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Abstract

We demonstrate that a method of Colesanti and Salani, which compares solutions of
elliptic differential equations to their quasiconcave envelopes, can be extended to derive
convexity of free boundaries. As examples we present the so-called dam problem, a free
boundary problem modelling pollution and a Bernoulli problem. Moreover we prove
strict convexity of the wet region in the dam problem in arbitrary dimensions.

1 Introduction

In their paper [7] Colesanti and Salani study boundary value problems on convex rings, that
is domains Ω = Ω0 \ Ω1 which are the difference of two open convex sets Ωi ⊂ Rd with
Ω1 ⊂⊂ Ω0. In their simplest case ∆u = 0 in Ω, while u = 1 on ∂Ω1 and u = 0 on ∂Ω0

are imposed as boundary conditions, but other differential equations such as ∆pu = f(u)
with f non-decreasing and f(0) = 0 are also considered. If we set u ≡ 1 on Ω1, then u is
well-defined everywhere in Ω0. It is known that the solutions to such problems have convex
level sets Ωt = {x ∈ Ω0 : u(x) ≥ t} for t ∈ (0, 1).

One method of proof is the Gabriel-Lewis method that has been thoroughly studied in
the 1980’s in [13], [24], [19] and again more recently in [16]. It amounts to showing that
u((x+ y)/2) ≥ min{u(x), u(y)} for every (x, y) ∈ Ω2

0.
Another method, which is conceptually very elegant, was developed by Colesanti and

Salani in [7] and further developed in [9]. They define the quasiconcave envelope u∗ of u
as the smallest quasiconcave function above u. In other words, the level sets of u∗ are the
convex hulls Ω∗t of the level sets of u, and so by definition u∗ ≥ u. Then they derive a
differential inequality for u∗. This inequality holds only in the sense of viscosity solutions,
but it suffices to conclude, using an appropriate comparison principle, that u∗ ≤ u in Ω,
because u∗ = u on ∂Ω.

Incidentally, the method of comparing u with a related function u∗ to show that u = u∗

has been successfully exploited in other geometrical contexts. In [2] and [18] u∗ is the convex
envelope of u, i.e. the function whose graph is the convex hull of the graph of u, for which
an interesting characterization has recently been given in [27]. In [29] u∗ represents the
starshaped envelope of u.

In the present paper we shall study free boundary problems, in which Ω0 is chosen by
the solution. Therefore its shape is not a-priori known to be convex. In replacing u by u∗
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we replace a possibly nonconvex support of a function u by its convex hull and thus modify
a free boundary in order to show that it has to be convex from the beginning. Ingredients of
the proof are the differential inequalities of Colesanti and Salani and a Hopf-type boundary
lemma.

2 Preliminaries, differential inequalities for u∗

In this section we consider a ring-shaped domain Ω as before, but we drop the assumption
that Ω0 is convex (this is what we want to prove). We let u be a function of class C1(Ω) ∩
C0(Ω0) satisfying u = 0 on Γ = ∂Ω0, u ≡ 1 in Ω1 and 0 < u < 1 in Ω. We suppose, further,
that u is of class C2 in a neighborhood of every x ∈ Ω such that ∇u(x) 6= 0. This is the case,
for instance, if u is a p-harmonic function, i.e., a solution of ∆p u = 0 in Ω [31]. The results
also apply to the case when u is the solution to the dam problem discussed in Section 3 and
Ω is its support (instead of being ring-shaped).

In the next sections we deal with solutions u to some free-boundary problems that can be
compared with suitable one-dimensional supersolutions. To be more precise, let us consider
a point x ∈ Ω and define t = u(x). If the level set Ωt has a supporting hyperplane π passing
through x, then we construct a supersolution u depending only on the distance from π and
attaining the value t on π. Since ∇u 6= 0, we prove eventually that ∇u(x) 6= 0. For the
moment we take the following property as an assumption:

Nondegeneracy. If the level set Ωt, for t satisfying infΩ u < t < supΩ u, has a
supporting hyperplane passing through some x ∈ Ωt, then ∇u(x) 6= 0.

Nondegeneracy implies the following minimum principle for u∗.

Proposition 1 (A minimum principle) For every t as above and for every x interior
to Ω∗t we have u∗(x) > t.

