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ABSTRACT. We investigate for which range of b the biharmonic
boundary value problem ∆2u+ bu = f in Ω, with ∆u = u = 0
on ∂Ω, is positivity-preserving in the sense that f ≥ 0 in Ω im-
plies u ≥ 0. We will also disprove a conjecture of McKenna and
Walter on the isoperimetric nature of the upper bound bc(Ω) for
such b. The investigation gives rise to related questions for cer-
tain linear elliptic systems and to curious identities for sums of
inverse eigenvalues.

1. INTRODUCTION

McKenna and Walter remarked in [13] that the following linear problem needs
more study:

(1.1)

{∆2v + bv = f in Ω,
v = ∆v = 0 on ∂Ω,

where Ω is a bounded domain in Rn and f a given positive function, say f ∈
Lp(Ω) with p > n. Let us quote (using our notation):

. . . we should be able to estimate the value bc(Ω) with the property that
for 0 ≤ b < bc(Ω) the inverse operator is positivity preserving (...). We
conjecture that this constant bc(Ω) is largest among all regions Ω with
given volume when Ω is a ball.

To study such questions one should note that fourth order equations in gen-
eral do not satisfy a maximum principle. Rewriting (1.1) as a system of second
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order equations, namely

(1.2)


−∆u = f − µv in Ω,
−∆v = u in Ω,
u = v = 0 on ∂Ω,

with µ = b, one notices that the coupling for µ > 0 is noncooperative such that
indeed, see [14], the standard maximum principle cannot be used. Nevertheless,
by the results in [14] one is able to estimate the value bc(Ω) from below by us-
ing the so called 3G-Theorem from [3] which can be rephrased as a positivity
preserving property for the auxiliary system:

(1.3)


−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 on ∂Ω,

where we take λ = √b. Except for the fact that the best constants in these systems
are strictly positive and finite for smooth bounded domains, little is known. The
aim of the present paper is to shed some more light on these numbers, in other
words, give some answers to the following question:

Which are the best positive numbers such that the systems (1.1), (1.2), and
(1.3) are positivity preserving?

By positivity preserving we mean that f ≥ 0 implies v ≥ 0, respectively twice u,
v ≥ 0.

In particular we address the following issues:

• relations between these constants and eigenvalues will be recalled;
• exploiting these relations, a result of Xu in [23] will give us a counterexam-

ple to the conjecture of McKenna and Walter;
• in one dimension, the explicit numbers will be computed;
• in some special two-dimensional domains, one of these numbers will be

compared with the first eigenvalues;
• a partial explanation will be given of a rather surprising inverse-sum-of-

eigenvalues formula.

It should be remarked that, besides for large positive numbers, the positivity
preserving property for (1.1) and (1.2) also breaks down if −b attains the first
eigenvalue of ∆2 under the Navier boundary conditions in (1.1). This eigenvalue
coincides with λ1(Ω)2, where λ1(Ω) is the first (and positive) Dirichlet-Laplace
eigenvalue. The result will be that the system (1.1) is positivity preserving for
b ∈ 〈−λ1(Ω)2, bc(Ω)].
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Such a bounded interval is in marked contrast to the second order problem:

(1.4)

{−∆v + dv = f in Ω,
v = 0 on ∂Ω.

The boundary value problem (1.4) preserves positivity for all d ∈ 〈−λ1(Ω),∞〉.
This behaviour, no bound from above, is a particular feature of equations of sec-
ond order and cooperative systems of second order equations. Schröder [18]
showed in one space dimension, that bc is characterized as an eigenvalue of a
related problem. Inspired by the fact that bc is on the other side of zero, is not an
eigenvalue for the original problem, but a threshold for the positivity preserving
property like λ1 and is (in one dimension) an eigenvalue for yet another problem,
we call bc an ‘anti’-eigenvalue.

2. ESTIMATES AND A COUNTEREXAMPLE

While McKenna and Walter were interested in the positivity of v, one may won-
der about the sign of u in (1.2) as well. If u is nonnegative and nonzero, then
v is positive because of the second equation in (1.2) and the strong maximum
principle. Hence if (1.2) is positivity preserving, then (1.1) also has this property.
However, u might be sign-changing, while v is still nonnegative.

