (x′ε (ϕ)− x′ε (ϕ+ π)) ·
(− sinϕ

cosϕ

)
= 2r + 2ε a.e.

Since xε (Φε (t)) = Xε (t), we find for ϕ = Φε (t) that

|x′ε (ϕ)| = |X
′
ε (t)|

|Φ′ε (t)| =

√
1 + y′ (t)2

y′′(t)

1+y′(t)2

= κ (xε (ϕ))
−1 ∈ [ε, 2r + ε] a.e.

Hence
κ (xε (ϕ))

−1
+ κ (xε (ϕ+ π))

−1
= 2r + 2ε a.e.

The function a ∈ L∞ (0, 2π) is then well-defined by:

a (ϕ) =
1

2
(|x′ε (ϕ+ π)| − |x′ε (ϕ)|) =

1

2

(
1

κ (xε (ϕ+ π))
− 1

κ (xε (ϕ))

)

and satisfies
‖a‖∞ ≤

1

2
(2r + ε− ε) = r.

This definition implies directly that a (ϕ+ π) = −a (ϕ) and, moreover, that

r + ε− a (ϕ) = r + ε− 1

2
(|x′ε (ϕ+ π)| − |x′ε (ϕ)|)

= r + ε− 1

2
(2r + 2ε− 2 |x′ε (ϕ)|) = |x′ε (ϕ)|

and hence
(r + ε− a (ϕ))

(− sinϕ
cosϕ

)
= |x′ε (ϕ)|

(− sinϕ
cosϕ

)
= x′ε (ϕ) ,
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which in turn implies that

xε (ϕ) = xε (0) +

∫ s

0

(r + ε− a (s))
(− sin s

cos s

)
ds.

Since

xε (0)−
(
2r+2ε

0

)
= xε (π) = xε (0) +

∫ π

0

(r + ε− a (s))
(− sin s

cos s

)
ds

= xε (0)−
(
2r+2ε

0

)
−
∫ π

0

a (s)
(− sin s

cos s

)
ds,

the conditions in (14) hold as well.

5 Applications
By the formula in (16) one may find rather straightforward approximation results for sets of
constant width in 2 dimensions.

The function a that determines the set is in L∞(0, 2π) and can be approximated a) in the
L2-topology by step functions and b) in the weak L2 topology by functions that oscillate finitely
often between just two values ±r. Moreover, it can be approximated in L2 c) by functions of
class C∞ using convolution with Friedrichs mollifiers ζε, or d) by analytic functions using partial
sums of Fourier series. Any approximation of a in L2 or weak L2 implies an approximation of
the underlying set defined by (16) in the Hausdorff-metric. In the following list of corollaries
we approximate a along the lines of a) through d), but we must also make sure that our
approximations satisfy (13),(14) and (15).

Blaschke proved in 1915 [4] that two-dimensional sets of constant width 2r can be approx-
imated in C0 by Reuleaux polygons of constant width 2r + 2ε, that is, by domains having
a boundary consisting of circular arcs. Using (16) we can replace the geometric proof by an
analytic one.

Corollary 6 Let γ ∈
(
0, 12
)
. Any two-dimensional set of constant width can be approximated

in C0,γ-sense by a Reuleaux-polygon of constant width.

Remark 6.1 Let G1 and G2 be two bounded domains, k ∈ N and γ ∈ [0, 1]. We say ∂G1 and
∂G2 are ε-close in X-sense, when there exist parameterisations γ1 : M → ∂G1 and γ2 : M →
∂G2 with ‖γ1 − γ2‖X ≤ ε.

Proof. Continuous functions are dense in L2 (0, π). Choose aε ∈ C [0, π] such that

‖a− aε‖L2(0,π) < ε,

then, since ‖a‖∞ ≤ r, also

a∗ε (x) =




‖a‖∞ if aε (x) > ‖a‖∞ ,
aε (x) if |aε (x)| ≤ ‖a‖∞ ,
−‖a‖∞ if aε (x) < −‖a‖∞ ,

is continuous, satisfies ‖a− aε‖L2(0,π) < ε and additionally ‖a∗ε‖∞ ≤ r. The function a∗ε can be
approximated uniformly by the step function

a∗ε,n (x) =

2n−1∑

k=0

a∗ε
(
k+1/2
2n π

)
1[

k
2nπ,

k+1
2n π

) (x) .

Choosing n large enough we find
∥∥a− a∗ε,n

∥∥
L2(0,π)

< 2ε and also, for cs either cos or sin, that

ccs =

∫ π

0

a∗ε,n (x) cs (x) dx

9



satisfies

|ccs| =
∣∣∣∣
∫ π

0

(
a∗ε,n (x)− a (x)

)
cs (x) dx

∣∣∣∣ ≤
∥∥a− a∗ε,n

∥∥
L2(0,π)

√
1
2π <

√
2πε.

Then
ãε (x) = a∗ε,n (x)− 1

2 (csin + ccos)1[0, 12π) (x)− 1
2 (csin − ccos)1[ 1

2π,π) (x)

is a stepfunction with ‖a− ãε‖L2(0,π) <
(
2 +
√

2π
)
ε which satisfies (14). Moreover,

‖ãε‖∞ ≤
∥∥a∗ε,n

∥∥
∞ +

√
2πε ≤ ‖a‖∞ +

√
2πε.

