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Abstract

We consider the p—Laplacian operator on a domain equipped with a Finsler
metric. We recall relevant properties of its first eigenfunction for finite p and
investigate the limit problem as p — oo.
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1 Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary 0f2 of a plane
domain Q. If u(z) denotes its vertical displacement, and if its deformation
energy is given by [, [Vu[P dz, then a minimizer of the Rayleigh quotient

Jo [Vul? da
Jo lulP dx

on WO1 P(Q) satisfies the Euler-Lagrange equation
~Apu =X, [uP?u in Q, (1.1)

where Apyu = div(|Vu[P72Vu) is the well-known p-Laplace operator. This
eigenvalue problem has been extensively studied in the literature. A somewhat
surprising recent result is that (as p — oo) the limit equation reads

min { |Vu| — Ay, —Axu } =0. (1.2)
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Here Aoou = Z” Ug; Uz Uz > Moo = limy oo Ay and Ay = )\Ilj/p (see [19, 14]).
Although the function d(x,9) minimizes ||Vu||o/||t||oc, it is not always a
viscosity solution of (1.2), see [19].

Now suppose that the membrane is not isotropic. It is for instance woven
out of elastic strings like a piece of material. Then the deformation energy can
be anisotropic, see [5]. Another way to describe this effect is by stating that
the Euclidean distance in €2 is somehow distorted. It is the purpose of the
present paper to generalize the result on eigenfunctions for the p-Laplacian to
the situation, where 2 C R” is no longer equipped with the Euclidean norm,
but instead with a general norm | - |, for instance with |z| = (327, |2;|9)'/
and ¢ € (1,00). In that case a Lipschitz continuous function u :  — R
(in a convex domain ) has Lipschitz constant L = sup,cq |Vu(z)[*, where
| - | denotes the dual norm to | - |, because |u(z) — u(y)| < L |z — y| with
this L. In order to give a meaningful definition of viscosity solutions, we
assume throughout the paper that the dual norm H : R" [0, c0) defined by
H(n) := |n|* is of class C*(R™ \ {0}).

It is well-known, that the infinite-Laplacian operator A is closely related
to finding a minimal Lipschitz extension of a given function ¢ € C%!(9Q)
into . In [2] this result on minimal Lipschitz extensions was generalized
from the Euclidean to a general norm, see also [26]. In [6] the eigenvalue
problem was carried over to a general norm and studied for finite p, while in
[5] the eigenvalue problem was investigated first for finite p and the special
non-euclidean norm |z| = (327, |2;|P)V/?" with p’ conjugate to p, and then
for the limit p — oc.

Moreover, the infinite-Laplacian operator plays an important role in prob-
lems of optimal transportation. For technical reasons it is often approximated
by p—Laplacians with large p, see for instance [13], [8].

Our paper is organized as follows. In Section 2 we recall the existence,
uniqueness and regularity of weak and viscosity solutions for finite p. In
Section 3 we derive the limit equation for p — oco. In Section 4 we provide
some instructive examples.

2 Existence, uniqueness and regularity of
solutions

If we minimize the functional

Iy(v) Z/Q(!VUI*)p de on K:={veWy"( Q)| |lllm@=1} (21)



then via standard arguments (see [6]) a minimizer u, exists for every p > 1
and it is a weak solution to the equation

—Qpu = —div ((|Vup|*)p_2J(Vup)) = \p|up|P2uy (2.2)

that is
/ (Vup*)P~2 (I (Vap), Vo) diz = A, / P 2o de (23)
Q Q

for any v € W,?(2). Here \, = I,(u,) and

ne = o (EE) . (2.4

Clearly (2.4) is well defined as long as the dual norm H(n) = |n|* is of
class C1(R™\ {0}). Recall that (2.4) is well defined (and single valued) if and
only if the norm | - | is strictly convex, i.e. if its unit sphere {z : |z| = 1}
contains no nontrivial line segments, see [27] p.400. Note further that in this
case J(0) = 0 and that for the Euclidean norm the duality map reduces to
the identity J(Vu) = Vu. Note finally that A, := /\Ilj/p is the minimum of the
Rayleigh quotient
(Jo (Vo) do)'”?

o]l

Ry(v) := (2.5)
on WO1 P(Q) \ {0}. Without loss of generality we may assume that u, is non-
negative. Otherwise we can replace it by its modulus.