The relation between (1.2) and (1.3) with respect to sign preserving is studied
in [14]. From there it is known that, if (1.3) is positivity preserving with λ = √b,
then so is (1.2) for µ = b.

Finally, let us explain the connection of the critical constant in the last system
with Brownian motion. See also [20]. This constant for (1.3) equals the inverse of
the expectation of the lifetime of a conditioned Brownian motion. Let us denote
the inverse Dirichlet Laplacian by G : Lp(Ω) → Lp(Ω), that is, w = Gf solves
−∆w = f in Ω, w = 0 on ∂Ω. We will also use the corresponding iterated Green
functions:

(2.1) (Gkf ) =:
∫
ΩGk(x,y)f(y)dy.

Then (1.3) is positivity preserving if Gf − λG2f ≥ 0 for all positive functions
f ∈ Lp(Ω). This condition is equivalent with

λ
G2(x,y)
G1(x,y)

≤ 1 for all x,y ∈ Ω,
or in other words

(2.2) λc(Ω) =
 sup
x,y∈Ω

G2(x,y)
G1(x,y)

−1

.
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Cranston, Fabes, and Zhao [3] proved with their so-called 3G-Theorem that the
supremum in (2.2) is bounded on bounded Lipschitz domains. By probability
theory one has for n ≥ 2

(2.3)
G2(x,y)
G1(x,y)

= Eyx (τΩ),
where Eyx (τΩ) is the expectation for the lifetime τΩ of Brownian motion that
is conditioned to start in x, converge to y , and to be killed when reaching the
boundary ∂Ω. In a probabilistic setting estimates for Eyx (τΩ) in two-dimensional
domains are found in [4]; for higher dimensions see [5].

Next we recall and extend some results from [14, 19]. We will also state
some estimates for the three critical numbers involved. In order to do so we need
the eigenvalues of the Dirichlet Laplace operator which we denote by λ1(Ω) <
λ2(Ω) ≤ λ3(Ω) ≤ · · · .

Theorem 2.1. Suppose that Ω is a bounded domain in Rn with ∂Ω Lipschitz.
Then there exist positive numbers bc(Ω), µc(Ω), and λc(Ω) such that:

1. (a) if −λ1(Ω)2 < b ≤ bc(Ω), then for all f ≥ 0, the solution v of (1.1) satisfies
v ≥ 0;

(b) if b > bc(Ω), then there exists f ∈ C(Ω̄), with f > 0, such that the solution
v of (1.1) changes sign.

2. (a) if −λ1(Ω)2 < µ ≤ µc(Ω), then for all f ≥ 0, the solution u of (1.2) satisfies
u ≥ 0;

(b) if µ > µc(Ω), then there exists f ∈ C(Ω̄), with f > 0, such that the solution
u of (1.2) changes sign.

3. (a) if λ ≤ λc(Ω), then for all f ≥ 0, the solution u of (1.3) satisfies u ≥ 0;
(b) if λ > λc(Ω), then there exists f ∈ C(Ω̄), with f > 0, such that the solution

u of (1.3) changes sign.
These numbers satisfy the following estimates:

λc(Ω)2 ≤ µc(Ω) ≤ bc(Ω),(2.4)

µc(Ω) ≤ λ1(Ω)λ2(Ω),(2.5)

λc(Ω) ≤ ( 1
λ1(Ω) + 1

λ2(Ω)
)−1

.(2.6)

Let us remark in passing that λc , like the eigenvalues λi, is homogeneous of
degree −2 under scaling, that is,

λc(tΩ) = t−2λc(Ω)
for t > 0, while bc and µc are homogeneous of degree −4. This gives some
explanation of the exponents in (2.4), (2.5) and (2.6).
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Next let us show how the link with Brownian motion allows us to find a
counter example to the conjecture of McKenna and Walter. In [23, Theorem 3]
it was shown that there exists a domain Ω of infinite area for which the expected
lifetime of a conditioned Brownian motion is bounded. In [8, p.244] it was ob-
served that this result implies that one may construct a planar domain of given
area with the expected lifetime bounded by a number as small as desired. Since
this bound is the inverse of λc, (2.4) implies that there exist a planar domain with
bounded surface area and bc(Ω) larger than bc(D). Here D denotes the disk with
equal surface area. Such a domain supplies a counterexample to the conjecture of
McKenna and Walter.
In fact, as just explained, it not only allows us to
disprove that conjecture but even gives the following
stronger result.