Thus, by changing r to r +
√

2πε also (15) is satisfied. With a approximated in L2-sense one
finds that the curve defined in (16) is approximated in H1-sense which, by Sobolev, is embedded
in C0,γ for γ < 1

2 .

The next result from 1951 is stated and proved by Jaglom and Boltjanskii [14, p. 63 ff]
using a geometrical approach. It claims that the approximation by Reulaux polygons can be
restricted to those polygons whose circular arcs have identical curvature 1/r. Their lengthy
geometric proof can be shortened using (16).

Corollary 7 Every set of constant width d in 2 dimensions can be approximated in C0-sense
by sets of constant width d that have a boundary which consists of circular arcs with curvature
1/d.

Before proving Corollary 7 we need an auxiliary lemma.

Lemma 8 Let 0 < β − α < π. For each ρ ∈ L∞ (α, β) with 0 ≤ ρ ≤ 1, there exists an interval
[γ, δ] ⊂ [α, β] such that ∫ β

α

ρ (x) eixdx =

∫ δ

γ

eixdx. (30)

eiβ(β − α)

eiα(β − α)

j0(·)

j1(·)

Figure 5: The dark (red) part contains the values
∫ β
α
ρ (s) eisds for all allowed ρ. The

bounding curves j0(·), j1(·) correspond to the extreme cases in (33) as function of θ:
j0 (θ) =

∫ α+θ(β−α)
α

eisds and j1 (θ) =
∫ β
β−θ(β−α) e

isds.

Proof. Fix θ ∈ (0, 1) and consider all ρ as in Lemma 8 with average θ, that is,

1

β − α

∫ β

α

ρ (x) dx = θ. (31)

For β − α < π one finds

α0 := arg

(∫ β

α

ρ0 (x) eixdx

)
≤ arg

(∫ β

α

ρ (x) eixdx

)
≤ arg

(∫ β

α

ρ1 (x) eixdx

)
=: β0, (32)
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where

ρ0 (x) =

{
1 for x ≤ α+ θ (β − α) ,
0 for x > α+ θ (β − α) ,

and ρ1 (x) =

{
0 for x ≤ β − θ (β − α) ,
1 for x > β − θ (β − α) .

(33)

Indeed Pontryagin’s maximum principle [17], helps us to determine the minimum for

J :=

∫ β

α

Re
(
ei(x−α0)ρ (x)

)
dx =

∫ β

α

cos (x− α0) ρ (x) dx

among all ρ satisfying (31). We take

v′ (t) = ρ (t) with v (α) = 0 and v (β) = θ (β − α) ,

H (v (t) , ρ (t) , λ (t) , t) = λ (t) ρ (t) + cos (t− α0) ρ (t) .

Pontryagin states that for the optimal trajectory (v∗, ρ∗, λ∗) that minimizes H with λ∗ piecewise
continous, it holds that

λ∗ (t) ρ∗ (t) + cos (t− α0) ρ∗ (t) ≤ λ∗ (t) ρ (t) + cos (t− α0) ρ (t) for all ρ (t) ∈ [0, 1] .

So if ρ∗ (t) = 0, then λ∗ (t) + cos (t− α0) ≥ 0. If ρ∗ (t) > 0 then we get a contradiction, unless
ρ∗ (t) = 1 and λ∗ (t) + cos (t− α0) ≤ 0. Hence ρ∗ (t) ∈ {0, 1}. A similar result shows the right
hand side of (32). Through approximations by stepfunctions and rearrangement one finds that
the optimal cases are as in (32). For these cases, that is ρ0 and ρ1 as in (33), one has

∫ β

α

ρ0 (x) eixdx =

∫ α+θ(β−α)

α

eixdx and
∫ β

α

ρ1 (x) eixdx =

∫ β

β−θ(β−α)
eixdx.

For all other ρ with
∫ β
α
ρ (x) dx = θ (β − α) one finds that αρ := arg

(∫ β
α
ρ (x) eixdx

)
lies in

(α0, β0). For the norm with those ρ one finds
∣∣∣∣∣

∫ β

α

ρ (x) eixdx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ β

α

ρ0 (x) eixdx

∣∣∣∣∣ .

By rearrangement there is ρ∗ ∈ [0, 1] such that
∫ β

α

ρ (x) eixdx = ρ∗

∫ αρ+
1
2 θ(β−α)

αρ− 1
2 θ(β−α)

eixdx

for some
[
αρ − 1

2θ (β − α) , αρ + 1
2θ (β − α)

]
⊂ [α, β]. If ρ∗ = 1, we are done. If ρ∗ < 1, there

exists s > 0 such that

ρ∗

∫ αρ+
1
2 θ(β−α)

αρ− 1
2 θ(β−α)

eixdx =

∫ αρ+
1
2 θ(β−α)−s

αρ− 1
2 θ(β−α)+s

eixdx.