Moreover as shown in [6] any nonnegative weak solution of (2.3) is nec-
essarily bounded and positive in Q. If p > n, then u, is Holder continuous
because of the Sobolev-embedding theorem and the equivalence of the usual
Sobolev norm with

fulhy = ( [ o daz)w+( [ (vatary dx)l/p. (26)

But even for general p > 2, one can show its C1® regularity as in [6]. For
the reader’s convenience let us briefly repeat the arguments. The function
up minimizes I, in (2.1) and the theory for quasiminima in [15] implies that
minimizers of I, are bounded (Thm. 7.5), Holder continuous (Thm. 7.6) and
satisfy a strong maximum principle (Thm. 7.12). Therefore u, is positive.
Once positivity is known, the uniqueness follows from a simple convexity
argument, see [4] or [6]. Moreover u, € C1%(Q) according to [24],[25] or [12].
Let us summarize these statements.



Theorem 2.1 Suppose that H(n) = |n|* is of class C*(R™ \ {0}) or that
the norm | - | is strictly convex. Then for every p € [2,00), the nonnegative
minimizer u, of (2.1) is unique, positive and of class C*. It solves (2.2) in
the weak sense of (2.3).

The next item will be viscosity solutions. As in [19] and [5] we plan to
show that every weak solution is a viscosity solution. For every z € R, g € R"
and for every real symmetric n X n matrix X we consider the function

Fy(2,6,X) = —(p = 2) (€~ (X T (€), J())
— (€)' X @ DJ(€) = AplzlP 2.
where X ® DJ(§) is shorthand for > 71", Xijg%;(ﬁ). Now (]¢[*)2/2 is convex
and homogeneous of degree 2 and its first derivative J(§) is homogeneous of
degree 1. Therefore its second derivative D.J(£) exists almost everywhere and
is essentially bounded. If we assume that H(n) := |n|* is of class C?(R™ \
{0}), then DJ is well-defined and continuous outside the origin, so that Fp
is well-defined and continuous for £ # 0. To define F}, at £ = 0 we use the
homogeneity of the norm |- |* and see that for any ¢t > 0 and £ # 0

Jt) =tJ(€)  implies  DJ(E) = DJ (t€).

So if we assume that the dual norm is of class C? outside the origin, then one
easily sees that for p > 2 the function

e i on (s (£ (£)) o]

—Ap|2|P22 (2.7)

has a continuous extension to £ = 0. So now we can define

Fp(Z,&,X) lf&.#())

2.8
—Apl2|P22 if € =0, (28)

Fp(z,6,X) = {

and the upper and lower semicontinuous envelopes F and Fj. of F, coincide
with F, for p > 2. Notice that the case p = 2 is more delicate, because
Fy(2,6,X) = X @ DJ (€) — Apz is not continuous at & = 0. This problem was
overcome in [23] for p € (1, 2) by multiplying F, with |Vu| and by studying the
modified differential equation, but since we are interested in the limit p — oo
we do not investigate the range p € (1,2] any further.



Definition 2.2 Let F), be as in (2.8). We call u € C(f2) a viscosity subsolu-
tion (resp. supersolution) of Fj, =0 if

E,(¢(x), Do(z), D*p(x)) <0 (resp. Ey(¢p(x), Dp(x), D2¢(x)) > 0) (2.9)

for every ¢ € C%(Q) with u — ¢ attaining a local maximum (resp. minimum)
zero at x. We call u a viscosity solution of F,, = 0 if it is both a viscosity
subsolution and a viscosity supersolution.

Lemma 2.3 Suppose that H(n) := |n|* is of class C>(R™ \ {0}). Then for
p > 2 every (weak) solution of (2.83) is a viscosity solution of F,, = 0 with F),
given by (2.8).