Proof. We have to exclude that u∗(x) = t. The argument is by contradiction. Suppose that
u∗(x0) = t at some x0 interior to Ω∗t . Since u∗ ≥ s in Ω∗s, we have x0 6∈ Ω∗s for s > t. The
union Gt = ∪s>t Ω∗s is a convex set not containing x0. The difference Ω∗t \ Gt contains x0,
and has a nonempty interior because x0 is interior to Ω∗t and Gt is convex. By construction
we have u∗(x) = t for all x ∈ Ω∗t \Gt. Furthermore, there must be a point P ∈ Ω \Gt such
that u(P ) = t. Indeed, if u(x) < t at every x ∈ Ω \Gt then Ωt is a subset of the convex set
Gt, which implies Ω∗t ⊂ Gt, but this has been excluded. Since P is a local maximum for u,
we have ∇u(P ) = 0.

Now if Ω is a ring-shaped domain as in the Introduction, we take P as far as possible
from a fixed point Q ∈ Ω1, and let π be the hyperplane passing through P and orthogonal
to the segment QP . Since π supports Ωt and ∇u(P ) = 0, we reach a contradiction with
nondegeneracy and the conclusion follows. If, instead, Ω and u are as in the dam problem,
then by looking for the boundary points where u ≥ t we see that Gt contains the convex hull
of the four points (0, 0), (a, 0), (0, H −

√
2t ), (0, h−

√
2t ). Taking P as far as possible from

the segment connecting the last two points, we get that the line π passing through P and
parallel to the preceding segment supports Ωt and by nondegeneracy the conclusion follows
again.

We shall need the following useful representation of points x ∈ Ω∗ (see [7, Proposition 3.1]
for a similar result).
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Proposition 2 (Representation) Take x ∈ Ω∗ and define t = u∗(x). If infΩ u < t <
supΩ u then x is a convex combination of suitable x1, . . . , xk ∈ Ω, k ≤ d, such that u(xi) = t
and ∇u(xi) 6= 0 for i = 1, . . . , k. Furthermore, there exists a hyperplane π supporting both
Ωt and Ω∗t and containing every xi. The gradients ∇u(xi) are orthogonal to π and point
towards Ω∗t .

Proof. By Carathéodory’s theorem [23, 28], the point x is a convex combination of suitable
x1, . . . , xd+1 such that u(xi) ≥ t for i = 1, . . . , d + 1. Let us say that xi is relevant if
the corresponding coefficient λi is positive, negligible if λi = 0. By Proposition 1, we have
x ∈ ∂Ω∗t . This implies that there exists a supporting hyperplane π containing all the relevant
xi, say x1, . . . , xk. In particular, we must have k ≤ d. Since Ωt ⊂ Ω∗t , every relevant xi
lies on ∂Ωt, hence u(xi) = t. By nondegeneracy, the gradients ∇u(xi) do not vanish, are
orthogonal to π and point towards Ω∗t .

Denoting by n the normal to the hyperplane π pointing towards Ω∗t , and letting un =
∂u/∂n, let us finally prove a key result concerning the gradient and Hessian of u∗ in the
viscosity sense. By a test function ϕ touching u∗ from above at x we mean, as usual, a
function ϕ of class C2 in a neighborhood of x such that u∗ − ϕ has a local maximum at x
and u∗(x) = ϕ(x). The last condition justifies the preceding terminology but is not essential.

Proposition 3 Take x ∈ Ω∗ and define t = u∗(x). If infΩ u < t < supΩ u then for every
unit vector v such that v · n 6= 0, and for every sufficiently small r, the following estimate
holds:

u∗(x+ r v) ≥ u∗(x) + r v · n
( k∑
j=1

λj/un(xj)
)−1

+ o(r). (2.1)

Furthermore, any test function ϕ touching u∗ from above at x satisfies

∇ϕ(x) =
( k∑
j=1

λj/un(xj)
)−1

n (2.2)

D2ϕ(x) ≥
( k∑
j=1

λj/un(xj)
)−3 k∑

j=1

λj D
2u(xj)/u3

n(xj). (2.3)

Inequalities similar to (2.3) are proved in [6, ineq. (8)] and in [25, ineq. (50)]. When we
presented our results in Firenze on Dec. 12, 2008, Paolo Salani kindly provided us with a
copy of [5] and pointed out that our Proposition 3 could also be derived from Prop. 2.2 in [5]
in a way similar to the derivation of their Theorem 3.1. For the reader’s convenience we
give now our original proof.

