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Abstract

We study the differential operator L = ∂4

∂x4 + ∂4

∂y4 and investigate positivity preserving properties
in the sense that f ≥ 0 implies that solutions u of Lu − λu = f are nonnegative. Since the
operator is of fourth order we have no maximum principle at our disposal. The operator models
the deformation of an anisotropic stiff material like a wire fabric, and it has to be complemented
by appropriate boundary conditions. Our operator was introduced by Jacob II Bernoulli as the
operator that supposedly models the vibrations of an elastic plate. This model was later revised
by Kirchhoff, because the operator and its solutions were anisotropic. Modern materials, however,
are often anisotropic and therefore the old model of Bernoulli deserves an updated investigation.
It turns out that even our simple looking model problem contains some hard analytical challenges.
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1 Introduction

Small vertical deformations u of an elastic membrane are usually described by a second order differ-
ential equation −∆u = f with f denoting the load, whereas the deformation of a plate is commonly
modelled by a fourth order equation ∆2u = f . Suppose the membrane is replaced by a piece of
material or cloth that is woven out of elastic strings. Then the material properties change drastically,
and in [4] such a problem was studied for second order differential operators. If a plate is replaced by
a stiff woven material (running in cartesian directions) its deformation energy can be described by∫

Ω

(
u2

xx + u2
yy

)
dx dy (1)

rather than the one for the elastic plate∫
Ω

(
(∆u)2 − (1− σ)

(
uxxuyy − u2

xy

))
dx dy. (2)

For the energy that corresponds to the reinforcement or wire fabric that is embedded in for example
concrete, a linear combination of (1) and (2) is appropriate.

In contrast to the plate equation, that is, the Euler equation for (2) which contains the operator
∆2u = uxxxx + 2uxxyy + uyyyy, the linearized differential equation for a stiff fabric consisting of
perpendicular fibers does not contain mixed terms when these fibers run parallel to the x and y-axes.
Indeed, if the torsional stiffness can be neglected the energy stored in the grid under a vertical load f
is supposed to be given by

E (u) =
∫

Ω

{
1
2

(
u2

xx + u2
yy

)
− fu

}
dx dy.

1
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Figure 1: A rectangular wire fabric with fibers in cartesian directions

The corresponding Euler equation is uxxxx + uyyyy = f. This equation has to be complemented by
suitable boundary conditions, and in the present paper we shall study the problem on a planar domain
Ω:

• as a general grid that is hinged at the boundary{
uxxxx + uyyyy = f in Ω,

u = n2
1 uxx + n2

2 uyy = 0 on ∂Ω,
(3)

where n = n(x, y) is the exterior normal at (x, y) ∈ ∂Ω;

• or as a general grid that is clamped at the boundary{
uxxxx + uyyyy = f in Ω,

u = ∂
∂nu = 0 on ∂Ω.

(4)

When we checked the literature for this type of equation, we found a remarkable hint in the chapter
on the history of plate theory in Szabó’s book [37], see p.409. Jacob II Bernoulli, inspired by Chladni’s
experiments on vibrating plates, had attempted to model their behaviour by our differential equation
in [5], but this was later dismissed for isotropic plates and replaced by Kirchhoff’s theory [24]. But
there is more to it. According to [30] Bernoulli had also studied and absorbed Leonard Euler’s idea
that an elastic membrane should be modelled as a fabric of one-dimensional orthogonal elastic strings
and he tried to carry this idea over to modelling a plate as a fabric of one-dimensional beams. Thus
he arrived at

∂4z

∂x4
+
∂4z

∂y4
=

z

c4

as “the fundamental equation of the entire theory” of plate vibrations. In those days church bells
were intended as applications for the theory. Both operators, the isotropic plate operator ∆2, and the
anisotropic

L =
∂4

∂x4
+

∂4

∂y4
(5)

retain a certain degree of isotropy. They are special cases of

L̃ =
∂4

∂x4
+ P

∂4

∂x2∂y2
+Q

∂4

∂y4
(6)

with P ≥ 0 and Q > 0 denoting material constants. Notice that L̃ is always invariant under reflections
across cartesian axes, but not always under rotations. Plates whose deformation is described by such
operators are called orthotropic, see e.g [29], [31]. By scaling y and not scaling x one can always force Q
to be 1. Realistic values for P and Q in the case of plywood material (birch with bakelite glue) can be
found in [25, p. 92], [26, p. 269], or in [31]. It is not unrealistic to expect Q to be of order 1-10 and P ∈
[0, 1). Modern (composite) materials like GLARE, see http://www.lr.tudelft.nl/highlights/glare.asp,
a composite of layers of fibreglass and aluminium that is also called “plymetal”, can be expected to
satisfy similar orthotropic equations. Orthotropic plate equations like L̃u = f have been rigorously
derived by homogenization methods as the right macroscopic model for grid structures as the thickness
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of the structure and the size of its cells goes to zero. To be precise, in [3] p.130, and using our notation
the limit equation has coefficients Q = 1 and P = 4/(1 + ν), where ν denotes the Poisson ratio of the
original (solid and unhomogenized) plate material. For ν = −1/3 one gets P = 6 as in (19) below.
We take the differential equation for granted here and do not address issues of homogenization as in
[3].

Section 2 is devoted to proving existence and uniqueness questions, and Section 3 to regularity of
solutions to these boundary value problems. Regularity near corners of Ω is delicate, and its discussion
will be limited to some special cases. Moreover, we address the subject of representations of solutions
by series or by means of a Green function at the end of Section 3.

In Section 4 we study the spectrum of the operator L on rectangular domains and for hinged and
clamped boundary conditions. Since the operator is separable, on special domains like rectangles all
of its eigenfunctions can be represented in terms of products of one-dimensional eigenfunctions. We
learned this from Courant and Hilbert, see [10], Ch.II Par. 1.6, who did it for operators of second
order. Therefore the one-dimensional cases will always be treated before the rectangular domains. We
present all eigenvalues and eigenfunctions for a number of examples and compare spectra for different
(parallel or diagonal) alignments of our anisotropic grid.

Section 5 is dedicated to positivity questions. Suppose the load f on a beam (or grid) is pointing
downwards. Does this imply that the deformation u has the same sign everywhere in Ω? The answer
is in general negative, unless the geometry of the domain is special or unless the beam (or grid) is
embedded in an elastic ambient medium that exerts a restoring force proportional to the deformation.
So the modified question is, for which (presumably negative) values of λ one can show that f ≥ 0
implies positivity of the solution to

uxxxx + uyyyy = λu+ f in Ω,

that satisfies the boundary conditions under consideration. This question turns out to be technically
most challenging and its answer is given using different tricks for different alignments or boundary
conditions.

For the reader’s convenience we finish with a summary in section 6 and an appendix.

2 Existence and uniqueness for hinged and clamped grids

Let Ω ⊂ Rn be a bounded simply connected set. Then the variational problem

Minimize: E(v) =
∫

Ω

(
1
2

n∑
i=1

v2
xixi

− f v

)
dx on W 1,2

0 (Ω) ∩W 2,2(Ω) (7)

has a unique solution. To see this directly we follow the ideas of [16] and first show that E(v) is
coercive on W 2,2(Ω). Obviously 2uxxuyy ≤ u2

xx + u2
yy, so that

E(v) ≥ c(n)
∫

Ω
(∆v)2 dx−

∫
Ω
f v dx.

If we denote ∆v by g, then a well known a-priori estimate for solutions of Dirichlet problems for second
order elliptic differential equations on bounded domains (see e.g. [14], p.317) implies that

||D2v||L2(Ω) ≤ ||∆v||L2(Ω),

so that all second derivatives of v are in L2(Ω). This and a Poincaré type inequality show the
coerciveness of E on W 1,2

0 (Ω) ∩W 2,2(Ω). Now the existence and uniqueness of a solution follow from
the direct method in the calculus of variations and from the strict convexity of the functional E. The
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solution satisfies the Euler-equation
∑n

i=1 uxixixixi = f in Ω. To derive the boundary conditions, we
note that a weak solution satisfies∫

Ω

(
n∑

i=1

uxixiϕxixi − f ϕ

)
dx = 0, (8)

and after two integrations by parts we obtain

0 =
∫

Ω

(
−

n∑
i=1

uxixixiϕxi − f ϕ

)
dx+

∫
∂Ω

n∑
i=1

uxixiϕxiνi dσ (9)

= 0 +
∫

∂Ω

n∑
i=1

uxixiϕxiνi dσ −
∫

∂Ω

n∑
i=1

uxixixi ϕ νi dσ (10)

=
∫

∂Ω

(
n∑

i=1

uxixiν
2
i

)
∂ϕ

∂ν
dσ (11)

Notice that the last integral in (10) vanishes because ϕ vanishes on the boundary. Therefore the first
boundary integral in (10) must vanish too. The vanishing of ϕ on ∂Ω implies in particular that the
bracket in (11) must vanish on ∂Ω. Thus we have formally derived (3) in the plane case.