For the proof we omit the subscript p on u, and check first if u is a viscosity
subsolution. Without loss of generality fix g € € and choose ¢ € C?(£2) such
that u(zg) = ¢(xo) and u(x) < ¢(x) for x # xy. We want to show that

~(p = 2) (Vo) [ )P~ (D*¢(w0) ] (V(o)), J(Vb(o)))
— (IV(x0)[)" ™ D*(w0) ® DJ(V(w0)) — Apld(wo) P >$(x0) <0 (2.10)

and argue by contradiction. Otherwise there exists a small ball B, (xg), in
which (2.10) is violated. Set M = sup{¢(z) — u(z) | = € IB,(zo)} and
® =¢— M/2. Then ® > u on 9B, (), ®(z0) < u(xp) and

—(p—2) (V)" (D*®J(V®), ] (VP))
— (VO 2 D?*® @ DJ(V®) > X\, |0[P2¢  in B.(xo). (2.11)

If we multiply (2.11) by (u — ®)" and integrate by parts, we obtain

/{ Ly, (9017 ((T), V=) de >, 6P~26(u — @) da.

{u>®}
(2.12)
Now we exploit the fact that u is a weak solution of (2.3) and pick v = (u—®)™*,
extended by zero outside B (x¢), as a test function in (2.3). Then

/ (IVu[*)P=2 (J(Vu), V(u — ®)) de =\, / |ulP~?u(u — @) d.
{u>d} {u>d}
(2.13)
Subtracting (2.12) from (2.13) we obtain
/{ >¢}<[(Wu|*)p_2 J(Vu) = ([VO[*)P~2 J(V®)], V(u — ®))dz
< [l o - @) do. (2.14)
{u>d}
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But the right hand side of (2.14) is nonpositive, while the left hand side is
nonnegative because the functional [(|Vv[*)P dz is convex in v. So u(zg) <
®(x0), a contradiction to ®(xg) < wu(zg). This proves that u is a viscosity
subsolution. The proof that u is also a viscosity supersolution is left to the
reader.

Note, that as a byproduct of this proof, there are no admissible test func-
tions ¢ that touch w, in a critical point from below. This shows that w, is not
of class C2.

3 The limit eigenvalue equation for p — oo

In this chapter we study the sequence (A,,u,) of eigenvalues and normalized
eigenfunctions as p — oo. In particular we will derive the equation which is
satisfied by the cluster points u, of u,. Let us consider a bounded domain
2 C R™. The distance function to the boundary 6(z) := infycoq |z — y| is
Lipschitz continuous, satisfies |Vd(z)|* = 1 almost everywhere in 2 and it is
equal to zero on the boundary of 2. We have then for every ¢ € VVO1 ()
and y € 052

lp(@)| = le(z) —e@)] < [Vel*lleod (),
which implies
L 96l
1161]o el oo

I |var*|roo< | )
A = = . 3.2
57100 ™ (32)

Therefore Ay, is a geometric quantity related to €. It is the inverse of the

radius of the largest (in general non-Euclidean) ball inside 2. We can now
prove the following Lemma, which explains the analytic meaning of A..

(3.1)

Now let us define

Lemma 3.1 The following limit holds

(lim AP :) lim A, = Ax.

p—00 p—00
Here Ay, = Ry(up) and the Rayleigh quotient R, is given by (2.5).
From the definition of the Rayleigh quotient and 6(x) we get

27
<

Ap <
"= ol




which implies
limsup A, < Ay
p—00

In order to obtain the opposite inequality, we observe that ||[Vu,||, < C <
oo uniformly in p, because §(x) can be used as a test function in any of the
Rayleigh quotients. But then (see also [7] and [19]) Ho6lder’s inequality allows
us to conclude that ||Vuyl||, < C < oo for p > m > n. We can thus select a
subsequence (still denoted by {u,}) converging strongly in C* and weakly in
W™ t0 a cluster point us, of the original sequence. Without loss of generality
we may assume that each u, has L° norm 1. Then by the convergence in
C% limu, = us has L™ norm 1 and positive L™-norm. From the lower
semicontinuity of the Rayleigh quotient we get now