Proof. By Proposition 2, the point x is a convex combination x =
∑k
i=1 λi xi of suitable

xi ∈ Ω such that u(xi) = t for all i. Those points belong to a supporting hyperplane π
of Ωt whose normal, directed towards Ωt, is denoted by n. Let us fix a unit vector v ∈ Rd
satisfying v · n 6= 0. By the implicit function theorem, there exist smooth functions ρi(r),
i = 1, . . . , k, and s(r), defined in a neighborhood of r = 0, such that ρi(0) = 0 for i = 1, . . . , k,
s(0) = t and

u(xi + ρi(r) v) = s(r) for i = 1, . . . , k (2.4)
k∑
i=1

λi ρi(r) = r. (2.5)
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Indeed, the Jacobian matrix of the preceding system at ρi = 0 and s = t is

J =


uv(x1) . . . 0 −1

...
. . .

...
...

0 . . . uv(xk) −1
λ1 . . . λk 0


where uv = ∂u/∂v. Of course, the first k rows of J are linearly independent. Furthermore,
the last row is independent from the preceding ones because in order to write this as a linear
combination of those we must multiply the i-th row by λi/uv(xi) and then sum over i.
Looking at the last component we should obtain

∑
i λi/uv(xi) = 0, but this is impossible

because the sign of uv(xi) is independent from i and the coefficients λi are positive. Hence
the implicit function theorem applies, as claimed.

Observe that u∗(xi + ρi(r) v) ≥ u(xi + ρi(r) v) = s(r) for each i. Since x + r v =∑
i λi (xi + ρi(r) v), and since u∗ is quasiconcave, we have u∗(x + r v) ≥ s(r). Hence any

test function ϕ touching u∗ from above at x satisfies ϕ(x+r v) ≥ s(r). Let us compute s′(0)
and s′′(0). By differentiating (2.4)-(2.5) we get

uv(xi + ρi(r) v) ρ′i(r) = s′(r) for i = 1, . . . , k (2.6)
k∑
i=1

λi ρ
′
i(r) = 1. (2.7)

A further differentiation at r = 0 yields:

uvv(xi) (ρ′i(0))2 + uv(xi) ρ′′i (0) = s′′(0) for i = 1, . . . , k (2.8)
k∑
i=1

λi ρ
′′
i (0) = 0 (2.9)

where uvv = ∂2u/∂v2. From (2.6)-(2.7) we obtain, at r = 0

s′(0) =
( k∑
j=1

λj/uv(xj)
)−1

(2.10)

ρ′i(0) =
(
uv(xi)

k∑
j=1

λj/uv(xj)
)−1

. (2.11)

Using the last expression to replace ρ′i(0) in (2.8) we get

ρ′′i (0) = (uv(xi))−1 s′′(0)− uvv(xi)
(uv(xi))3

( k∑
j=1

λj/uv(xj)
)−2

.

By plugging this into (2.9), and since uv(xj) = un(xj)n · v, we finally arrive at

s′′(0) =
( k∑
j=1

λj/un(xj)
)−3 k∑

i=1

λi uvv(xi)/u3
n(xi). (2.12)

From (2.10) rewritten as s′(0) = (
∑
j λj/un(xj))−1 n · v we obtain (2.1), and (2.2) follows.

By (2.12), instead, we get (2.3). The fact that (2.10) and (2.12) have been derived for
n · v 6= 0 makes no problem since ϕ is regular by definition.
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Let us point out some consequences of the preceding result that were found in [7] by
means of a different argument. Inequality (2.3) implies

ϕnn(x) ≥
( d∑
j=1

λj/un(xj)
)−3 d∑

j=1

λj unn(xj)/u3
n(xj)

∆πϕ ≥
( d∑
j=1

λj/un(xj)
)−3 d∑

j=1

λj ∆πu(xj)/u3
n(xj)

where ∆πϕ = ∆ϕ−ϕnn. Furthermore, since the p-Laplace operator ∆p u can be represented
as ∆p u = |∇u|p−2 [(p − 1)unn + ∆πu] provided that ∇u 6= 0, and since u is assumed to
be nondegenerate in the sense defined above, the quasiconcave rearrangement u∗ satisfies in
the viscosity sense the following differential inequality:

∆p u
∗(x) ≥

( d∑
j=1

λj/un(xj)
)−(p+1) d∑

j=1

λj ∆p u(xj)/(un(xj))p+1.