Since θ ∈ (0, 1) was arbitrary, the claim follows.

Proof of Corollary 7. We divide the interval [0, π] in 2n subintervals
{[

k
2nπ,

k+1
2n π

]}2n−1
k=0

.
By Lemma 8 there is [ck, dk] ⊂

[
k
2nπ,

k+1
2n π

]
with

∫ k+1
2n π

k
2nπ

(r − a (x))
(
cos x
sin x

)
dx =

∫ dk

ck

2r
(
cos x
sin x

)
dx.

So we define

an (x) =

{
−r if x ∈ ⋃2n

k=1 [ck, dk) ,
r elsewhere in [0, π) ,

and an (x) = −an (x− π) for x ∈ [π, 2π). Since

∫ k+1
2n π

k
2nπ

an (x)
(
cos x
sin x

)
dx =

∫ k+1
2n π

k
2nπ

a (x)
(
cos x
sin x

)
dx

11



holds, the conditions in (13) and (14) are satisfied. The r and x̃0 remain and since |an (x)| = r,
the curve

x̃n (ϕ) = x̃0 +

∫ ϕ

0

(r − an (s))
(− sin s

cos s

)
ds

consists of circular arcs all with the same curvature 2r. It remains to show the convergence. Since
x̃n (ϕ) and x̃ (ϕ) coincide for ϕ = k

2nπ, we find for ϕ ∈
[
k
2nπ,

k+1
2n π

]
, using |an (x)| , |a (x)| ≤ r,

that
|x̃n (ϕ)− x̃ (ϕ)| ≤

∫ ϕ

k
2nπ

|4r| ds ≤ 2πr

n
,

which shows the convergence in C [0, 2π].

Our third result concerns an approximation by smooth sets of constant width. On page
60 of [8] Chakerian and Groemer write that Tanno in [20] in 1976 was the first to prove that
arbitrary sets of constant width in 2d can be approximated by sets of constant width with
smooth boundaries. Using (16) we can give a direct proof.

Corollary 9 Let γ ∈ [0, 1). Any set of constant width in 2 dimensions can be approximated in
C0,γ-sense by sets of constant width with C∞-boundary.

Proof. Suppose that a, r and x̃0 as in Recipe 3 describes the boundary of the set of constant
width G. Let ζε be the usual mollifier:

ζε (s) =

{
1
cε exp

(
ε2

s2−ε2
)

for |s| < ε

0 for |s| ≥ ε
with

∫ 1

−1
ζ1 (s) ds = c.

We replace a by

aε = ζε ∗ a−
1

2
〈sin, ζε ∗ a〉 sin−

1

2
〈cos, ζε ∗ a〉 cos, (34)

where
〈f, g〉 =

∫ π

0

f (x) g (x) dx,

r by rε = max (r, ‖aε‖∞) and x̃0 by x̃ε0 +
(
rε−r
0

)
. The construction in (34) implies that (13) and

(14) are satisfied. Since a ∈ L∞ (R) one finds a ∈ Lp (0, 2π) for all p <∞ and

‖ζε ∗ a− a‖Lp(0,2π) → 0 for ε ↓ 0.

Hence, also ‖aε − a‖Lp(0,2π) → 0 for ε ↓ 0. Moreover ‖ζε ∗ a‖∞ ≤ ‖a‖∞ and hence with
the L1-convergende of aε to a, we also find ‖aε‖∞ → ‖a‖∞ for ε ↓ 0. Comparing x̃ (ϕ) =

x̃0 +
∫ ϕ
0

(r − a (s))
(− sin s

cos s

)
ds with the ε-perturbed version, one finds by taking p large enough

for 1− 1
p > γ to hold, that by a Sobolev imbedding

‖x̃ (ϕ)− x̃ε (ϕ)‖C0,γ [0,2π] ≤ cp,γ ‖x̃ (ϕ)− x̃ε (ϕ)‖W 1,p[0,2π]

≤ cp,γ ‖x̃0 − x̃ε0‖∞ + c′p,γ ‖a− aε‖Lp(0,2π) → 0 for ε ↓ 0,

which completes the proof.

One year after Tanno’s approximation by C∞ functions Weber [21] proved that one may
approximate sets of constant width by those that have analytic boundary. Also this result is
directly obtained using (16).

Corollary 10 Let γ ∈ [0, 1). Any set of constant width in 2 dimensions can be approximated
in C0,γ-sense by sets of constant width with analytic boundary.

Proof. If aε is a smooth function approximating a as in Corollary 9, then, by taking a finite
Fourier series aN,ε (x) :=

∑N
k=−N

1
2π

〈
eik·, aε

〉
eikx one finds an analytic approximation of aε

and hence of a. Note that the coefficients for k ∈ {0, 1} are zero, so aN,ε satisfies (13) and (14).
Moreover, ‖aN,ε − aε‖∞ can be made arbitrary small by taking N large. We do not get that
‖aN,ε‖∞ equals ‖aε‖∞ = ‖a‖∞, but through replacing r by r + ‖aN,ε − aε‖∞ when r = ‖a‖∞,
one can still satisfy (15).
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