UalIVusolym de)' ™ ol T da) ™

[[too] |m p_’oo HupHm

Multiplying and dividing the last inequality by ||up||,, we get by Hélder’s
inequality that for p > m we have
1/m
Vieo|")™ dz
|[ttoo |m p—oo |[tp|[m
By taking first the limit in p and next the limit in m and using (3.1) we
conclude that Ay < liminf, .. A,, which completes the proof of the Lemma.

Before we derive the limit equation, which a nontrivial cluster point s
of the sequence u, must satisfy, let us show that us, is positive in 2. The
functions u, are viscosity supersolutions of H,(Vu, D?*u) = 0, where

H (6, X) == —(XJ(€). J(€)) — (’5 U 5 @ pate)

is elliptic and continuous for p > 2 by assumption. Therefore by a well-
known stability theorem [10] supersolutions converge to a supersolution of
the limiting problem, i.e, to a supersolution u., of the equation

in the viscosity sense. As we saw above uy, Z 0. Now the positivity of ue
follows from a comparison result of Barles and Busca, see [3], Lemma 3.2.

Theorem 3.2 If H(n) := |n|* is of class C2(R™\{0}) then every cluster point
Uso Of the sequence {uy} is a viscosity solution of the equation
Foo(u, Vu, D*u) = min { |Vu|* — Ao, —Qoou} =0

with Qoeou = (D*uJ(Vu), J(Vu)) representing the infinite-Laplacian in the
Finsler metric.



We show first the result for viscosity supersolutions. We consider a subse-
quence {u,} converging uniformly in € to a function u. Let us fix a point
¢ € Q and a function ¢ € C? such that ue (&) = (&) and ue(z) > ¢(z) for
x # . Also fix Bogp(€) C Q. If 0 < r < R we have

inf{use(x) — (c) | © € Br(©)\B, ()} > 0.

The sequence {u,} converges uniformly, so for sufficiently large p we have

inf{u,(2) — (@) | = € BRE\B(€)} > uplE) - p(©).

For those p we have

inf{uy(z) — o(z) | € Br(€)} = up(ey) — o(ay)

with z, € B(§), and obviously z, — £ when p — oo. The function u, is a
viscosity solution of (2.2), therefore

—(p—2) (IVe(p)[" )P~ (D> () (Vep(w)), T (Vo))
— (IVe(ap) )P D*p(,) @ DI (Vep(p)) > AbJo(p) [P 20(xp) . (3.3)
Now uss(§) > 0, but then also ¢(x,) > 0 for sufficiently large p and by

(3.3) V(xp) # 0 for large p. Dividing both members of (3.3) by the term
(p — 2) ([Vep(zp)[*)"~* we obtain

—(D2p(,) T (Vep(wy)), T(Vp(ap))) — WEERIE D200 ) @ DI (Vip(a)

p—

Adlo(ap)l? [ o(ap)| Ay \ P4
> il (fellie ) (34)

Let us take the limit for p — oo in (3.4). We obtain the following necessary
condition:

Asoip(§)
G (35
and taking into account (3.5), letting p — oo in (3.4) we obtain
~Qoo(€) = —(D*0(€)J(Vep(£)), T (Vep(€))) 0. (3.6)

Inequalities (3.5) and (3.6) must hold together, and therefore the cluster points
Uso Of the sequence wu, must satisfy, in the viscosity sense, the following equa-
tion

min { |[Vu(§)]" — Ascu(§), —Qocu(§)} > 0. (3.7)

This shows that u is a viscosity supersolution of

Foo(u, Vu, D*u) = min { |[Vul* — Astt, —Quott} = 0.
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Let us run the proof for subsolutions. Fix a point £ €  and a function ¢ € C?
such that us(§) = ¢(§) and us(x) < @(x) for x # £. We have to show that

min { [Vu(&)[" = Acu(§), —Qoou(§)} <0.
Clearly if |Vu(§)]* — Asou(§) < 0, then there is nothing to prove. Therefore
we assume |Vu(é)]* — Asou(€) > 0, ie.
PN
<l-e. 3.8
\ZGH )