Consequently, if u is a nondegenerate, weak solution of ∆p u = f(u) in Ω with f ≥ 0 then

∆p u
∗(x) ≥ f(u∗(x)) in the sense of viscosity solutions. (2.13)

Several comparison principles for viscosity solutions are found in the literature: see, for
instance, [3, Theorem 1], [8, Theorem 3.3], [26, Theorem 1.1]. However, since we shall
compare u and u∗ in a subset G ⊂ Ω where ∇u 6= 0, and u satisfies ∆p u = f(u) in the
classical sense, a very specific result is enough to proceed. For completeness, we prove a
suitable statement hereafter.

Proposition 4 (Comparison principle) Let G be a bounded, open subset of Rd, and let
u be a function of class C2(G) satisfying infG |∇u| > 0. Thus, the function ∆p u(x) is
defined in the classical sense in G. If v ∈ C0(G) is a viscosity solution of ∆p v ≥ ∆p u in G,
then

sup
G

(v − u) = max
∂G

(v − u).

Proof. Suppose, by contradiction, that the function w = v−u attains an interior maximum
M > max∂G w. Define φ = u − c eγx1 , where x1 stands for the first component of the
variable x, and c, γ are real numbers. For every γ ∈ R we choose a sufficiently small c =
c(γ) > 0 such that (i) the function w(x) + c(γ) eγx1 = v − φ attains its maximum at
some x(γ) ∈ G; (ii) supG |∇u−∇φ | < 1

2 infG |∇u| =: r. In particular, ∇φ(x) 6∈ B(0, r) for
all x, γ. Since φ is a test function at the point x(γ) we may write aij(∇u(x(γ)))uij(x(γ)) ≤
aij(∇φ(x(γ)))φij(x(γ)), where aij(ξ) = δij |ξ|p−2 + (p − 2) |ξ|p−4 ξi ξj for ξ ∈ Rd \ {0}
and the summation convention is used. By plugging the term φij(x(γ)) = uij(x(γ)) −
c(γ) γ2 eγ x1(γ) δi1 δj1 into the preceding inequality, we obtain

[aij(∇u(x(γ)))− aij(∇φ(x(γ)))]uij(x(γ)) + c(γ) γ2 eγ x1(γ) a11(∇φ(x(γ))) ≤ 0.

By the mean value theorem, we may write

aij(∇u(x(γ)))− aij(∇φ(x(γ))) = c(γ) γ aij1 (ξ(γ)) eγ x1(γ)

where aij1 = ∂aij/∂ξ1 and ξ(γ) lies on the segment joining ∇u to ∇φ in Rd. With this
replacement, provided that γ 6= 0, we arrive at

aij1 (ξ(γ))uij(x(γ)) + γ a11(∇φ(x(γ))) ≤ 0. (2.14)
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Now let γ → +∞. By construction, ξ(γ) and∇φ(x(γ)) stay bounded and far from the origin.
Since u ∈ C2(Ω), the term aij1 (ξ(γ))uij(x(γ)) is also bounded and the (positive) coefficient
a11(∇φ(x(γ))) keeps far from zero. Hence, the left-hand side in (2.14) tends to +∞. This
contradiction shows that the comparison principle holds.

In order to compare u and u∗ on the free boundary Γ we use the following statement,
which is also needed to prove the existence of the set G of Proposition 4.

Proposition 5 Define w(x) = u∗(x) − u(x) for x ∈ Ω. The function w cannot have a
positive maximum M at x0 ∈ Ω ∪ Γ if ∇u(x0) = 0.

Proof. Assume that a positive maximum M is attained at such an x0. Then, u∗(x0) =
u(x0)+M > 0. Furthermore, since u < 1 in Ω∪Γ, we also get u∗(x0) < 1 and Proposition 3
applies. By (2.1) we have u∗(x0 + r n) ≥ u∗(x0) + ε r for a convenient ε > 0 and for
all sufficiently small r > 0. Since ∇u(x0) = 0, we also have u(x0 + r n) = u(x0) + o(r).
By subtracting the last equality from the preceding inequality we obtain w(x0 + r n) ≥
M + ε r − o(r), a contradiction.

3 The dam problem

The flow of groundwater through a rectangular dam, which is impervious at the bottom,
leads after the Baiocchi transformation to the following free boundary problem. Let D =
(0, a)× (0, b) be a rectangular domain, the cross section of the dam, and let H and h denote
the height of water left and right of the dam, 0 < h < H < b. We look for a function u
that satisfies Dirichlet conditions u = g on ∂D and the differential equation ∆u = 1 on its
support Ω = {x ∈ D : u(x) > 0 }. Physically, Ω represents the wet region in the dam.
The datum g is specified as follows: g(x1, 0) = 1

2a [aH2 − x1 (H2 − h2)] and g(x1, b) = 0 for
x1 ∈ [0, a]; g(0, x2) = 1

2 (H−x2)(H−x2)+ and g(a, x2) = 1
2 (h−x2)(h−x2)+ for x2 ∈ (0, b).