If the grid or stiff fabric is clamped, we consider the variational problem

Minimize: E(v) =
∫

Ω

(
1
2

n∑
i=1

v2
xixi

− f v

)
dx on W 2,2

0 (Ω) (12)

and observe that the same existence proof works for this problem, too. The solution satisfies{ ∑n
i=1 uxixixixi = f in Ω,

u = ∂u
∂ν = 0 on ∂Ω,

(13)

We have the following existence and uniqueness results..

Theorem 2.1 Let Ω ⊂ Rn be a bounded domain with piecewise smooth boundary and suppose that
f ∈ L2(Ω). Then problems (7) and (12) have a unique minimizer. Moreover, the corresponding
boundary value problems, which in the case n = 2 are given by (3) and (4), have a unique weak
solution.

Remark 2.1 As usual a weak solution for (3) is a function u in W 2,2
0 (Ω) that satisfies (8) for all

ϕ ∈ W 2,2
0 (Ω). A weak solution of (4) is a function u in W 2,2(Ω) ∩ W 1,2

0 (Ω), satisfying (8) for all
ϕ ∈W 2,2(Ω) ∩W 1,2

0 (Ω).

The existence was shown above by variational methods and the uniqueness of the weak solution
follows from the strict convexity of the underlying functional E. Notice that the second order boundary
condition holds only in the sense of distributions. To see that it holds pointwise in every smooth point
of the boundary, we need to know more about its regularity.

3 Regularity

One may use the standard regularity theory for elliptic operators whenever the elliptic system is of an
appropriate type and if the boundary is sufficiently smooth. First we will show that our systems are
regular elliptic.
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3.1 Regular elliptic

The symbol, that is L = L( ∂
∂x ,

∂
∂y ), of our fourth order operator can be decomposed as follows:

L(ξ1, ξ2) := ξ41 + ξ42 =
(
ξ21 +

√
2ξ1ξ2 + ξ22

)(
ξ21 −

√
2ξ1ξ2 + ξ22

)
, (14)

Hence L can be written as the composition of two second order elliptic operators. Notice however
that the boundary value problem (4) cannot be split into a system of two second order equations with
separated boundary conditions. In fact, even for the boundary value problem (3) this seems to be out
of reach. The boundary operators have the following symbols:

• For (3): B1 (ξ) = 1 and B2 (ξ) = n1(x)2ξ21 + n2(x)2ξ22 .

• For (4): B1 (ξ) = 1 and B2 (ξ) = n1(x)ξ1 + n2(x)ξ2.

A necessary condition to have the full classical regularity results is that the corresponding boundary
value problem should be regular elliptic in the sense of [27], and this is indeed the case.

Lemma 3.1 Problems (3) and (4) are regular elliptic.

Proof. The differential operator is regular elliptic of order 2k if there is c > 0 such that L(ξ) ≥ c |ξ|2k

for ξ ∈ R2 which obviously holds true. In order to show that the boundary conditions make it into a
regular elliptic one has to consider the factorisation of τ 7→ L(ξ+ τη). One finds that the roots of this
polynomial are

τk = − ξ1 + (−1)
2k−1

4 ξ2

η1 + (−1)
2k−1

4 η2

with k ∈ {1, 2, 3, 4} .

We use (−1)α = cosπα+ i sinπα. Depending on ξ and η, which should be taken independently, there
are two roots, τI and τII , which have positive imaginary part. We find L(ξ+τη) = a+(ξ, η; τ)a−(ξ, η; τ)
with

a+(ξ, η; τ) =
√
η4
1 + η4

2 (τ − τI) (τ − τII) ,

a−(ξ, η; τ) =
√
η4
1 + η4

2 (τ − τ̄I) (τ − τ̄II) .

Since the imaginary parts of τI and τII have the same sign the first order term in a+(ξ, η; τ) has a
coefficient with a strictly negative imaginary part, indeed

(τ − τI) (τ − τII) = τ2 − (τI + τII) τ − τIτII .

The condition for regularity that has to be verified is that, for ξ a tangential direction and η
a normal direction, the polynomials τ 7→ B1 (ξ + τη) and τ 7→ B2 (ξ + τη) are independent modulo
τ 7→ a+(ξ, η; τ). Therefore we set η = (n1, n2) and ξ = (−n2, n1).

For (3) B1 (ξ + τη) = 1 and

B2 (ξ + τη) = n2
1 (−n2 + n1τ)

2 + n2
2 (n1 + n2τ)

2

= 2n2
1n

2
2 + (n2

2 − n2
1)n1n2τ +

(
n4

1 + n4
2

)
τ2.

This is a polynomial with only real coefficients. Since a+(ξ, η; τ) contains a real second order term
and an imaginary first order term so that both polynomials are linearly independent.

For (4) B1 (ξ + τη) = 1 and B2 (ξ + τη) = 1+ τ. These are clearly independent modulo any second
order polynomial.
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3.2 Regularity for smooth domains

Near the smooth boundary part the standard regularity results e.g. from [27, Ch. 2] may be used,
since both the clamped and the hinged problem are regular elliptic. Only the corners need more
attention. But to fix the facts let us summarize the regularity results in a Theorem.

Theorem 3.2 Let Ω ⊂ R2 be a bounded domain with piecewise smooth boundary and let Ω′ ⊂ Ω
be a subset such that Ω′ contains only the smooth boundary points of ∂Ω. If f ∈ W k,2(Ω) and
k ∈ {0, 1, 2, . . .} then the weak solutions of (3) and (4) are of class W k+4(Ω′). In particular for
f ∈ L2(Ω) the derivatives uxixi are in W 3/2,2(∂Ω ∩ ∂Ω′), so that the boundary condition in (3) holds
pointwise a.e. on ∂Ω.

3.3 Regularity near corners

It remains to discuss the regularity near singular points of the boundary, and this will be done for
some special but typical situations. First we will give an explanation for a simple case.

3.3.1 The hinged rectangular grid with aligned fibers

Let R = (0, a)× (0, b). be the rectangle. It will be relatively easy to study the regularity of the hinged
grid near a corner, say (0, 0) when the grid is aligned with the rectangle as in Figure 1.

Reflection: The first approach is through a reflection argument. As an example we will consider
the hinged rectangular grid with horizontally and vertically aligned fibers.

Note that the differential operator and boundary conditions all satisfy L(± ∂
∂x ,

∂
∂y ) = L( ∂

∂x ,
∂
∂y )

and B(± ∂
∂x ,

∂
∂y ) = B( ∂

∂x ,
∂
∂y ). Instead of considering

uxxxx + uyyyy = f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a]× {0, b} ,

(15)

we extend f to f̃ on (−a, a)× (0, b) by

f̃(x, y) = sign(x) f(|x| , y)

and consider  ũxxxx + ũyyyy = f̃ in R̃ =(−a, a)× (0, b) ,
ũ = ũxx = 0 on {−a, a} × [0, b] ,
ũ = ũyy = 0 on [−a, a]× {0, b} .

(16)

If f ∈ Lp(R) then f̃ ∈ Lp(R̃) and by the result above there is unique solution ũ ∈ W 2,p(R̃) and
ũ ∈ W 4,p(R̃\N) with N some neighborhood of the four corners of R̃; (0, 0) has become a regular
boundary point. Since the solution ũ is unique one finds that ũ(x, y) = −ũ(−x, y) and hence ũ(0, y) =
ũxx(0, y) = 0. In other words, u := ũ|R is the solution of (15) which is in W 4,p(R ∩ Bε(0)). Since we
may do so for every corner of R we find that u ∈W 4,p(R).

