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Summary. In mathematical image processing we are often presented with amazing
examples of image enhancement algorithms. Yet, when applied to different noisy images,
they can produce unwanted effects. The analysis of such algorithms lags behind their
intuitive development. Two essentially different models have found wide recognition: a
variational approach due to Mumford and Shah, and an anisotropic diffusion approach
leading to an evolution type equation by Perona and Malik. In this survey we shall explain
a surprising connection between these two approaches.
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1 Introduction

Suppose uyg is the grey-scale distribution of a noisy image. Mumford and Shah
suggested studying the variational problem

@) =a [ jo-wP detg [ |VoP dot WIS,
Q Q\s,

in which S, denotes a set of discontinuities of v. A minimizer of this problem, if
it exists, should have a small set of discontinuities, a relatively smooth appearance
elsewhere and still resemble the original picture. One can replace the quadratic
terms in the functional by strictly convex terms such as |[v|P or 1/1 + |Vv|? without
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changing essential features of the problem. For reasons of exposition I stick to
the simple functional above. It is nowadays minimized on GSBV (f2), a space of
special functions of bounded variation. One of the analytical problems is a lack of
semicontinuity of #"~!(S) with respect to the Hausdorff topology.

A set A is e-close to C in the Hausdorff metric if C is contained in an e-
neighborhood of A and if A is contained in an e-neighborhood of C.

If the Mumford-Shah functional has a minimizing sequence u,, then the sets
Sy, might converge in the Hausdorff metric, but their Hausdorff measure is not
necessarily lower semicontinuous, as one can see from the following example:

Sy = [07 %]

Sy = [07 Z] U [%7 %]

S3 := [0, %] Uls, %] Uls, %] U2, %] etc.

The sequence S; converges to the interval Sy, := [0, 1] in the Hausdorff metric,
but H!(Seo) = 1 > liminfy_, o H(Sk) = 1/2.

Nevertheless significant progress has been made on the study of this functional.
It turns out that GSBV (Q), a space of generalized functions of bounded variation,
is the suitable space in which one can prove the existence of a minimizer, and also
the regularity of the singular set of a minimizer is fairly well understood. Since we
do not intend to elaborate on existence and regularity theory, we omit the definition
of GSBV () and refer the interested reader to [3], [10] and [15].

Independently from this variational approach Perona and Malik suggested to
take the noisy image ug as initial datum for a diffusion equation such as

Vu
w-t (gae) O -y
or more generally  u; —div (a(|Vu[*)Vu) =0, (1.2)

with a(s) positive and decreasing to zero as s — oo, and under no-flux boundary
conditions. Small diffusion near discontinuities in ug was supposed to lead to edge

preservation, while large diffusion elsewhere would sort of mollify the brightness
function and take out noise. Let us explain why these equations are sometimes
called “anisotropic” diffusion equations. If u is a classical solution, (1.2) becomes

ug — a(|Vul?)Au — 2d/ (|Vu|*) VuD?*uVu = 0. (1.3)
In noncritical points one can rewrite the Laplacian in intrinsic coordinates as
Au=1u,, +(n—1)Hu, = u,, + Ap_1u,

where v = _Ig—uul and where H is the mean curvature of a level surface of u, or
where A,_; is the Laplace Beltrami operator on the tangent plane to this level



surface. Therefore (1.3) turns into

ug — a(|Vul*)Au — 2a'(|Vu?)|[Vuluy, =0 (1.4)
ug — b(|Vul*)u,, — a(|Vul?)A, 1u =0, (1.5)

and the coefficient b(s) = a(s) + 2sa’(s) in (1.5) can even become negative for
large values of s. Then there is backward diffusion, which leads to a steepening of
profiles, in direction of the gradient of u, but forward diffusion along level surfaces
of u. Aside from a significant contribution of Kichenassamy [33], who proposed
a notion of weak solution in the case of one space dimension, and considerations
in [13] to approximate the problem by a truly parabolic one in which |Vu| in the
argument of a is mollified by convolution with a Gaussian, little is known about
the theory of such diffusion equations. Nevertheless numerical results for this class
of equations are extremely convincing.