By continuity, this inequality remains true (for every sufficiently large p) if
A is replaced by A, and { by z,, and z, is now the maximum point of
up(z) — @(x). As in the supersolution case, repeating step by step the proof
but reversing the inequality between left and right member, we get

—(D2p(,) T (Vep(wy), T(Vep(ay))) — WEERIY D200 ) @ DI (Vep(a)

-
Ade(@p)® [ Jp(ap)lA, \ P4
< g (jellie )" (3.9)

Letting p — oo and taking into account (3.8) we get

which ends the proof.

We do not know how to prove uniqueness of solutions to the Dirichlet
problem for Fy(u,Vu, D?>u) = 0, but as in [19], we are able to obtain a
comparison result. In the setting of viscosity solutions given in [11], the
function F, is degenerate elliptic but not proper. Therefore the standard
theory cannot be applied directly. The strict positivity of u, for 1 < p < oo
allows us to consider in place of Fuo(u, Vu, D?u) = 0 a new equation satisfied
by weo = loguss (see [5], [19]). Let us write

Goo(Vw, D*w) = 0, (3.10)
where
Goo(Vw, D*w) :=min { [Vu|* — Aw, —Qoow — (|Vu|*)*}

and QQ is defined as before. We claim that if u is a viscosity supersolution
(subsolution) of Fuo(u, Vu, D?*u) = 0, then w = logu is a viscosity superso-
lution (subsolution) Geo(Vw, D?w) = 0. Let us take £ € Q and ¢ € C? such
that (&) = w(€) and p(z) < w(zx) for x # €. The function f(z) = e#®) is a

good test function for v at £&. Then we have

min { [VO(E)|" — Axcb(§), —Qocb() } = 0.

9



We write the last inequality in terms of p(z) as

min { €? (|Vel* — Ao) (€), —€* (Quotp + (Vip, J(Ve))?) (€) } >0,

and the claim follows from the observation that (y, J(y)) = (Jy|*)?. The proof
for subsolutions is symmetric.

Now we can study Goo(Vw, D?w) = 0, which (in contrast to Fy, = 0) is
nOW proper.

Theorem 3.3 Let Q2 be a bounded domain, and suppose that u is a uniformly
continuous viscosity subsolution and v a uniformly continuous viscosity super-
solution of (3.10) in Q. Then the following equality holds:

sup(u(z) — v(z)) = sup (u(z) — v(x)). (3.11)
xeQ €O

There is no loss of generality if we assume u,v > 0. Otherwise we add
constants to u and v. We proceed by contradiction. Suppose that (3.11) is
false, then

sup(u(z) —v(z)) > sup (u(z) — v(x)). (3.12)
z€QN €082

To obtain a contradiction, we construct a new supersolution w having the
following properties:

(i) |Jv — w||o is small enough to preserve the inequality (3.12);

(ii) w is a strict supersolution of (3.10). With those properties in mind,
we introduce the following function (see [19])

f(2) = < log (1 + A (e — 1),

where o, A > 1. In [19] this function was shown to satisfy a) through d):

a) f'(z) > 1 for every z > 0;

b) fa is invertible and (f4)~" = (f4-1) for every z > 0;

e) 1—[f' ()] +[f(2)]2f"(2) <0 for every z > 0;

d)0< f(z) —z2< (A—1)/a for every z > 0.
We define w = f(v). Taking A sufficiently close to 1, property (i) holds
easily. Let us check (ii). Let & € Q and ¢ € C? such that p(£) = w(£) and
o(z) < w(x) for x # & Set @ = f~'(p). The function f~! is monotone

increasing, and so # is a good test function for v at £. But v is a supersolution
of (3.10), therefore

min { [VO(E)[* — Ass, —Qu(&) — (IVO(E)[")'} > 0. (3.13)