Seperation of eigenfunctions: A second approach can be used if there is a complete orthonormal
system of eigenfunctions of the form {ϕi(x)ψj(y); i, j ∈ N} . For example for the problem (15) the set
{Φij ; i, j ∈ N+} with

Φi,j(x, y) =
2√
ab

sin(i
π

a
x) sin(j

π

b
y)
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Figure 2: Rectangular grid with diagonal fabric

is a complete orthonormal set of eigenfunctions. Writing fij = 〈Φi,j , f〉 the solution u is given by

u(x, y) =
∞∑

i,j=1

fij(
iπa
)4 +

(
j π

b

)4 Φi,j .

Using Parseval a straightforward computation shows that∥∥∥∥∥
(
∂

∂x

)k ( ∂

∂y

)`

u

∥∥∥∥∥
2

L2(R)

=
∞∑

i,j=1

(
iπa
)2k (

j π
b

)2`((
iπa
)4 +

(
j π

b

)4)2 (fij)
2

which is bounded if f ∈ L2(R) and k, l ∈ N with k + l ≤ 4. So u ∈W 4,2(R).

3.3.2 The hinged rectangular grid with diagonal fibers

Now suppose that the grid runs diagonally into the horizontal and vertical axis as in Figure 2, and
that x̂ := 1

2

√
2 (x+ y) and ŷ = 1

2

√
2 (y − x). Then a straightforward calculation shows that

uxxxx + uyyyy = 1
2ux̂x̂x̂x̂ + 6

2ux̂x̂ŷŷ + 1
2uŷŷŷŷ = f , (17)

while the boundary condition from (10) becomes

uxx + uyy = ∆u = 0 = ux̂x̂ + uŷŷ (18)

because (ν1)2 = (ν2)2 = 1/2 on the sides of the rectangle and because the Laplacian is invariant under
rotations. Since also u = 0 on the boundary, this implies ux̂x̂ = 0 = uŷŷ. Therefore after an obvious
change of notation the deformation u of the hinged diagonal grid satisfies again a regular elliptic
boundary value problem, namely

uxxxx + 6uxxyy + uyyyy = 2f in R =(0, a)× (0, b) ,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a]× {0, b} .

(19)

Also for this boundary value problem we find that L(± ∂
∂x ,

∂
∂y ) = L( ∂

∂x ,
∂
∂y ) and B(± ∂

∂x ,
∂
∂y ) =

B( ∂
∂x ,

∂
∂y ) and hence we may use the odd reflection argument of (16) to find u ∈ W 4,2(R) that does

satisfy the boundary conditions for x = 0.

Incidentally, the transformed elliptic operator has a symbol that can again be factorized as

2L̂(ξ1, ξ2) := ξ41 + 6ξ21ξ
2
2 + ξ42 =

(
ξ21 +

(
3− 2

√
2
)
ξ22

)(
ξ21 +

(
3 + 2

√
2
)
ξ22

)
. (20)

The fact that (19) constitutes a regular elliptic boundary value problem does not need to be checked
again, since this property is invariant under changes of the coordinate system. Moreover, the boundary
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conditions fit nicely with this factorization and we find a system of two well-posed second order
problems: 

uxx +
(
3− 2

√
2
)
uyy = v in R,
u = 0 on ∂R

vxx +
(
3 + 2

√
2
)
vyy = 2f in R,

v = 0 on ∂R

(21)

Using the result of Kadlec ([22]) for second order operators on convex domains one finds that f ∈ L2(R)
implies v ∈W 2,2(R)∩W 1,2

0 (R). Since v satisfies the boundary conditions of u (!), we do not only find
that u ∈W 2,2(R) ∩W 1,2

0 (R) but even that u ∈W 4,2(R) ∩W 1,2
0 (R).

We remark that some boundary value problems with different boundary conditions along each side
can be treated by a reflection argument. In fact, the same reflection argument works for the aligned
rectangular grid, if it is clamped on the horizontal parts of the boundary and hinged on the vertical
part. To be specific, for f ∈ L2(Ω) the unique solution u of

uxxxx + uyyyy = f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uy = 0 on [0, a]× {0, b} .

(22)

is in W 4,2(R).

3.3.3 The clamped rectangular grid with aligned fibers

The regularity of the clamped grid near a corner does not follow from such a simple reflection argument,
because uxx does in general not vanish on (0, y) with y ∈ (0, b). However, provided the grid is aligned
with the rectangle as in Figure 1, we may proceed by ‘seperation of eigenfunctions’. To complete this
argument we need to borrow some results of subsection 4.2.3 and more specifically Lemma 4.3 and
4.4.

The set {Φij} of eigenfunctions in (34) is a complete orthonormal system in L2(Ω). Then, as above
for the hinged rectangular grid, the solution of (4) can be represented by

u(x, y) =
∞∑

i,j=1

αij

Γij
Φij(x, y) ,

where αij are the Fourier coefficients from the representation of f with
∑

i,j α
2
ij being finite by Parse-

val’s identity. The eigenvalues Γij are defined by Γij = a−4λi + b−4λj and we find that

∂n+m

∂xn∂ym
u(x, y) =

∞∑
i,j=1

a−nλ
n/4
i b−mλ

m/4
j

a−4λi + b−4λj
αijΦij(x, y) ,

which is bounded when n + m ≤ 4. This shows that u ∈ W 4,2(R) even in this case of a clamped
rectangular grid aligned with R. From Theorem 2.1 we were only allowed to conclude that u ∈
W 2,2(R).

3.3.4 The clamped rectangular grid with diagonal fibers

How to obtain the regularity of u for a clamped–hinged or clamped–clamped diagonal grid near a
corner is a nontrivial problem and will not be discussed here.

One conceivable way to represent a solution would be a Green function g0,ξ(·) = F (· − ξ) + h(ξ, ·).
It can in principle be obtained by adding a solution h of Lh(ξ, ·) = 0 in R, h(ξ, ·) + F (· − ξ) = 0 =
B2h(ξ, ·) + B2F (· − ξ) on ∂R to a fundamental solution F (· − ξ), i.e. to a distributional solution of
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LF (· − ξ) = δ0(·). Clearly F is not unique, but just for the record let us quote a fundamental solution
F (for L as in (22)) from [39] or [29]:

F (x, y) = − 1
16π

√
2

[
(x2 + y2) log(x4 + y4) + 2

√
2xy log

(
x2+y2+

√
2xy

x2+y2−
√

2xy

)
+

+ 2
√

2
(
x2 arctan x2

y2 + y2 arctan y2

x2

)] (23)

An explicit calculation of the Green function even on a quarter plane seems to be beyond reach.

4 Eigenfunctions and eigenvalues

4.1 Eigenfunctions for a hinged rectangular grid

The eigenfunctions for the hinged beam{
ϕxxxx = λϕ in (0, 1),

ϕ = ϕxx = 0 in {0, 1} , (24)

are obviously given by φi(x) =
√

2 sin(iπx) and the eigenvalues are λi = i4π4.
If a hinged grid is rectangular and aligned with the cartesian coordinates, then a calculation shows

that the eigenfunctions and eigenvalues of
Φxxxx + Φyyyy = ΛΦ in R,

Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a]× {0, b} .

(25)

are given by

Φij (x, y) =
2√
ab

sin
(
iπx

a

)
sin
(
jπy

b

)
and Λij =

i4π4

a4
+
j4π4

b4
. (26)

For i = j = 1 one finds:

Lemma 4.1 The first eigenfunction for (25), the hinged rectangular grid with aligned fibers, is of
fixed sign.

Even if the hinged grid is diagonally aligned we can determine the eigenfunctions and eigenvalues
of 

1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Λ̃Φ in R,
Φ = Φxx = 0 on {0, a} × [0, b] ,
Φ = Φyy = 0 on [0, a]× {0, b} .

(27)

by a separation of variables. In fact the eigenfunctions are still given by

Φij (x, y) =
2√
ab

sin
(
iπx

a

)
sin
(
jπy

b

)
,

but now the eigenvalues are given by

2Λ̃ij = π4

(
i4

a4
+

6i2j2

a2b2
+
j4

b4

)
. (28)

We may conclude as before:

Lemma 4.2 The first eigenfunction for (27), the hinged rectangular grid with diagonal fibers, is fixed
sign.
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Notice that
1
2Λij ≤ Λ̃ij ≤ 2Λij , (29)

Λ̃ij =
π4

2

(
i4

a4
+

6i2j2

a2b2
+
j4

b4

)
and Λij = π4

(
i4

a4
+
j4

b4

)
Notice also that the first eigenfunction is of fixed sign.