It is the purpose of this note to reveal a connection between these two seemingly
different approaches, the variational one and the evolutionary one.

2 Approximating the Mumford Shah functional

If one wants to minimize the Mumford Shah functional numerically, there are ob-
vious problems. Where should one put grid-points to capture the set of disconti-
nuities? How can one properly evaluate the Hausdorff measure of the discontinuity
set (say in n = 2) if the discontinuities of the discrete solution can only lie on edges
between gridpoints? A way out of this calamity is offered by the seminal obser-
vation of Modica and Mortola, that one can approximate H"~!(S,) by a domain
integral. Modica & Mortola showed in 1977 that Hy(u) = H™ 1(u = 0) is the
I'-limit of

1
. (u) =/Q e[ Vul? + o ~ 1)? da.

Subsequently Ambrosio & Tortorelli showed in 1990 that the Mumford-Shah func-
tional

Jo(v) == / alv —uo|? dr + ﬁ/ |Vo|? dz + H™(S,)
o) Q\S,
is the I'-limit of
1
Lo, = [ alo—uel? + BRIV +elVaP + L1 dr,  (21)
o)

where the set {n = 0} stands for S,. Notice that by this trick one has approximated
Jo by a functional which contains only domain integrals over 2 but not over 2\ S,,.

The usefulness of this result is apparent when we recall the definition of and
a principal result on I'-convergence, see [21]. Let X be a metric space and F :



X — [0,00] a family of mappings. Then F is the I'-limit of F, as e — 0, iff the
following statements a) and b) hold.

a) For every u € X and every sequence u; — u in X

liminf F(uc) > F(u) .
e—=0

b) For every u € X there exists a sequence u. such that u. — u in X and

lim F;(u.) = F(u) .
e—0

Theorem 2.1 If F' is I'limit of F. and if u. is a minimizer of F., then every
cluster point u of {ue}e>o minimizes F.

We can therefore expect minimizers of the approximating functionals to be close to
a minimizer of the limit functional, and the approximating functionals are better
suited for numerical computations. Other ways to approximate the Mumford Shah
functional are described in the recent book [6].

3 From Mumford-Shah to Perona-Malik

In view of the stability Theorem 2.1 let us consider minimizers of (2.1) and see how
they behave as ¢ — 0. If (v.,7.) minimize J,, then v, — v and n. — 1 in L?(Q),
but |n¢] << 1 near S,. The Euler equations are given by

a(ve —up) — B div(n? Vue) =0 (3.1)

for the variation with respect to the first argument of J. and by
1
B ne|Vve|” — eAne + (- = 1) =0, (3.2)

for the variation of J. with respect to 7.

“Now a miracle occurs ...”. Let us think of (3.2) as a singular perturbation

problem. As e — 0 we expect A7, to become negligible compared to the other
terms in (3.2). This heuristically motivates (and is justified by the remarks below)

the choice of )

T 1+ 4B¢|Vv|?
and the neglection of the term A7, in (3.2). Upon plugging (3.3) into (2.1) and

7 (3.3)

neglecting £|Vn|? as well, we arrive at yet another functional. In fact, this trick
was used in [9], [49] to approximate J. by
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1+ 4Bes?’ (34)

J.(v) = / alv —uo|* + A (|Vv|?) dz  with A, (s%) :=
Q
The differential operator that corresponds to the functional (3.4) is of the same
type as the spatial operator in the Perona-Malik approach. The Euler equation for
Je is in fact