10



It follows from (3.13) that

IVO(E)|" — Ass 2 0, (3.14)
~Qucb(&) = (IVO(E)[)" > 0. (3.15)
But if we write explicitly
O, = [F'(O] s,
exiwj = [f/(e)]_l‘Pzizj - [f,(e)]_sf”w)@zi@mj

we get from (3.14)
V()" = f1(0(6)) A (3.16)

or

IV(&)I" = Moo = [f/(0(8)) — 1]Ase > 0. (3.17)

With some calculus we obtain
D?p = f'(9)D*0 + f"(6)VH @ V6
so that (because J is homogeneous of degree one)
~Qoopp = (D% (V). J (Vi) = = '(0)°Qucbl = ["(0) 1 (0)*(IV0]")" -
This and (3.15) implies
~Que(€) — (V1) = (2 = 17 = 1) (0(©) (VOO ")*
whose right hand side is positive because of d). Therefore we have shown

QuoplE) — (V&) = 1 (} - jf - 1) ENAL,  (3.18)

From a), (3.17) and (3.18) we conclude

min { [V — Ao, —Quop(€) = (IVe(E))'} 2 p(€) >0, (3.19)

where we have defined
pla)=min { /(o) -1, (5 = T~ 1) (o }.

Inequality (3.19) and properties a) and c) tell us that w is a strict supersolu-
tion.

11



Now the contradiction follows easily by standard techniques for viscos-
ity solutions, see [11]. Let us sketch the conclusion. We consider (z;,y:) a
maximum point of the function

t
u(@) = wly) = 5w -yl
in Q x Q. Up to a subsequence, we have that
r — & and y — &,

where ¢ € Q is a maximum point of (v — w) in Q. But inequality (3.12)
holds, so £ lies in the interior. We apply the max principle for semicontinuous
function (see Chapter 3 in [11] for this result and for the definition of the

semijets T (u(xy)) and T (w(x¢))), which ensure the existence of real
symmetric matrices Xy, Y; such that

(tee—ye); Xo) € T (ula))
(e —y); o) € T (w(w))
(Xev,v) — (Y, p) < 3ty — pl*

Now wu is a subsolution of G4, = 0, so
Goo (t(zy —yt); X¢) <0, (3.20)
Since w is a strict supersolution of G, = 0, we get from (3.19)
Goo (t(mr — yr); Vi) 2 plzr) > 0. (3.21)
Now (3.20) and (3.21) give after some calculation
p(z) <0,

which is obviously a contradiction. This completes the proof.

Remark 3.4 Theorem 3.3 also holds when one of the functions takes the
value —oo on the whole boundary.

It is well-known that for any 1 < p < oo, the eigenvalue A\, can be char-
acterized by the property that A = A, is the only real number for which the
equation

—div ((|Vup[*)P 72T (Vup)) = MuplP~uy

has a continuous positive solution with zero boundary value. We will show
next that A, has an analogous characterization.

12



Theorem 3.5 Let Q be any bounded domain and suppose that the norm | - |
is of class C*(R™\ {0}). If u is a continuous positive viscosity solution in
of

min{|Vu|* — Au, —Qcu} =0

with zero boundary value, then A = A.

To prove this, we need the following gradient estimate. For the standard
Euclidean norm this was derived in [22]. Using a perturbation argument due
to Crandall, we show that the general case follows from the results in [2].

Theorem 3.6 Suppose that the norm | - | is of class C2(R™ \ {0}). Let u
be a nonnegative viscosity supersolution of —Qocu = 0 in Q, and let §(z) =
dist(z,00) for x € Q. Then

u(z)
Vu(z)]* < ——= or a.e. x € (. 3.22
V@l <50k (3.22)
In order to prove the assertion, it suffices to verify that w enjoys the fol-
lowing comparison with cones from below property in Q (see [2]):

Whenever V' CC 2 is an open set and C(x) = a|z — 2| + b with
a,b € R, z ¢ V is a cone function such that v > C on 9V, then
u>CinV.