4.2 Eigenfunctions for clamped problems

4.2.1 Eigenfunctions for the clamped beam

The set of all normalized eigenfunctions for{
ϕ′′′′ = λϕ in (0, 1) ,

ϕ(0) = ϕ′(0) = 0 = ϕ(1) = ϕ′(1)
(30)

forms a complete orthonormal system in L2 (0, 1) .

Lemma 4.3 These eigenfunctions and eigenvalues are

ϕi (x) = βi cosh νi

(
cosh (νix)− cos (νix)

cosh νi − cos νi
− sinh (νix)− sin (νix)

sinh νi − sin νi

)
and λi = ν4

i ,

with i = 1, 2, . . . where νi is the ith positive zero of cos ν− 1
cosh ν = 0 and βi is the normalization factor

such that
∫ 1
0 ϕi (x)

2 dx = 1.
Note that the first eigenfunction is of fixed sign.

The statement of this Lemma is shown by a lengthy but straightforward calculation.

Lemma 4.4 The sequences νi and βi as above have the following asymptotics

• limi→∞ iπ − νi = 1
2π and hence λi ≈ (i− 1/2)4 π4;

• limi→∞ βi = 1.

Proof. For obvious reasons two subsequent zeroes νi and νi+1 of cos ν − 1
cosh ν = 0 are in the interval

((i − 1
2)π, (i + 1

2)π) and close to its boundaries. Since 1
cosh νi

≤ 2e−νi and | sinx| > 1
2 in a sufficiently

small neighborhood of (i− 1
2)π we have

|νi − (i− 1
2)π| < 4 eπ/2 e−iπ.

This proves the first statement, and the following table illustrates it:

λi : 500.56390 3803.5370 14617.630 39943.799 89135.406 173881.31 308208.45(
i− 1

2

)4
π4 : 493.13352 3805.0426 14617.451 39943.815 89135.406 173881.31 308208.45

Table 1: Comparison of the of the eigenvalues λi and the approximation in Lemma 4.4.

Let us now turn to the second statement. With the help of mathematica one sees that

βi =
−Zi(cosh νi)2

4 νi (cos νi − cosh νi)
2 (sin νi − sinh νi)

2

with
Zi = 2 νi cos 2 νi + 4 cosh νi sin νi − sin 2 νi − cosh 2 νi (2 νi + sin 2 νi)

−4 cos νi sinh νi + 8 νi sin νi sinh νi + sinh 2 νi + cos 2 νi sinh 2 νi

Now the second statement follows by a straightforward computation.
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4.2.2 Comparing eigenvalues of clamped plates and grids

In [33] Philippin, following ideas of Hersch [20], obtained estimates for the eigenvalues of a clamped
plate through the ones for clamped rectangular and diagonal grid. Let us state a special result in this
direction that compares the first eigenvalues of a clamped grid{

Φxxxx + Φyyyy = ΓΦ in Ω,
Φ = |∇Φ| = 0 on ∂Ω,

(31)

with those of the clamped plate: {
∆2Φ = ΥΦ in Ω,

Φ = |∇Φ| = 0 on ∂Ω.
(32)

Lemma 4.5 Let Ω ⊂ R2 be a bounded domain with a C0,1-boundary. Let Γ1 and Υ1 be the first
eigenvalues of (31), respectively (32). Then it holds that 1

2Υ1 ≤ Γ1 ≤ Υ1.

Proof. The result follows from the definition of the eigenvalue by Rayleigh’s quotient and some energy
estimates. For the first inequality one uses

1
4

∫
Ω
(∆u)2dx dy = 1

4

∫
Ω

(
u2

xx + 2uxxuyy + u2
yy

)
dx dy ≤ 1

2

∫
Ω

(
u2

xx + u2
yy

)
dx dy.

For the second one proceeds via an integration by part that shows, due to the clamped boundary
conditions, ∫

Ω
uxxuyy dx dy =

∫
∂Ω

(uxuyyn1 − uxuxyn2) dσ +
∫

Ω
u2

xy dx dy

=
∫

Ω
u2

xy dx dy ≥ 0,

and hence 1
2

∫
Ω

(
u2

xx + u2
yy

)
dx dy ≤ 1

2

∫
Ω

(
u2

xx + 2u2
xy + u2

yy

)
dx dy = 1

2

∫
Ω
(∆u)2 dx dy.

4.2.3 Eigenfunctions for the clamped rectangular grid

A complete orthonormal system of eigenfunctions and eigenvalues for the grid aligned with the carte-
sian coordinates {

Φxxxx + Φyyyy = ΓΦ in R,
Φ = |∇Φ| = 0 on ∂R.

(33)

with R = (0, a)× (0, b) is given in terms of the one-dimensional eigenfunctions and eigenvalues ϕj and
λj from Lemma 4.3 by

Φij (x, y) =
1√
ab
ϕi

(x
a

)
ϕj

(y
b

)
and Γij = a−4λi + b−4λj . (34)

Lemma 4.6 The first eigenfunction for (33), the clamped rectangular grid with aligned fibers, is of
fixed sign.

This is in marked contrast to the biharmonic operator, whose first eigenfunction under Dirichlet
conditions on a rectangle is known to change sign infinitely often (see [8]), and positivity of the ground
state for our anisotropic operator cannot be expected for a general domain.

An explicit determination of all eigenfunctions and eigenvalues for the diagonally aligned clamped
grid, however,
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Γij : 1001.13 4304.10 15118.2 40444.4 89636.0
7607.07 18421.2 43747.3 92938.9

29235.3 54561. 103753.
79887. 129079.

178271.

Table 2: Numerical values for the eigenvalues Λij with i, j ≤ 5 of a clamped square grid of length 1
that is aligned with cartesian coordinates are (without repeating the multiple ones like Λ1,2 = Λ2,1)

Υij : 1294.93 5386.63
11710.3

Table 3: Numerical eigenvalues for a clamped square plate of length 1. We used the values found in
[15, p. 79] and scaled these.


1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = Γ̃Φ in R,
Φ = Φx = 0 on {0, a} × [0, b] ,
Φ = Φy = 0 on [0, a]× {0, b} .

(35)

seems to be a nontrivial problem. From Lemma 4.5 we can find an estimate, namely Γ1 ≤ 2Γ̃1, by
using Γ1 ≤ Υ1 and 1

2Υ1 ≤ Γ̃1, and similarly Γ̃1 ≤ 2Γ1. This is consistent with inequality (29) for
hinged grids. Note that the estimate 1

2 Γ̃1 ≤ Γ1 ≤ 2Γ̃1 even holds on general domains.

Remark 4.1 We do not know if the first eigenfunction for (35), the clamped rectangular grid with
diagonal fibers, is of fixed sign. Some evidence against a fixed sign follows from Coffman’s result in
[8].

4.2.4 Eigenfunctions for the clamped circular grid

For a clamped circular plate there are radially symmetric eigenfunctions and these can be expressed
in terms of the (modified) Bessel functions J0 and I0. Since Boggio [2] gave an explicit formula for
the Dirichlet biharmonic on a circular disk Jentzsch’ Theorem implies that the first eigenfunction is
positive (of fixed sign) and unique and hence radially symmetric. Although a numerical approximation
shows that the first eigenfunction of the clamped grid looks similar to the one for the clamped plate
this eigenfunction is not radially symmetric.

Lemma 4.7 Let D denote the unit disk. There is no radial eigenfunction for{
Φxxxx + Φyyyy = ΓΦ in D,

Φ = |∇Φ| = 0 on ∂D.
(36)

Remark 4.2 Of course, since the differential equation uxxxx + uyyyy = λu is not rotation invariant,
this result should not come as a surprise. A nasty consequence however, is that the first eigenfunction
does not seem to have an ‘easy’ explicit representation. We do not even have analytical proof that this
eigenfunction has a fixed sign or that it is unique.

Remark 4.3 The first eigenvalue λcp,1 ≈ 104.363 for the cicular clamped plate one may find in [1].
The first one for the clamped grid is approximately 75% of this value.
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Figure 3: Numerical approximations of the first ‘clamped’ eigenfunctions on a disk for Li, i = 1, 2, 3.
One sees hardly any difference. We remark that the eigenfunctions for the first and the second operator
differ ‘analytically’ just by a 45◦ rotation. The finite difference scheme however is different since in
each case the discrete version of the corresponding operator Li has been used.