. Vv
—div (W) = —Oé(’U - Uo), (35)

whereas a nonlinear diffusion equation according to Perona and Malik is given for

instance by (1.1)
: Vu _
o (i wape) =0

Remark 3.1 On the continuous analytical level it is a crime to neglect the term
eAne in (8.2), but on a discrete level it appears to be justified by the following con-
siderations. As long as An. is bounded by some moderate constant, we may neglect
eAn.. But in points where An. becomes very large we have to take a closer look.
In those points the gradient of v. becomes very large, but its discretization cannot
exceed h=t. If we discretize the Laplace operator by the usual five point stencil (in
2-d, and similarly in higher dimensions) we see that the discretized version of An.
is of magnitude not exceeding h=2. Now set ¢ = h®>T% with 0 < § << 1 . Then the
term involving e Ane in the discretized version of (3.2) is negligible compared to the
other terms even where An. becomes very large. Therefore the derivation of (3.3)
can in fact be justified at the discretized level. By similar considerations one can
Justify the passage from (2.1) to (3.4).

In view of (2.1), (3.4) and Remark 3.1 is natural to ask if the Mumford-Shah func-
tional can be approximated by a discrete functional that has its effective domain of
definition on a space of piecewise linear finite elements. To get a I'-convergent ap-
proximation, however, even the approximating functionals should be defined (and
maybe unbounded) for all functions in GSBV (). This approach was successsfully
pursued in [14] and [15] and in 2 space dimensions it provides a sound proof that
under the right scaling of h versus € the finite element minimizers of (3.4) have a
subsequence which converges to a minimizer of the Mumford Shah functional.

What about the term 1nv01v1ng a in (3.4)?7 We can think of o as a Lagrange
parameter when minimizing .J, ( = [ A:(IVv|?) dz on a d-neigbourhood of u.
If we solve

min J,( /A (|Vv|?) dz 0n/|v—u0|2dx<6



with a descent method, and with initial datum wg, then

. Vu

is the corresponding flow equation, as long as the constraint is not active. For a
short time, u will stay near ug, but then the Perona Malik approach (for short
times) is useful for lowering the energy of J.. In fact, if u solves (3.6) under the
no-flux condition on the boundary, then

d

\% \% \%
%/ lu—uol* dz = = Jo(u—uo)uy dz = — [ ((1+1155\%013\2)% dz

< fQ% dz < [, |Vue|* dz + ¢,
so that u increaes its distance to ug with at most finite speed, at least provided ug
is in H'(Q). Notice again, that on a discrete level, even discontinuous but bounded
initial data are perceived as being in H'(2), so that the right hand side in the last
estimate may be large but is finite in numerical experiments.

To conclude this section let me remark that I have gone the way from Mumford
Shah functionals to energies associated with Perona-Malik equations. There is a
also a recent investigation [38] of Morini and Negri, in which the authors go from
spatially discrete Perona-Malik energies to (anisotropic) Mumford Shah function-
als. Moreover, in [23] Esedoglu has investigated a one-dimensional Perona-Malik
equation with continuous time and discrete space variable and its asymptotic be-
haviour as the space discretization goes to zero. All these papers are directed at
a better understanding of the unreasonable effectiveness of the Perona-Malik ap-
proach. Instead of discretizing the space variable, one can discretize time. In this
case we can make the following observation:

Remark 3.2 If we use an implicit Euler discretization for (3.6) in which k denotes
the size of a time-step and un(z) = u(nk,x), the evolution equation turns into

Up—1 — Up, ) Vuni1
— —d — 1 =0 3.7
k v (arese) (37
or rather
. Vun_H 1
Cdiv [l ) —wy) .
v (v pp) = Fn-s (38)

If we set v = uny1 and compare (3.8) with (3.5), the stunning similarity of the
success of the variational and the evolutionary approach comes as no surprise.
Here a rescaling of time amounts to tuning the 1/k to a.