Another way to characterize the solution is the obstacle problem of minimizing

J1(v) :=
∫
D

{
|∇v|2

2
+ v

}
dx

on K1 := { v ∈ W 1,2(D) : v ≥ 0 in D and v = g on ∂D }. It is easy to see that this
problem has a unique solution u with the required properties. Moreover, ux and uy are
negative in Ω and the free boundary ∂Ω ∩D can be represented as a smooth function of x.

Theorem 6 The solution u of the dam problem is quasiconcave. Therefore all of its level
sets are convex.

For the proof we compare u∗, the quasiconcave envelope of u, with u on Ω. Since ux, uy < 0
in Ω, the nondegeneracy assumption of Section 2 is satisfied. By Proposition 3 we know
that ∆u∗ ≥ ∆u in Ω in the sense of viscosity solutions, so that u∗ − u attains any positive
maximum on ∂Ω. However, by definition u∗ = u on ∂D, so that a positive maximum can
only occur at a point x0 on the free boundary Γ = ∂Ω ∩ D. But this is impossible by
Proposition 5, because ∇u = 0 on Γ. Hence u∗ > u cannot hold anywhere in Ω. Since
u∗ ≥ u, the equality follows.

Note that this method of proof can carry over to higher dimensions, and that it proves
the convexity of all level sets, not just the support. In three dimensions one can think of
the dam as a wall that encloses a pool.
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In [12] and [10] one can find proofs that the support is even strictly convex in the sense
that Γ has positive curvature. However, the arguments there work only in two dimensions.
The (less sharp) fact that the free boundary Γ contains no segments can be easily proved as
follows. Assume, contrary to the claim, that the free boundary Γ contains a segment S. After
a suitable change of coordinates we get that S lies on {x1 = 0 } and Ω ⊂ {x1 > 0 }. The
proof aims to show that the solution u coincides with v = x2

1/2 in Ω, which is impossible
because the boundary condition on the impervious bottom of the dam is not satisfied.
Indeed, u should be linear along the bottom. However, since h < H, we see that v is
quadratic there. To prove that u ≡ v, consider the harmonic function w = u− v in Ω. Since
w = |∇w| = 0 on S, it follows that w is identically zero [14, Problem 2.2] and the proof is
complete.

4 The pollution problem

Imagine a chemical seeping through the wall of a full tank that occupies Ω1 into an ambient
medium, where it is consumed by a reactant. Stationary problems of this nature can be
modelled as variational problems. Minimize

J2(v) :=
∫

Rd

{
|∇v|p

p
+ F (v)

}
dx

on K2 := { v ∈ W 1,p(Rd) : v ≡ 1 on Ω1 }. Here F : R → R+
0 is a convex, monotone

nondecreasing function of class C1,α with F (s) = 0 for s ≤ 0. The minimizing function u
represents the dimensionless concentration of the chemical. If∫ 1

0

F (t)−1/p dt <∞

then the absorption term in the Euler equation −∆p u = −f(u), where f = F ′, becomes so
strong for small u that a minimizer has finite support. Let us call this the pollution problem.

Theorem 7 If Ω1 is convex then u is quasiconcave. Therefore the support of u and all of
its level sets are convex.

This theorem was derived in [21] for p = 2, but here we give a different proof that applies
to any p ∈ (1,∞). The existence of a unique weak solution follows from the direct methods
in the calculus of variations. By standard comparison results with a radially symmetric
situation one can show that solutions have compact support and that u(x) ∈ [0, 1) outside Ω1.
Moreover, since f(u) is bounded, u is of class C1,α according to standard regularity results
from [31] and [11], but then f(u(x)) is Hölder continuous everywhere outside Ω1. Only
for p = 2 does this imply u ∈ C2,β(R \ Ω1). In fact, for p 6= 2 the p-Laplacian operator
degenerates in points where∇u = 0, and we expect this to happen on the free boundary ∂Ω0,
but not in Ω = {x : u(x) ∈ (0, 1)}. How can we prove that |∇u| > 0 in Ω?