Proof of Lemma 4.7. Suppose that Φ is a radial eigenfunction. Then we can rotate this eigen-
function by π/4 and it is still an eigenfunction. However, the rotated Φ satisfies now, see (19),{

1
2Φxxxx + 3Φxxyy + 1

2Φyyyy = ΓΦ in D,
Φ = |∇Φ| = 0 on ∂D.

(37)

Consequently we can add (36) to (37) to arrive at 3
2Φxxxx + 3Φxxyy + 3

2Φyyyy = 2ΓΦ or{
∆2 Φ = 4

3ΓΦ in D,
Φ = |∇Φ| = 0 on ∂D.

(38)

But then Φ must be a radial eigenfunction of the plate equation, an unlikely coincidence. To show
that this cannot be the case suppose that Φ(r) is such a radial function. Then

Φxx = Φ′′ x2

r2 + Φ′ y2

r3 and Φxx = Φ′′ y2

r2 + Φ′ x2

r3

and

Φxxxx + Φyyyy = Φ′′′′ r
4 − 2x2y2

r4
+ Φ′′′ 12x2y2

r5
+ Φ′′ 3r

4 − 30x2y2

r6
+ Φ′−3r4 + 30x2y2

r7
= ΓΦ ,

or equivalently

2x2y2
(
−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′) = r4ΓΦ− r4Φ′′′′ − 3r2Φ′′ + 3rΦ′.

But this implies that either x2y2 is a function of r, or both sides are identical 0. So we have to show
that this second case cannot occur. Suppose both sides are identical zero. The general solution of

−Φ′′′′ + 6r−1Φ′′′ − 15r−2Φ′′ + 15r−3Φ′ = 0

is a linear combination of rνi with four distinct numbers νi ∈ {0, 2.32219, 1.83891± 1.75438i}. There
is no way that such a combination will make the right hand side identically zero, a contradiction.

5 Positivity questions

From the Krein-Rutman theorem one knows that for a regular elliptic problem strong positivity of
the solution operator implies that the first eigenfunction has multiplicity one and moreover is of fixed
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sign. If the solution operator has an integral kernel one may even use a much earlier result of Jentzsch
[21]. Let us be more precise and consider:{

Lu = λu+ f in Ω,
Bu = 0 on ∂Ω,

(39)

If the solution operator (L− λ)−1
B : X 7→ X for (39) in the Banach lattice X is compact, positive and

irreducible for some λ0, then there exists an eigenvalue λ1 ∈ (λ0,∞) with a positive eigenfunction.
For a precise statement see [6]. Moreover, for all λ ∈ [λ0, λ1) and f ∈ X one finds that there is a
solution uλ ∈ X and

f > 0 implies uλ > 0.

5.1 Known results for plates

Let us recall some of the known positivity preserving results for plates.
For the hinged plate {

∆2u = λu+ f in Ω,
u = ∆u = 0 on ∂Ω,

(40)

this question was studied in [23] on a general bounded domain Ω. The problem is positivity preserving
if λ ∈ [−λc(Ω), λ1(Ω)2). Here λc is a critical number which is bounded above by λ1(Ω)λ2(Ω) and λi(Ω)
are the eigenvalues of the Laplacian operator under Dirichlet conditions. If Ω is a rectangle R with
sides a and b < a one calculates easily λ1(R) = π2(a2 + b2) and λ2(R) = π2(a2 + 4b2), so that (40)
with Ω = R is positivity preserving for

− π4(a2 + b2)(a2 + 4b2) ≤ −λc(R) ≤ λ < π4(a2 + b2)2. (41)

The clamped plate {
∆2u = λu+ f in Ω,
u = |∇u| = 0 on ∂Ω,

(42)

is a more delicate problem. In general (42) is not positivity preserving for λ = 0, see [13] or [36]. The
boundary value problem in (42) is positivity preserving only in the case of some special domains Ω:

• If Ω is a ball or a disk Boggio’s explicit formula for the solution operator with λ = 0 implies
positivity.

• For small perturbations of the disk positivity has been shown in [19].

• For Ω some limaçons positivity can be found in [11].

• For a combination of the above results with Möbius transformations see [12].

5.2 Positivity under hinged boundary conditions

5.2.1 Hinged beam

For the hinged beam {
uxxxx = λu+ f in (0, 1),
u = uxx = 0 in {0, 1}, (43)

the boundary value problem (43) is positivity preserving, provided (see [23])

− 950.884 ≈ λc ≤ λ < π4 ≈ 97.409. (44)

Here the lower bound λc equals 4(κ0)4 where κ0 is the first positive zero of tan(x) + tanh(x).
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The Green function of the hinged beam For the sake of completeness we list some facts about

the Green function of the hinged beam problem (43). Set ν = 4
√
λ and µ = 4

√
−1

4λ

φ (λ;x) =


sinh νx−sin νx

ν3 if λ > 0
1
3x

3 if λ = 0
cosh(µx) sin µx−cos(µx) sinh µx

2µ3 if λ < 0

ψ (λ;x) =


sinh νx+sin νx

2ν if λ > 0
x if λ = 0

cosh(µx) sin µx+cos(µx) sinh µx
2µ if λ < 0

With gλ(x, y) as follows

gλ(x, y) =


αλ φ (λ;x)φ (λ; 1− y) + βλ ψ (λ;x)φ (λ; 1− y) +
+ βλ φ (λ;x)φ′ (λ; 1− y) + γλ ψ (λ;x)ψ (λ; 1− y) if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1− x) + βλ ψ (λ; y)φ (λ; 1− x) +
+ βλ φ (λ; y)ψ (λ; 1− x) + γλ ψ (λ; y)ψ (λ; 1− x)

if 0 ≤ y < x ≤ 1.
(45)

with appropriate constants to accommodate the boundary values in 1 and the continuity requirements
of gλ. Some tedious calculations lead to the coefficients in the following table.

0 < λ 6= λi λ = 0 λ < 0

set ν = 4
√
λ set µ = 4

√
−1

4λ

αλ
ν3

8

(
1

sin ν −
1

sinh ν

)
ν

2 sin ν 0 µ3 cos µ sinh µ−cosh µ sin µ
cosh 2µ−cos 2µ

βλ −ν
4

(
1

sin ν + 1
sinh ν

)
−1

2 −µ sinh µ cos µ+cosh µ sin µ
cosh 2µ−cos 2µ

γλ − 1
2ν

(
1

sin ν −
1

sinh ν

)
1
6

cosh µ sin µ−cos µ sinh µ
µ(cosh 2µ−cos 2µ)

Table 4: These values were obtained using Mathematica.

For λ ≥ 0 formula (45) can be simplified to

gλ(x, y) = sin(x ν) sin(ν(1−y))
2 ν3 sin ν

− sinh(x ν) sinh(ν(1−y))
2 ν3 sinh ν

if 0 ≤ x ≤ y ≤ 1,

g0(x, y) = 1
6x (1− y)− 1

6x (1− y)3 − 1
6x

3 (1− y) if 0 ≤ x ≤ y ≤ 1.
(46)

5.2.2 Hinged rectangular grid with aligned fibers

In this section it will be convenient to use (x1, x2) instead of (x, y). An investigation of positivity
preserving properties for the hinged rectangular grid that is aligned with the cartesian axes seems to
be difficult. The eigenfunctions are

Φij (x1, x2) =
1√
ab
ϕi

(
a−1x1

)
ϕj

(
b−1x2

)
with ϕi (t) =

√
2 sin(iπt). Recall that the first eigenfunction is of fixed sign and has multiplicity one.

Using these eigenfunctions and the Green function gλ from (45) or (46) the solution of{ (
∂4

∂x4
1

+ ∂4

∂x4
2

)
u = λu+ f in R,

u = ∆u = 0 on ∂R,
(47)



On the differential equation uxxxx + uyyyy = f 16

can be written as

u(x) =
∞∑

i,j=1

1
a−4λi + b−4λj − λ

〈Φij , f〉Φij(x) =

=
1√
ab

∞∑
j=1

〈
ϕj

(◦
b

)
,

∫ a

s=0
gb−4λj−λ (x1, s) f (s, ◦) ds

〉
(0,b)

ϕj

(x2

b

)
.