Corollary 2.2. For anyM > 0 there exist planar domainsΩ of given area 1 such that λc(Ω) > M and a forteriori
bc(Ω) ≥ µc(Ω) > M2.

A possible domain with bc(Ω) > bc(D) and equal sur-
face areas |Ω| = |D| is sketched.

3. EXPLICIT NUMBERS

For a number of special domains some of these critical numbers are explicitly
known. We list λ1, λ2, and the known critical constants for the unit interval
and some special planar domains Ω with fixed area |Ω| = 1. We start with one
dimension.

Proposition 3.1. The following explicit numbers can be given for I the unit
interval 〈0,1〉:

λc(I) = 6,

λ1(I) = π2 ≈ 9.86960,

λ2(I) = 4π2 ≈ 39.4784,

µc(I) = 4(κ0)4 ≈ 125.141,

bc(I) = 4(κ1)4 ≈ 950.884,

where κ0 is the first positive zero of tan(x)+ tanh(x) and where κ1 is the first positive
zero of tan(x)− tanh(x). Scaled to homogeneity we may visualize:

?
6 6

?
6

?
6

0

λc

1
λ−1

1 +λ−1
2
λ1

√µc

15 √
λ1λ2

30

√
bc

λ2
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The derivation of these numbers is postponed to the last section. In Remark
6.1 in that section one may also find a physical interpretation of these numbers.

In two dimensions little is known. It is known by Griffin, McConnell, and
Verchota in [8, Proposition 4.2] that

λ∗c (D) :=
(

sup
x∈D,y∈∂D

G2(x,y)
G1(x,y)

)−1

= π
2 log 2− 1

.

Some heuristic reasons seem to indicate that

(3.1) sup
x∈Ω,y∈∂ΩE

y
x (τΩ) = sup

x,y∈ΩE
y
x (τΩ),

and hence by (2.2) and (2.3) it would follow that λ∗c (D) = λc(D). No proof of
(3.1) seems yet available.

Let us fix this result and compare the number with the first eigenvalues.

Proposition 3.2. Let D ⊂ R2 be a disk with area equal to 1. If (3.1) holds,
then

λc(D) = π
2 log 2− 1

≈ 8.13264,

λ1(D) = πj2
0,1 ≈ 18.1685

λ2(D) = πj2
1,1 ≈ 46.1246,

where j0,1 and j1,1 are the first positive zeros of the Bessel functions J0, respectively J1.

For the limit behaviour of a long rectangle we again refer to [8, Theorem 3.1].

Proposition 3.3. If Ra is a rectangle with sides a ≥ 1 and 1/a, then

λc(Ra)→ π as a→∞,
λ1(Ra) = π2(a2 + a−2),

λ2(Ra) = π2(a2 + 4a−2).

Now that the conjecture of McKenna and Walter does not hold in its full gen-
erality, one might ask if such a type of result would hold when restricting the class
of domains. For example one could ask if the disk maximizes bc(Ω) among all
convex domains of equal area. In fact, it has been conjectured in [8] that, among
all convex planar domains of fixed area, the disk minimizes supx∈Ω,y∈∂Ω Eyx (τΩ),
or in other words, maximizes λ∗c (Ω). This is not true: recently in [11] it has been
shown that for some convex sector S, with area 1, it holds that

λ∗c (D) < λ∗c (S) =
8π
3
≈ 8.37758.
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It is expected that these expressions equal λc(D) respectively λc(S) which would
imply that λc(D) < λc(S). We expect similar results for µc and bc , that is, the
disk does not maximize these numbers in the class of convex domains. But an
actual proof, by supplying a counterexample, seems to be very hard. Proceeding
by an explicit Green function as in [11] is not very likely.