That the level sets of u are starshaped with respect to any point in Ω1 follows from [20]
or [29]. Without loss of generality suppose that 0 ∈ Ω1. Then we know that radial deriva-
tives of u are nonpositive, but not negative as desired. A way out of this difficulty is the
observation that we do not need ∇u to be nonzero everywhere, but only in special points xi
that span nontrivial (and convex at most (d − 1)–dimensional) components of ∂Ω∗t \ ∂Ωt.
This is where the inequalities of Proposition 3 are exploited, and this goal motivates the
following step in the proof.
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Lemma 8 (Nondegeneracy) Let x0 ∈ Ω, and define t = u(x0). If there exists a hyper-
plane π passing through x0 and supporting Ωt, then ∇u(x0) does not vanish, is orthogonal
to π and points towards Ωt.

Proof. The claim follows from the weak comparison principle, after having constructed a
suitable supersolution. Without loss of generality, we may assume x0 = 0, π = {xd = 0 },
and Ωt ⊂ {xd ≥ 0 }. Since Ω0 is bounded, we have Ω0 ⊂ {xd > µ } for some negative µ.
The function u(x1, . . . , xd) = t (1−xd/µ) satisfies ∆p u = 0 in Rd, u = t on π, u ≥ 0 on ∂Ω0.
By the weak comparison principle we get from f(u) ≥ 0 that u ≤ u in Ω ∩ {xd < 0 } and
the conclusion follows.

Now we are in a position to give a proof of Theorem 7. By definition u∗ ≥ u, and since
f is nondecreasing, by (2.13) we have ∆p u

∗ ≥ ∆p u. Let us first realize that any positive
maximum M of w(x) = u∗(x) − u(x) over Ω cannot occur on the free boundary ∂Ω0. It
is well known that u ∈ C1,α through the free boundary (see, for instance, [31]). Hence,
∇u = 0 on ∂Ω0 and we may apply Proposition 5. This prevents w from having a positive
maximum on ∂Ω0, and therefore any positive maximum of w(x) = u∗(x)−u(x) over Ω must
occur at a point x0 ∈ Ω. Now we can no longer argue as in the proof of Theorem 6, because
the differential equation for u is nonlinear. Hence, we proceed as follows. If M = supΩ w > 0,
then we set m := max∂Ω w and observe that there exists c ∈ (m,M) such that ∇u does
not vanish in the closure G of the set G = {x ∈ Ω : w(x) > c }. For, if this were not the
case, we would have a sequence cn ↗ M− and a sequence xn ∈ Ω such that w(xn) > cn
and ∇u(xn) = 0. Passing to the limit we would find x0 ∈ Ω such that w(x0) = M and
∇u(x0) = 0, against Proposition 5. Hence, a set G having the mentioned properties does
exist. Of course, the supremum of w in G equals M , and is attained in the interior and not
on the boundary (where w = c). But this contradicts Proposition 4 where we take v = u∗.
Hence Ω0 is convex and u∗ ≡ u in Ω, i.e. u is quasiconcave.

Remark 9 Since u = u∗, a further application of (2.1) shows that x·∇u(x) < 0 in all of Ω.
This sharpens the conclusion in [20] and [29, Theorem 5.1], asserting (in case u ∈ C1,α)
that x · ∇u(x) ≤ 0 in Ω.

5 Bernoulli’s problem

Bernoulli’s problem describes the outcome of a galvanization process. A body Ω1 in a
galvanization-bath is covered by another substance. The galvanized body occupies a do-
main Ω0. Mathematically this is modelled as follows. Minimize

J3(v) :=
∫

Rd

{
|∇v|p

p
+ λχ{v>0}

}
dx

on K2 := { v ∈ W 1,p(Rd) : v ≡ 1 on Ω1 }. Here λ is a positive constant and χA the
characteristic function of a set A.

Theorem 10 The solution w of Bernoulli’s problem is quasiconcave. Therefore its support
and all of its level sets are convex.

Several proofs of this result are known for various p and n, see e.g. [4], [22], [1], [15] , [17].
The following proof is based on a strategy similar to the one used in Section 4. Define
Ω = Ω0 \ Ω1 and Ωt = {x ∈ R : u(x) ≥ t }, as before. Recall that if ∂Ω0 is sufficiently
smooth, then |∇u| attains the constant value a = (pλ/(p− 1))1/p there. Let us start with a
key observation:
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Lemma 11 (Nondegeneracy) Let x0 be a point of Ω such that u(x0) ∈ (0, 1), and de-
fine t = u(x0). If there exists a hyperplane π passing through x0 and supporting Ωt, then
|∇u(x0)| > a.