An inspection of the series representation above suggests that for nonnegative and nontrivial f ,
for λ < Λ11 and λ close to Λ11 the coefficient in front of Φ11 becomes very large and positive. This
suggests that the first term in the series decides about the sign of u. But estimating the remainder of
the series in terms of Φ1,1 turns out to be a hard technical problem.

In order to verify that problem (47) is positivity preserving at least for λ in some interval [Λ11 −
γ,Λ11) it suffices to show that the solution of (47) with f = δy is positive for every y ∈ R, where δy is
the delta function at y.

Since the first eigenfunction is strictly positive in the interior we may prove the following result,
in which we use some notation for a domain Ω:

• the ε-interior: Aε = {x ∈ A; d(x, ∂Ω) > ε}

• the ε-neighborhood: A+Bε = {x ∈ Ω; d(x, ∂A) < ε}

Lemma 5.1 Let uλ be the solution of (47). For every ε > 0 there is a positive γ > 0 such that for
λ ∈ [Λ11 − γ,Λ11) and f ≥ 0 the following two statements hold (here C denotes the set of corner
points):

• if support f ∈ Rε, then uλ(x) ≥ 0 for all x ∈ R \ (C +Bε),

• if support f ∈ R \ (C +Bε) , then uλ(x) ≥ 0 for all x ∈ Rε.

Figure 4: The sets Rε and R \ (C +Bε) from Lemma 5.1

Proof. It is sufficient to show such a result for f = δy, the delta function, with y ∈ Rε. Formally we
have

δy (·) =
∞∑

i,j=1

Φij (y) Φij (·)

but since δy /∈ L2(R) this series does not converge. The distributional solution uy,λ of (47) with f = δy,
that is

uy,λ (·) =
∞∑

i,j=1

Φij (y)
Λij − λ

Φij (·) , (48)

lies in L2 (R) since its coefficients are in `2 :

∞∑
i,j=1

(
Φij (y)
Λij − λ

)2

≤
∞∑

i,j=1

 1

π4
(

i4

a4 + j4

b4

)
− λ

2

<∞.
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We even find for α+ β < 3 that {
iαjβ Φij (y)

Λij − λ

}
∈ `2.

and hence uy,λ ∈W 3−t,2(R) for all t > 0.

We split uy,λ = uy,λ
1 + uy,λ

2 where

uy,λ
1 (·) =

Φ11 (y)
Λ11 − λ

Φ11 (·) .

By our assumption we have

|Φij (y)| ≤ c

ε
Φ11 (y) and |Φij (x)| ≤ cmax (i, j) Φ11(x).

This implies that we find ∣∣∣uy,λ
2 (x)

∣∣∣ ≤ ∞∑
i,j=1

(i,j) 6=(1,1)

∣∣∣∣ Φij (y)
Λij − λ

Φij (x)
∣∣∣∣ ≤

≤ c3

ε2
Φ11 (x) Φ11 (y)

∞∑
i,j=1

(i,j) 6=(1,1)

max (i, j)

π4
(

i4

a4 + j4

b4

)
− λ

.

Since Λ12 and Λ21 are greater than Λ11, a straightforward computation shows that the last sum is
bounded uniformly with respect to λ < Λ11 by a constant γ = C (a, b) ε−2. For λ ∈ [Λ11 − γ,Λ11) we
find ∣∣∣uy,λ

2 (x)
∣∣∣ ≤ γΦ11 (x) Φ11 (y) ≤ uy,λ

1 (x)

and hence that uy,λ(x) > 0.

With Proposition A.1 we may conclude that the follwing holds.

Lemma 5.2 For every ε > 0 there is a γ > 0 such that if λ ∈ [Λ11 − γ,Λ11) and f ≥ 0, then the
solution of (47) satisfies uλ(x) ≥ 0 for all x ∈ Rε ∪ (R\ (suppf +Bε)) .

Figure 5: The sets suppf and Rε ∪ (R \ (suppf +Bε)) from Lemma 5.2

Proof. If suppf ∈ Rε then the previous lemma yields that uλ(x) ≥ 0 except near the corners C.
By the Proposition 58 and using duality we find that

∥∥uλ
2

∥∥
W 28,2(C+Bε/2) ≤ c(ε) ‖f‖W−4,2(Ω) . Let us

denote by dh(x) and dv(x) the distance of x ∈ R to the horizontal and vertical part of its boundary
and by 〈v, f〉 the L2(R) product, when applicable. Then one continues with the imbedding W 4,2

0 (Ω)
in C2(Ω̄) ∩ C1

0 (Ω̄), through

‖f‖W−4,2(Ω) = sup
{
〈v, f〉 ; v ∈W 4,2

0 (Ω) with ‖v‖W 4,2(Ω) ≤ 1
}
≤

≤ c sup
{
〈v, f〉 ; v ∈ C2(Ω̄) ∩ C1

0 (Ω̄) with ‖v‖C2(Ω̄) ≤ 1
}
≤

≤ c sup {〈v, f〉 ; |v(x)| ≤ dh(x)dv(x)|}
≤ c′ 〈Φ11, f〉 .
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The last inequality is due to the fact that Φ11 can be bounded above and below by multiples of
dh(x)dv(x).

Similarly, again with an imbedding, we find for the function uλ
2 ∈ C2Ω̄)∩C1

0 (Ω̄) and for x ∈ C+Bε/2

that

uλ
2(x) ≤ c1

∥∥∥uλ
2

∥∥∥
C2(C+Bε/2)

Φ11(x) ≤ c2

∥∥∥uλ
2

∥∥∥
W 28,2(C+Bε/2)

Φ11(x) ≤

≤ c(ε) ‖f‖W−3,2(Ω) Φ11(x) ≤ c′(ε) 〈Φ11, f〉Φ11(x)

Since uλ
1(x) = (Λ11 − λ)−1 〈Φ11, f〉Φ11(x) we find uλ(x) > 0 near the corners for Λ11 − λ chosen

sufficiently small. A similar proof does it for the remaining claim.

Let us summarize our results in terms of positivity for the Green function uy,λ from (48) belonging
to the hinged rectangular grid.

Corollary 5.3 For every ε > 0 there is a γ(ε) > 0 such that uy,λ(x) ≥ 0 for all x ∈ R, all y ∈ R2ε

and all λ ∈ [Λ11 − γ(ε),Λ11).

Proof. We approximate δy(·) in D′(Ω) by a sequence of smooth fn with support in Bε(y) and note
that the corresponding solutions uy,λ

n (x) of (47) are nonnegative for all x ∈ R and all y ∈ R2ε due
to Lemma 5.2. Then we send n → ∞. Since fn converges in W−1,2(R), the sequence un converges
pointwise.

Notice that when sending ε to zero, it is conceivable (although it seems unlikely) that γ(ε) → 0. In
that case, as εn → 0, there exists sequences λn < Λ11 with λn → Λ11, yn ∈ R\R2εn with yn → y0 ∈ ∂R
and xn → x0 ∈ R such that

zn := uyn,λn(xn) < 0 for all n ∈ N .

At present we are unable to derive a contradiction from this.

We wil end this section by a another nonuniform positivity result near Λ11 by using the fact that
the projection on the first eigenfunction will dominate near Λ11. We proceed as for the non-uniform
version of the anti-maximum principle in [7] to obtain the following nonuniform result.

Proposition 5.4 For all f ∈ L2(R) with f ≥ 0 there exists λf < Λ11 such that for λ ∈ [λf ,Λ11) the
solution uλ of (47) satisfies uλ ≥ 0.

Proof. We will adjust the arguments in [7] for the present situation. Let L : W 4,2(R) ∩W 2,2
0 (R) →

L2(R) be the operator that corresponds to (47). Fix P0 to be the projection on the first eigenfunction,
that is, P0f = 〈Φ11, f〉R Φ11 and set Λ̃ ∈ (Λ11,min (Λ12,Λ21)). Then using our regularity result for

(47) as in [7], we find that there exists a constant C such that for all λ ∈
[
0, Λ̃

]
the following holds∥∥∥(L − λ)−1 (I − P0) f

∥∥∥
W 4,2(R)

≤ C ‖f‖L2(R) .