4 Image enhancement via diffusion

It has already been mentioned above that nonlinear diffusion approaches to image
enhancement show better than expected numerical stability. In this section I want
to describe qualitative results from [31] on solutions of the Perona Malik equation.
Consider the following diffusion problem

ug — div(a(|Vul?)Vu) = 0 in Qx(0,7) (4.1)
a(|Vul> )Vu = 0 on 00 x(0,T) (4.2)
u(z,0) = wup(z) in Q (4.3)

in a smooth and bounded domain Q and with a € C*([0,00)) positive. A typical
candidate is a(s) = 1/(1 + ds)? as in (1.1) or [20]. The ellipticity function b(s). =
a(s) + 2sa'(s) is positive for small s but changes sign exactly once at s3 > 0. How
can one classify this equation?

a) If |Vu| < sg, it is a regular parabolic equation, and for |Vu| < s it is
degenerate parabolic.

b) The potential flow equation in gasdynamics of an ideal gas is of type (4.1),
and s is the speed of sound. So points in which |Vu| is greater (smaller) than sg
are in the supersonic (subsonic) regime of such flow.

¢) In one space dimension, equation (4.1) becomes a forward-backward nonlinear
diffusion equation. Backward equations transform smooth initial data like Gaussian
distributions into very large and very steep functions such as §-Distributions.

The last observation c) has led experts to believe that one cannot expext a max-
imum principle to hold. Therefore the following Theorem is somewhat surprising.

Theorem 4.1 Suppose that u is a weak C%'-solution to the anisotropic problem
(4.1) — (4.3). Then max |u(z,t)| = max|uo(z)|.

For a proof we choose p € (1,00) and calculate, using (4.1) and (4.2)

%/ |u(z, t)|P dx p/ |u|P~2u uy da
Q Q

- / lulP~2u div(a(|Vul2)Vu) dz
Q

= pp-1) / P~ (a(|Vuf2) | Vuf? dz
< 0

Therefore LP(f2)-norms are decreasing in t. Now one can send p to infinity to see
the claim. This short proof was found independently by Weickert [50] and Kutev
and myself [31].

On the next pages you find in Figure 1 some numerical studies of M.Mester for
the case that a(s) = 1/(1+ s) with sj = 1 and with uo(z,y) = sin(z7) sin(y7) on



a square of length 2, and in Figure 2 the same study for the slightly modified case
that a(s) = 1/(1 + 4s)? with s3 = & and same intial data as before.

We observe that the size of so determines what the equation recognizes as an
edge that should be enhanced. If s¢ is large then diffusion is stronger.
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Figure 1: a(s) = 1/(1+ ) for t = 0,¢ = 0.11111, ¢ = 0.20444 and ¢ = 0.44444




Figure 2: a(s) = 1/(1 + 4s)% for ¢ = 0,¢ = 0.11111, ¢ = 0.20444 and t = 0.44444
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We also observe the staircasing effect which is described in many places. This
is due to the fact, that the Perona-Malik energy is nonconvex. Therefore the
flow tries to minimize the convex envelope of the Perona-Malik energy. On the
continuous level, the convex envelope is identically zero and does not, contain much
information. But again on the discrete level, because |Vu| cannot exceed 1/h with h
denoting grid size, the convex envelope of the energy restricted to such arguments
is nontrivial. This envelope coincides not everywhere with the original energy,
and so instead of taking a value in the set where these energies are distinct, |Vu|
oscillates between large values of order 1/h and small values where the functionals
coincide. This oscillation effect of minimizing sequences for nonconvex functionals
is well understood. In the end the smooth initial datum is made “sharp”, and that
is a desired effect in the enhancement of satellite pictures or medical imaging.