Proof. Let n be the normal to π directed towards Ωt. Consider the affine (and p-harmonic)
function z(x) = t + a (x − x0) · n(x0). The following comparison argument shows that
Ω0 ⊂ {x ∈ Rd : z(x) > 0 }. Denote by uR,t the (radial) minimizer of the same functional
under the constraint uR,t = t in the closed ball BR. If Ωt ⊂ BR, then we have u ≤ uR,t
outside Ωt. Now let R → +∞ while the center of BR also goes to infinity, in such a way
that ∂BR → π. Since the function uR,t is easily found by integration, we see that uR,t → z.
Hence we have Ω0 ⊂ {x ∈ Rd : z(x) > 0 }, as claimed. Furthermore, we have u ≤ z in
D = {x ∈ Ω : 0 < z(x) < t } and u(x0) = z(x0), which in turn implies |∇u(x0)| ≥ a.
Consequently, u is a classical solution of the nondegenerate elliptic quasilinear equation
∆p u = 0 in a neighborhood of x0. The difference w = u − z satisfies therefore a linear
elliptic inequality of the form Lw ≥ 0 near x0 (see [14, Theorem 10.1]). Observe that the
domain D satisfies an interior sphere condition at x0, hence we may apply Hopf’s lemma
and deduce the strict inequality |∇u(x0)| > a.

Combining Proposition 2 and Lemma 11 we obtain:

Lemma 12 (Bound from below for u∗) Let x0 be a point of Ω∗ such that u∗(x0) =
t ∈ (0, 1). There exist positive numbers ε, ρ and a unit vector n such that the ball B =
B(x0 + ρn, ρ) centered at x0 + ρn and of radius ρ is included in Ω∗t , and the restriction of
u∗ to B is bounded from below as follows: u∗(x) > t+ (a+ ε)n · (x− x0) for x ∈ B.

Proof. Let us apply Proposition 2 at the point x = x0. Let π and xi, i = 1, . . . , k have the
meaning given there, and let n be the normal to π pointing towards Ω∗t . By Lemma 11 there
exists ε > 0 so small that a+ ε < |∇u(xi)| for all i. Denoting by η a variable in Rd, and by
the implicit function theorem, for each i there exists a neighborhood Ui of the origin such
that the function ϕi(η) = u(xi + η)− t− (a+ ε)n · η vanishes along a regular hypersurface
Γi ⊂ Ui dividing Ui into two parts. Note that the hypersurfaces Γi are orthogonal to n at
the origin. Since the index i ranges in a finite set, there exists a sufficiently small radius
ρ > 0 such that the ball B(ρn, ρ) is contained in the set Ui ∩ {ϕi(η) > 0 } for every i. This
may be rewritten as follows:

u(xi + η) > t+ (a+ ε)n · η for η ∈ B(ρn, ρ). (5.1)

Since u∗ ≥ u by definition, we obtain u∗(xi + η) > t + (a + ε)n · η. Since x0 + η is
a convex combination of the points xi + η, and since u∗ is quasiconcave, it follows that
u∗(x0 + η) > t+ (a+ ε)n · η in B(ρn, ρ) + ρn, which is equivalent to the claim.

As a consequence of Lemma 12, the difference w = u∗−u cannot have a positive maximum
at any x0 ∈ ∂Ω0 provided that |∇u(x0)| = a in the classical sense. The argument is the
same as in the proof of Proposition 5. Since the last equality does not hold, in general, we
proceed as follows.

Lemma 13 Define w(x) = u∗(x)− u(x) for x ∈ Ω. The function w cannot have a positive
maximum at any x0 ∈ ∂Ω0.

Proof. Suppose, contrary to the claim, that w attains a positive maximum at some x0 ∈
∂Ω0. The first part of the proof aims to deduce from this assumption an estimate of u
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near x0, namely (5.3) below. Since u(x0) = 0 and w(x0) > 0, it follows that u∗(x0) > 0.
Clearly u∗(x0) < 1 and therefore we may apply Lemma 12. Define t = u∗(x0) as in that
lemma. Before proceeding further, note that the interior of Ω∗t is included in Ω0. Indeed,
by assumption we have

u∗(x)− u(x) ≤ t in Ω0, (5.2)

hence u∗(x) ≤ t on ∂Ω0; furthermore, by Proposition 1 we see that u∗(x) > t for x interior
to Ω∗t . Hence the interior of Ω∗t does not intersect ∂Ω0, but since it does intersect Ω0, it
must be included in Ω0, as claimed. Consequently, the ball B = B(x0 +ρn, ρ) of Lemma 12
is also included in Ω0, and by (5.2) we may write

u(x) > (a+ ε)n · (x− x0) in B. (5.3)