Indeed, for functions that enjoy comparison with cones from below, (3.22) is
Remark 2.17 in [2].

To show that viscosity supersolutions of —Qs.u = 0 enjoy comparison with
cones from below, we argue as in the proof of Theorem 4.13 in [2]. Suppose
u does not enjoy comparison with cones from below in 2. Then there is an
open set V' CC Q and a cone function C(z) = a|z — z| + b with a,b € R,
z ¢ V such that u = C on OV and u < C in V. If for each € > 0 we can find
a perturbation P € C?(V) such that |P| < e in V and

—Qo(C+P)<—6<0in V, (3.23)

we will be done. Indeed, for ¢ > 0 small enough, the function u— (C' + P) has
an interior local minimum point zg € V. Since u is a viscosity supersolution
and C + P € C%(V), this implies

—Qoo(C + P)(x0) > 0,

contradicting (3.23).
Since we are assuming that the norm |- | is of class C?(R™\ {0}), suitable
perturbations can be explicitly constructed using this norm. Suppose, without
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loss of generality, that z = 0 and put P = «|z|? and v > 0. Then C(x) +
P(z) = g(|z|) where g(s) = as + ys> +b. A direct computation shows that

~Qoog(l2]) = = ' (lz)*(D?|a] J(Vz]), J(V]z]))+
—g"(|2))g' (|=)*(Vlzl, J(V]z]))*.

Since (Vlz|,z) = |z| by the homogeneity and J(V|z|) = z/|z| for x # 0, this
reduces to
~Quog(lz]) = = (g)’|2|7*(D?|zlz, 2) — 9" ().

Next observe that by the linearity of h(t) = |tz| we have 0 = Rh"(1) =
(D?|z|z, x), so that

~Qux(C + P)(z) = —¢"(l2])g'(|2])* = —2v(21]2| + a)*.

This is strictly negative in V if either a > 0 or if & < 0 and 0 < = is sufficiently
small. If v is sufficiently small we also attain |P| < ein V.

For the proof of Theorem 3.5, we will also need the following auxiliary
comparison result.

Lemma 3.7 Suppose that the norm | - | is of class C*(R™\ {0}). If u is a
continuous positive viscosity solution of

min{|Vu|* — Au, —Qu} =0 (3.24)

i a bounded domain ) with zero boundary values, normalized so that supu =
%, then
u(z) < dist(x, 0N) for every x € Q).

Fix z € 0Q and for a > 1, v > 0 let v(x) = a|r—z|—7|r—2|2. Analogously
to the proof of Theorem 3.6 above, we obtain —Qsv(z) > 0 provided that
~v > 0 is sufficiently small. Moreover,

IVo(z)[" = (a —2y|x — z))|V]x — 2|  =a— 27|z — 2| > 1
if v is small enough. Thus we have
min{|Vo|* — 1, —Qsv} > 0. (3.25)
Next notice that due to the assumption supu = %, (3.24) implies
min{|Vu|* — 1, —Qou} <0 in the viscosity sense. (3.26)

Since v € C? and v > u = 0 on 9 (if 7y is small enough), it follows that v > u
in Q. Indeed, otherwise u — v would have an interior local maximum point at
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which v would be a test-function for u from above, contradicting (3.25) and
(3.26).

We have thus shown that u(z) < alz — 2| — y|z — z|? for every z € 99,
a > 1 and v > 0 sufficiently small. Hence

< inf |z — z| = dist(x, 00
u(w)_zlenaﬂ\:c 2| ist(z, 092),

as desired.

Remark 3.8 Lemma 3.7 implies that if u is any positive viscosity solution
to the eigenvalue equation Fs(u, Vu, D?u) = 0 with zero boundary data, it
cannot be differentiable at its maximum points. To see this, let us normalize
u so that supu = 1. Then if u(zg) = sup,equ(z), it follows that §(zo) =
sup,cq 0(z). Since 0 is not differentiable at z¢ and u < 9, u(xg) = (o), it is
now clear that v is not differentiable at xzg.