Significantly more can be said about the qualitative behavior of solutions when
the space domension is n = 1 and Q = (—1,1), say. In that case the differential
equation and boundary condition become

ug — b(Jug[*)uzz = 0 in (=1,1) x (0,7) (4.4)
a(|ug|Pu, = 0 in{-1,1} x (0,7). (4.5)

Unfortunately, little appears to be known about such equations. The existence
problem is wide open, and not even uniqueness can be expected if one allows for
Lipschitz solutions as in [30]. Therefore Kutev and I considered C'-solutions in
[31]. Assuming that those exist we can identify if a point (z,t) in Q x (0, T) belongs
to the forward or backward regime of equation (4.4), because |u,|? can be pointwise
evaluated. If it exceeds the threshhold s for b in a point (z,t), then (z,t) is in the
backward regime. In particular for a C! initial datum wug one can say which points
of @ x {0} belong to the forward or backward regime.

Theorem 4.2 If u is a weak C*-solution of (4.4), (4.5) and if the initial datum is
analytic, then the backward regime of u shrinks in time and does not migrate.

The proof of this result is quite lengthy and can be found in [31]. One reason
why the analyticity of u is assumed is the fact that we want only finitely many
places where |dug/dz| equals sg, so that at time ¢ = 0 we have finitely many
switches from one regime to the other. Theorem 4.2 states in other words, that the
Perona-Malik flow enhances edges.

Theorem 4.2 can also be used to derive a comparison result for solutions u(x, t)
and v(z,t) of (4.4), provided the initial data are ordered, i.e. wuo(z) < vo(z) and
have disjoint backward regimes. In that case, if u(z,t) — v(z,t) should happen to
have a positive maximum for some positive to and some zg, then |ug(zo,to)| =
|vz(zo,to)| and this value does not exceed sg, because the backward regimes of u
and v never intersect by Theorem 4.2. Hence one can apply comparison results for
forward parabolic equations to reach a contradiction. For details I refer to [31].
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The restrictive assumptions on such a comparison result are necessary. In [31]
we have also exhibited a situation, where ug(x) < vo(z) and where the two graphs
touch each other with slope greater than sg in a point xo. Then after arbitrarily
short time they have crossed each other.

Finally we have shown in [31] that solutions of (4.4),(4.5) must cease to be of
class C! after finite time, because some integral quantity must blow up in finite
time. (I learned this trick from Howard Levine, see for instance the seminal paper
[34].) In fact, numerical evidence suggests that they can (and should) even become
discontinuous. In that case one can switch from the representation u(z,t) to a
representation z = z(u,t) and still do some analysis. This line of research was
recently (and successfully) pursued in [7]. In a different but related context, this
transformation came also up in [32].

In this paper I have disregarded operators which lead to degenerate parabolic
equations. The special function a(s?) = s~'/2, for instance, falls outside of our
class of admissible a because it is singular at s = 0 and because b = 0. There
there has been significant progress on equations of this and of slightly similar type,
see for instance papers of Evans and Spruck, Oliker and Uraltseva, Deckelnick and
Dziuk, Mikula et al.[29] or Andreu, Caselles, Mazén and coauthors [2] and [1].
Alhough these equations have no “backward diffusion feature”, they can justfiably
be used for image enhancement as well, because their associated energies can be
interpreted as convex relaxations of nonconvex Perona-Malik energies. Let me
remark in passing that different nonconvex energy functionals can have virtually
the same convex relaxation, if Vu is restricted to the numerically relevant ball
of radius 1/h. To be specific, one can compare the relaxation of the functional
S I—1/m2,1 /02 (|Vu)) A.(|Vul?) dz from (3.4) with that of the so called Blake-
Zisserman functional (see [8])

/QI[—I/h,l/hl(WUI) min{y|Vu|*, k} dz

for appropriate positive constants v and k. Here I4(z) is defined as 1if z € A and
as +oo otherwise.

Recent books on the subject of this article and related problems are [6], [37],
[46], [48] and [50]. There are also numerous generalizations of these nonlinear
diffusion equations to equations involving fourth order derivatives with respect to
z or functionals which depend on curvatures of u. These are too numerous to be
listed here, and so I just refer to [4], [11], [12], as a starting point for the interested
reader.
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