Since the domain R satisfies a uniform interior cone condition we find by [18, Theorem 7.26] that
W 4,2(R) is imbedded in C2,α(Ω̄) for any α ∈ (0, 1) . Since (L − λ)−1 (I − P0) f ∈W 2,2

0 (Ω) we find that
u ∈ C0(Ω̄) and hence that∥∥∥∥∥(L − λ)−1 (I − P0) f

Φ11

∥∥∥∥∥
∞

≤ C ′
∥∥∥(L − λ)−1 (I − P0) f

∥∥∥
W 4,2(R)

.
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The solution uλ of (47) can be written as

uλ(x) =
〈Φ11, f〉R
Λ11 − λ

Φ11(x) +
(
(L − λ)−1 (I − P0) f

)
(x)

≥
(
〈Φ11, f〉R
Λ11 − λ

− C ′′ ‖f‖L2(R)

)
Φ11(x)

which is positive for 0 ≤ Λ11 − λ sufficiently small.

5.2.3 Hinged rectangular grid with diagonal fibers

The positivity question is much simpler to decide if the grid runs diagonally. For the diagonally hinged
grid on the rectangle R as in (17)–(20),

1
2uxxxx + 3uxxyy + 1

2uyyyy = λu+ f in R,
u = uxx = 0 on {0, a} × [0, b] ,
u = uyy = 0 on [0, a]× {0, b} .

(49)

one may decouple the fourth order equation (19) (or (49) with λ = 0) into a system of two second
order equations by using (20).

Since the boundary conditions decouple nicely with the two second order operators, one may use
the substitution v := −uxx − (3 + 2

√
2)uyy and two iterations of the standard maximum principle for

second order differential operators to find that (49) is positivity preserving for λ = 0.
Going back to the fourth order problem one has a strongly positive and compact solution operator

that maps f ∈ C(Ω) to u ∈ C(Ω). From Krein-Rutman’s Theorem one finds that there exists a first
eigenvalue and this eigenvalue corresponds to an eigenfunction of fixed sign. But then one can show
the following as in [35].

Proposition 5.5 For λ ∈
[
0, π4

(
1
2a

−4 + 3a−2b−2 + 1
2b
−4
))

the problem (49) is positivity preserving.

The upper bound for λ is the first eigenvalue Γ11 given in (28).

5.2.4 Numerical comparison for hinged rectangles

For the hinged rectangular plate and grids we obtained the following numerical result by a finite
difference method.

Figure 6: A hinged plate, a hinged grid with rectangular fibers and a hinged grid with diagonal fibers.
The arrow denotes the location of the pointed force and the red (dark) part represents the part of the
grid with a negative deviation.
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5.3 Positivity under clamped boundary conditions

5.3.1 Clamped beam

What can be said about positivity preservation for the clamped beam{
uxxxx = λu+ f in (0, 1),
u = ux = 0 in {0, 1}. (50)

(50)? This requires more efforts. If λ is not an eigenvalue there exists a Green function gλ for the
clamped beam problem (50) such that the solution can be represented as

u(x) =
∫ 1

0
gλ(x, y)f(y) dy.

Let us define

φ (λ;x) =


ν−3 (sinh (νx)− sin (νx)) if λ > 0,
1
3x

3 if λ = 0,
1
2µ

−3 (cosh (µx) sin (µx)− sinh (µx) cos (µx)) if λ < 0.
(51)

where ν = 4
√
λ and µ = 4

√
−1

4λ. The functions φ (λ; ·) and ∂
∂xφ (λ; ·) are two linearly independent

solutions of the differential equation and the boundary conditions of (50) in the left end point 0. By
the definition of the Green function it follows that

gλ(x, y) =


αλ φ (λ;x)φ (λ; 1− y) + βλ φ

′ (λ;x)φ (λ; 1− y) +
+ βλ φ (λ;x)φ′ (λ; 1− y) + γλ φ

′ (λ;x)φ′ (λ; 1− y) if 0 ≤ x ≤ y ≤ 1,

αλ φ (λ; y)φ (λ; 1− x) + βλ φ
′ (λ; y)φ (λ; 1− x) +

+ βλ φ (λ; y)φ′ (λ; 1− x) + γλ φ
′ (λ; y)φ′ (λ; 1− x)

if 0 ≤ y < x ≤ 1.
(52)

with appropriate constants to accommodate the boundary values in 1 and the continuity requirements
of gλ. Some tedious calculations lead to the coefficients in the following table.

0 < λ 6= λi λ = 0 λ < 0

set ν = 4
√
λ set µ = 4

√
−1

4λ

αλ
ν3(sinh ν+sin ν)
4−4 cosh ν cos ν 3 2µ3(cos µ sinh µ+cosh µ sin µ)

cosh 2µ+cos 2µ−2

βλ
ν2(cos ν−cosh ν)
4−4 cosh ν cos ν −3

2
−2µ2 sinh µ sin µ
cosh 2µ+cos 2µ−2

γλ
ν(sinh ν−sin ν)
4−4 cosh ν cos ν

1
2

µ(cosh µ sin µ−cos µ sinh µ)
cosh 2µ+cos 2µ−2

Table 5: These values were obtained using Mathematica.

For λ = 0 formula (52) can be simplified to

g0(x, y) =

{
1
2x

2(1− y)2
(
y − x+ 2

3x(1− y)
)

if 0 ≤ x ≤ y ≤ 1,
1
2y

2(1− x)2
(
x− y + 2

3y(1− x)
)

if 0 ≤ y < x ≤ 1.

Problem (50) is positivity preserving if and only if the Green function is positive and for g0 this
is now easily seen to be the case. Instead of directly computing for which λ the Green function gλ is
in fact positive one may proceed through the results of Schröder in [34]. The Green function changes
sign for some λ if and only if this λ is an eigenvalue of either (30) or of{

ϕ′′′′ = λϕ in (0, 1) ,
ϕ(0) = ϕ′(0) = ϕ′′′(0) = 0 = ϕ(1).

(53)

The ‘first’ solution of (53) is gλ(x, 1) with λc = −4ν4
0 where ν0 is the first positive zero of tanh ν = tan ν.
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Lemma 5.6 Problem (50) is positivity preserving if and only if λ ∈ [λc, λ1) where

• λ1 is the first eigenvalue of (30), that is, the fourth power of the first positive solution of

cosλ =
1

coshλ
,

• λc is the ‘first’ eigenvalue of (53), that is, the first negative solution of

tan 4

√
−1

4λ = tanh 4

√
−1

4λ (54)

The numerical approximations are λ1 ≈ 4.7300 and λc ≈ −950.884. Notice that this is the same
λc as in (44) for Problem (43).
Proof. The arguments are similar to the ones in [23] and reflect the ideas from [34].

Direct inspection shows that g0 is strictly positive. To study the case of positive λ, notice that
(50 can be rewritten as (I − λL−1)u = f , where Lu = uxxxx, so that by a Neumann series argument
u =

∑∞
k=1(λL

−1)kf converges and is positive for all λ ∈ [0, λ1) . For λ = λ1 no solution exists when
f = ϕ1. For λ > λ1 and f = ϕ1 the solution is u = (λ1 − λ)−1ϕ1 and this is negative.

For λ < 0 one finds from (52)-(51) and the coefficients in Table 4 that λ 7→ gλ(x, y) is continuous
for λ ≤ 0 in almost every sense. Let λc < 0 be the first number after which positivity fails. Suppose
that for a fixed y ∈ (0, 1) the value of gλc(x, y) is nonnegative but equals 0 for some xy ∈ (0, 1) . And
suppose w.l.o.g. that xy ≤ y. Then gλc (xy, y) = ∂

∂xgλc (xy, y) = ∂
∂xgλc (0, y) = ∂

∂xgλc (0, y) = 0 and
we have found an eigenfunction scaled to [0, xy] , a contradiction. Hence xy = 0. Using the symmetry
gλ(x, y) = gλ(y, x) we may assume that y is at the boundary, say y = 1 . We may repeat the argument
above for g̃λc defined by g̃λ(x) = limy↑1 (1− y)−2 gλ(x, y) which is a nontrivial function. Again if
g̃(x1) = 0 for some x1 ∈ (0, 1) we find an eigenfunction by scaling on [0, x1] . Since g̃′(1) < 0 = g̃(1)
it remains that x1 = 0. One finds that g̃ is an eigenfunction of (53). The first eigenfunction of that
eigenvalue problem is

ψ1(x) = cosh (µx) sin (µx)− sinh (µx) cos (µx)

with µ the first positive root of coshµ sinµ = sinhµ cosµ and λc = 4µ2. This can be rephrased to (54).
For λ < λc one finds that g̃λ is sign changing implying that for y near 1 the function x 7→ gλ(x, y) is
sign changing.