Now we prove Theorem 3.5. Notice first that if A < 0, then the eigenvalue
equation above reduces to the equation —Q . u = 0, whose only solution with
zero boundary values is u = 0, see [2] or [3].

Let us normalize u so that supu = % Then we obtain by Lemma 3.7 that
u(z) < d(x) = dist(x,00Q) for all z € Q, which together with the gradient
estimate (3.22) yields |Vu(x)|* <1 for a.e. x € Q. Consequently,

Vel e~ 1,

lullo = llulloe

Because |Vl

. W\ |loco 1,00

Ao =inf{ —————:we W, (Q)\ {0}
{ [[wl[oo 0 }

by (3.1) and (3.2), we must have Ay, < A.

To prove the reverse inequality, we approximate v = logu by its semicon-
cave inf-convolutions

vi(x) = inf {u(y) + 5|z — y[*}
yeQs

for e > 0 in the set Q, = {x € Q : 6(z) > o}. Since |Vu|* > A in the
viscosity sense by the assumptions and v¢ is twice differentiable a.e., it follows
from the properties of the inf-convolution that |Vv®(z)[* > A for a.e. x in a
smaller set Q,. = {z € Q, : dist(z,09,) > Ce}. Moreover, the function e*°
is a positive supersolution of —Qw = 0 in 2, .. Thus we obtain using the
gradient estimate (3.22)

1

ev*

N CaC) I —

Asvetell = = Jist(, 0%.)
) o,
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for a.e. x € Qy ., and so, letting e — 0, 0 — 0,

A< . Ao.
Sup;eq 0(2)

This completes the proof.

4 Example and concluding remarks

If the norm under consideration for x € €) is the usual ¢4~ norm, i.e. for
lz| = (30 |2:]9)Y9 with ¢ € (1,00), the duality map according to (2.4) is
easily calculated as

Ti(y) = (yle)* 1yil” v,
with ¢ = ¢/(q¢ — 1) as conjugate exponent. Notice that this differs from the
J in [2], Example 5.2. Then the p-Laplace operator in this Finsler metric is

explicitly given by, see [6]
n /9
0 o | oul? T ou
= — | |[Vul|t? )

For p > 2 this definition is meaningful and for ¢ = 2(= ¢’) it recovers the
well-known p-Laplace Operator. The operator ()5 is formally given by

&9 lug,| 1772 Ou
QQU N ; 856, <[|Vu]q/] 83:1 '

However, (Qou does not seem to be well-defined in critical points of u. The
oo-Laplace operator in the same Finsler metric is explicitly given by

Cog e 0%u 772 gy
4—2
Qoo = |Vul, "0 Y~ (amj a:cj>

i,j=1
and for ¢ = 2 this expression shrinks down to the customary

72 ou

ox;

ou
ox;

ou
Ox;j

" 9% du du

—1 al‘il‘j a.TZ a.’E]’ '

Asou =

2y

Remark 4.1 It should be remarked that the distance function minimizes the
Rayleigh quotient R, but that d(x) is in general not a viscosity solution of
the limiting eigenvalue problem, unless €2 is a “ball” in the Finsler metric, see
[19], [20], [5].
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Remark 4.2 If Q is a “ball” in R™ and p = n, then all the level sets of
solutions to (2.2)
—Qnu = \p|u"?u

are similar “balls”, see [6].

Remark 4.3 The smoothness assumption made on the dual spheres in our
paper is violated if the underlying norm is the 1 or o, norm. However, the
pde —Q, = 1 and its limit as p — co was studied even in this case in [16], see
also [21], [7], [18] and [17] for the case of the Euclidean norm and for variants
of this problem.

Remark 4.4 Clearly the eigenvalue A\, depends on 2. There is an analogue
of the Faber-Krahn inequality which states that among all domains of given
volume A,(2) becomes minimal if Q is a "ball” in the Finsler metric. This
result is formulated in [6], but it is based on a rearrangement inequality from

1]
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