The results in this section are restricted to domains in dimensions 1 and 2. A
tool that is strongly used in [8] and [11], which have a two-dimensional setting, is
the Riemann mapping theorem. In higher dimensions no such tool exists. Even if
for the 3-dimensional ball heuristic reasoning will lead to x and y in (2.3) lying
as opposite poles on the ball, an analytical proof of such a fact is not obvious.

4. IDENTITIES INVOLVING INVERSE SUMS OF EIGENVALUES

In a number of basically one-dimensional cases the following identity holds. It
should be compared with (2.6).

(4.1)
1

λc(Ω) =
∞∑
k=1

1
λk(Ω) .

For the interval in R we refer to [19]. Caristi and Mitidieri in [2] proved (4.1) for
the radially symmetric case on a ball in Rn. Identity (4.1) has only been verified
through tedious explicit computation of both sides.

In higher dimensions the growth rate of the eigenvalues is such that the right
hand side of (4.1) does not converge, and hence such a formula cannot hold. How-
ever, another related identity holds. An alternating series of inverse eigenvalues
does converge and it converges to the inverse of four times the ‘anti’-eigenvalue.

Lemma 4.1. For D the disk in 2 dimensions it holds true that

(4.2)
1

λ∗c (D)
= 4

∞∑
ν=0
(−1)ν

∞∑
k=1

mν,k

λν,k(D)
.

Here the eigenvalues are counted including multiplicity mν,k, with k − 1 denoting
the number of circular nodal lines of the eigenfunction inside the disk and with ν the
number of radial nodal lines. One hasmν,k = 1 for ν = 0, andmν,k = 2 for ν ≥ 1.

Let us remark that the eigenfunctions above are symmetric for ν even, i.e.,
ϕ(x) =ϕ(−x), while for ν odd ϕ(x) = −ϕ(−x).

A similar formula again holds in one dimension with factor 2 instead of 4 (for
the third identity see [1, Formula 23.2.26]):

(4.3)
1

λc(I)
= 1

6
= 2
π2
π2

12
= 2
π2

∞∑
k=1

(−1)k−1

k2 = 2
∞∑
k=1

(−1)k−1

λk(I)
.
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At least this formula can be explained in a heuristic way. We know from (2.2) that

λc(I)−1 = sup
x,y∈I

G2(x,y)
G1(x,y)

= sup
x,y∈I

∞∑
k=0

1
λ2
k
ϕk(x)ϕk(y)

∞∑
k=0

1
λk
ϕk(x)ϕk(y)

(4.4)

= sup
x,y∈I

∞∑
k=0

1
(πk)4

√
2 sin(kπx)

√
2 sin(kπy)

∞∑
k=0

1
(πk)2

√
2 sin(kπx)

√
2 sin(kπy)

.

By the symmetry in x and y we may assume that x ≤ y . Since the enumerator
and denominator go to 0 when x or y move to the boundary, it seems appropriate
to divide both by kπx and kπ(1−y) to find

(4.5) λc(I)−1 = sup
x,y∈I

∞∑
k=0

(−1)k−1 1
(πk)2

sin(kπx)
kπx

sin(kπ(1−y))
kπ(1−y)

∞∑
k=0

(−1)k−1 sin(kπx)
kπx

sin(kπ(1−y))
kπ(1−y)

By the Fourier-series for t2 on [−π,π], we find that the denominator equals 1
2

for all 0 < x ≤ y < 1:

(4.6)
∞∑
k=1

(−1)k−1 sin(kπx)
kπx

sin(kπ(1−y))
kπ(1−y)

=
4
∞∑
k=1

(−1)k
cos(kπ(1+ x −y))

k2 − 4
∞∑
k=1

(−1)k
cos(kπ(1− x −y))

k2

8π2x(1−y)

= π
2(1+ x −y)2 −π2(1− x −y)2

8π2x(1−y) = 1
2
.

Hence, convinced that supx,y∈I can be replaced by limx↓0,y↑1, we continue by

λc(I)−1 = lim
x↓0,y↑1

2
∞∑
k=1

(−1)k−1 1
(πk)2

sin(kπx)
kπx

sin(kπ(1−y))
kπ(1−y)

= 2
∞∑
k=1

(−1)k−1 1
(πk)2

= 2
∞∑
k=1

(−1)k−1

λk
.
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Could (4.1) and (4.2) be just a coincidence or is there a similar heuristic
explanation beyond computation?