This inequality tells us, in a somewhat weak form, that |∇u(x0)| > a, although ∇u(x0)
may not exist in the classical sense. In order to reach a contradiction, let us construct a
radial minimizer uR,s having B as its support and attaining a suitable constant value s in
a concentric ball BR = B(x0 + ρn, R) ⊂ B so that u(x) > s in the closure BR. Of course,
uR,s can be seen as a function of r = |x− x0 − ρn|. By applying the divergence theorem to
the equation ∆p uR,s = 0 it follows that uR,s(r) can be constructed as the solution to the
first-order initial-value problem

rd−1 (−u′R,s(r))p−1 = ρd−1 ap−1, r ∈ (R, ρ)
uR,s(ρ) = 0

where u′R,s = duR,s/dr. Note that u′R,s(ρ) = −a. Moreover, the value of s is related to R by
s = uR,s(R). By choosing R close enough to ρ (or equivalently by choosing s small enough)
and taking (5.3) into account, we get that u(x) > s in BR, as desired. Now we translate
the function uR,s by some small σ > 0 in the direction of −n, i.e., we pass from uR,s(x) to
v(x) = uR,s(x+ σ n). The support of v is clearly B − σ n, and the value s is attained in the
ball BR − σ n. By choosing σ small enough, we get that u(x) > s on the last ball, and x0

lies in the annulus (B\BR)−σ n. Let us see why this leads to a contradiction. Denote by S
the set of all x ∈ B − σ n such that v(x) > u(x). The set S is open, and nonempty because
it contains x0. The set S0 = S ∩ Ω0 is also nonempty because the point x0 is interior to S
and belongs to ∂Ω0. Since u ≡ 0 outside Ω0, we have S0 6= S. We may decompose J3(v) as
follows:

J3(v) =
∫

(B−σn)\S

{
|∇v|p

p
+ λ

}
dx +

∫
S

{
|∇v|p

p
+ λ

}
dx. (5.4)

Now we compare the last integral with the one obtained by replacing the domain of inte-
gration S with S0 and the function v with u. More precisely, we claim that∫

S

{
|∇v|p

p
+ λ

}
dx <

∫
S0

{
|∇u|p

p
+ λ

}
dx. (5.5)

To see this, define u(x) = min{u(x), v(x)} and observe that

J3(u) =
∫

(B−σn)\S

{
|∇v|p

p
+ λ

}
dx +

∫
S0

{
|∇u|p

p
+ λ

}
dx. (5.6)

If inequality (5.5) were violated, we would have J3(u) ≤ J3(v). Since u ≡ s on the
ball BR − s n, and since J3(v) is the minimum of J3 under that constraint, we would arrive
at J3(u) = J3(v) contradicting the fact that the minimizer under that constraint is unique
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and radial. Hence inequality (5.5) must hold, as claimed. To complete the proof, define
u(x) = max{u(x), v(x)}. We have

J3(u) =
∫

Ω0\S

{
|∇u|p

p
+ λ

}
dx +

∫
S

{
|∇v|p

p
+ λ

}
dx (5.7)

and also

J3(u) =
∫

Ω0\S

{
|∇u|p

p
+ λ

}
dx +

∫
S0

{
|∇u|p

p
+ λ

}
dx. (5.8)

By (5.5), we get J3(u) < J3(u), but this is impossible because u ≡ 1 on Ω1, and u mini-
mizes J3 under that constraint by assumption. The lemma follows.

Now we can give a proof of Theorem 10. Lemma 13 prevents the maximum in Ω of
the difference w = u∗ − u from being attained on ∂Ω0 unless w ≡ 0. Furthermore, if an
interior, positive maximum M is attained at some x0 ∈ Ω, then Lemma 12 implies that

|∇u(x0)| > a, (5.9)

because the variation of u must coincide with the one of u∗. Arguing as in the proof of The-
orem 7, and using (5.9) in place of Proposition 5, we still find a convenient neighborhood G
of x0 such that ∇u 6= 0 in G and w < M on ∂G. Since this contradicts Proposition 4, we
must have u∗ = u, as claimed.
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