5.3.2 Clamped rectangular grid with aligned fibers

In this section we investigate the problem{
uxxxx + uyyyy = λu+ f in R,

u = |∇u| = 0 on ∂R.
(55)

Numerical calculations suggest that for λ = 0 a point load f = δy(·) can lead to a sign changing
solution, see Figure 7 in which the sign of u is colour coded. This behaviour is also known and
recorded in [9] for isotropic rectangular plates, whose deformation solves ∆2u = f instead.

However, since the first eigenfunction is positive, by using the eigenfunction expansion one finds
the following solution formula for (55):

u (x, y) =
∞∑

i,j=1

1
Λij − λ

〈Φij , f〉R Φij (x, y) .

As for the hinged plate one might hope that for λ near Λ11 the projection on the first eigenfunction
will dominate the sign. But to find such a result we would need a C4 estimate near corner points
which, unfortunately, we do not have at our disposal.
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Figure 7: Numerical simulation of a clamped rectangularly aligned grid; (55) with µ = 0 and a point
source f .

5.3.3 Clamped diagonal grid

Since we do not know if the first eigenfunction is of fixed sign for this grid we can only give some
numerical evidence. With the same point source and domain as in rectangularly aligned grid from
Figure 7 the area where the solutions changes sign seems to be much smaller for the diagonally aligned
grid.

Figure 8: Numerical simulation of a clamped diagonally aligned grid.

5.3.4 Numerical comparison for clamped rectangles

Duffin’s famous counterexample in [13] for the conjecture of Boggio-Hadamard (the clamped plate
problem on convex domains is positivity preserving) uses a long thin rectangle. Here we present
numerical results for long clamped rectangular plate and grids. Rather surprisingly the numerical
result for long thin rectangle with a diagonal fabric hardly shows any sign change.

Figure 9: A clamped plate, a clamped grid with rectangular fibers, and a clamped grid with diagonal
fibers. The arrow denotes the location of the pointed force and the red (dark) part represents the part
of the grid with a negative deviation.
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The numerical illustrations have been obtained using a finite difference method.

6 Summary for rectangular grids

We set out to study positivity for rectangular grids with aligned and with diagonal fibers. An overview
of the results we obtained for those problems can be found in Table 6. For the sake of comparison we
include the known results for the rectangular plate.

positive eigenfunction positivity preserving

plate Φ1 > 0 for λ ∈ [0,Λ1)

grid aligned with sides Φ1 > 0 conditionally near Λ1

hi
ng

ed

grid with diagonal fibers Φ1 > 0 for λ ∈ [0,Λ1)

plate Φ1 changes sign no

grid aligned with sides Φ1 > 0 conditionally near Λ1

cl
am

pe
d

grid with diagonal fibers ? ?

Table 6: Overview for rectangular plates and grids

Numerics for the clamped plate with diagonal fabric suggest that the first question mark in the
table above should be answered affirmatively; the second question mark might have a positive answer
for λ near Λ1. Of course ‘near Λ1’ always means in a left neighbourhood of Λ1.

A Appendix

A.1 Nonlocal smoothness

The standard regularity statement for 2m−th order elliptic problems is usually a statement of the
form f ∈ W k,p(Ω) implies u ∈ W k+2m,p(Ω) or f ∈ Ck,γ(Ω̄) implies u ∈ Ck+2m,γ(Ω̄). Such a maximal
regularity result is optimal. However, for a function f ∈ Lp(Ω) which has its support in Ω′ ⊂ Ω one
may show that the corresponding solution is smooth outside of Ω′. Although this result is well-known
we are not aware of any reference. So allow us to formulate a corresponding statement.

Consider a regular elliptic problem with L of order 2m and Ω a domain in Rn :{
Lu = f in Ω,
Biu = 0 on ∂Ω for i = 0, . . . ,m.

(56)

Proposition A.1 Let Ω1,Ω2 be two disjoint subdomains of Ω having a positive distance r, that is,
r := inf {|x− y| ;x ∈ Ω1, y ∈ Ω2} > 0. Suppose that there exists c > 0 such that for all k ∈ {0, . . . , κ}
and all f ∈W k,2(Ω) there is a solution u ∈W 2m+k,2(Ω) of (56) with

‖u‖W 2m+k,2(Ω) ≤ c ‖f‖W k,2(Ω) , (57)

then there exists C (c, κ, r) such that for all f ∈ L2(Ω) with supportf ⊂ Ω1 the following holds true:

‖u‖W 2m+κ,2(Ω2) ≤ C (c, κ, r) ‖f‖L2(Ω1) . (58)
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Proof. We will prove this by induction. For k = 0 the estimate (58) follows from (57) and the fact
that supp f ⊂ Ω1. Next we do the induction from k to k + 1 and suppose that ‖u‖W 2m+k,2(Ω2) ≤
C (c, k, r) ‖f‖L2(Ω1) for some k ≥ 0. One may construct a cut-off functions χ such that for some c1 ∈ R+

1. χ ∈ C∞(Ω̄) with χ|Ω1
= 0 and χ|Ω2

= 1;

2. Ω̄2 b supportχ b Ω̄\Ω1;

3. ‖χ‖Ci(Ω̄) ≤ c1r
−i for i ∈ {0, . . . , k} .

Note that L (χu) = χLu + l.o.t. = 0 + l.o.t. and that χu satisfies the boundary conditions from
(56). Since the right hand side l.o.t. lies in W k+1,2(Ω) we find χu ∈W 2m+k+1,2(Ω). Moreover

‖u‖W 2m+k+1,2(Ω2) ≤ ‖χu‖W 2m+k+1,2(Ω) ≤ c1 ‖l.o.t.‖W k+1,2(Ω) =

= c1 ‖l.o.t.‖W k+1,2(supportχ) ≤ c(r) ‖u‖W 2m+k,2(Ω̃2) ≤ C ′ (c, k, r/2) ‖f‖L2(Ω1) .

Here Ω̃2 can be chosen so that d(Ω1, Ω̃2) < r/(2k).
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thanks go to W. Jäger for bringing [17] to our attention and also to P. Seidel for her help in locating
some of the older literature.

References

[1] Ashbaugh, M.S., Laugesen, R.S., Fundamental tones and buckling loads of clamped plates.
Ann.Sc.Norm.Sup.Pisa. 23 (1996), 383-402.

[2] Boggio T., Sulle funzioni delle piastre elastiche incastrata, Rend. Acc. Lincei 10, 197-205.

[3] Banks, H.T., Cioranescu, D., Rebnord, R.A., Homogenization models for two-dimensional grid
structures. Asymptotic Analysis 11 (1995) 107–130.

[4] Belloni, M., Kawohl, B., The pseudo-p-Laplace eigenvalue problem and viscosity solutions as
p→∞, ESAIM COCV, 10 (2004) pp. 28–52.
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problèmes relatifs aux plaques élastiques. J. Analyse Math. 28 (1975), 138–170.
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koeln.de

G.Sweers, EWI, Dept. of Applied Math. Anal., TUDelft, P.O.Box 5031 2600 GA Delft, The Nether-
lands; g.h.sweers@ewi.tudelft.nl


	Introduction
	Existence and uniqueness for hinged and clamped grids
	Regularity
	Regular elliptic
	Regularity for smooth domains
	Regularity near corners
	The hinged rectangular grid with aligned fibers
	The hinged rectangular grid with diagonal fibers
	The clamped rectangular grid with aligned fibers
	The clamped rectangular grid with diagonal fibers


	Eigenfunctions and eigenvalues
	Eigenfunctions for a hinged rectangular grid
	Eigenfunctions for clamped problems
	Eigenfunctions for the clamped beam
	Comparing eigenvalues of clamped plates and grids
	Eigenfunctions for the clamped rectangular grid
	Eigenfunctions for the clamped circular grid


	Positivity questions
	Known results for plates
	Positivity under hinged boundary conditions
	Hinged beam
	Hinged rectangular grid with aligned fibers
	Hinged rectangular grid with diagonal fibers
	Numerical comparison for hinged rectangles

	Positivity under clamped boundary conditions
	Clamped beam
	Clamped rectangular grid with aligned fibers
	Clamped diagonal grid
	Numerical comparison for clamped rectangles


	Summary for rectangular grids
	Appendix
	Nonlocal smoothness