Proof of Lemma 4.1. On the disk D = B(0, π−1/2) a complete set of eigen-
functions is given in radial coordinates (r , θ) by

ϕe,ν,i(r , θ) = cos(νθ)Jν(jν,i
√
πr) with ν ∈ N, i ∈ N+,

ϕo,ν,i(r , θ) = sin(νθ)Jν(jν,i
√
πr) with ν, i ∈ N+,

λo,ν,i = λe,ν,i = πj2
ν,i.

By Rayleigh ([16], see also [22, Section 15.51]) one gets for ν ∈ N
∞∑
i=1

1
j2
ν,i
= 1

4(ν + 1)
,

and since
∑∞
ν=0(−1)ν/(ν + 1) = log 2, it follows that

∞∑
ν=0

(−1)ν
∞∑
i=1,

σ∈{0,e}

1
λσ,ν,i(Ω)

=
∞∑
i=1

1
πj2

0,i
+ 2

∞∑
ν=1

(−1)ν
∞∑
i=1

1
πj2

ν,i

= 1
4π

(
1+ 2

∞∑
ν=1

(−1)ν

ν + 1

)
= 1

4π
(2 log 2− 1). ❐

5. PROOF OF THE THEOREM

In the sequel we will denote the eigenfunctions for the Dirichlet Laplace operator
by ϕi, that is

(5.1)

{−∆ϕi = λi(Ω)ϕi in Ω,
ϕi = 0 on ∂Ω.

The Dirichlet Laplace operator can be considered as an unbounded operator in
L2(Ω) or C(Ω̄). Since we are considering bounded domains with Lipschitz bound-
ary, it follows that its inverse, the solution operator G, is compact in both spaces.
Hence in both cases its spectrum consists of eigenvalues. By using regularity re-
sults, one obtains that the corresponding spectra and eigenfunctions coincide. For
regularity in domains satisfying an exterior cone condition see [7, Theorem 8.30];
for compact imbeddings see [7, Theorem 7.22].
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Proof of Theorem 2.1. The theorem states in particular that the sets of b,
µ, and λ for which the respective solution operators are positivity preserving are
intervals. It will be convenient to define bc , µc, and λc as the infimum of nonad-
missible positive b, µ, and λ; e.g.

bc := inf{b > 0 | ∃f ≥ 0 and ∃v 6≥ 0, such that v solves (1.1)}.

After recalling that the sets of admissible parameters contain a right neighborhood
of zero, we prove that the operators are not positivity preserving for some large
numbers b, µ, and λ. In the course of this we derive (2.4), (2.5), and (2.6). Then
we show that the sets of admissible coefficients are connected. Finally, we prove
the change of sign for solutions with large coefficients and appropriate f . For
nonpositive numbers (1.2) falls in the class of cooperative elliptic systems and the
bound −λ1(Ω)2 follows from arguments using the classical maximum principle.
See [14]. In the sequel we restrict ourselves to positive parameters.

Bounds from below for the critical number. From [14] it follows that in all three
cases a small positive number ε exists such that, for b, λ ∈ [0, ε], the solutions v
and u, v of respectively (1.1), (1.2), and (1.3) are positive for positive f .

Existence of non-admissible positive coefficients b, λ, and µ. Explicit bounds from
above for λc(Ω) and µc(Ω) are stated in (2.6) and (2.5). These follow by choosing
f =ϕ1 − γϕ2 with

(5.2) γ :=
(

sup
x∈Ω

ϕ2(x)
ϕ1(x)

)−1

.

Note that γ is the largest number such that f is nonnegative. Solving (1.3) with
this f one finds

(5.3) u =
(

1
λ1
− λ
λ2

1

)
ϕ1 − γ

(
1
λ2
− λ
λ2

2

)
ϕ2,

and consequently u ≥ 0 if and only if

(5.4)

(
1
λ1
− λ
λ2

1

)
≥
(

1
λ2
− λ
λ2

2

)
.

Since (5.4) can be rewritten as

λ ≤
(

1
λ1(Ω) + 1

λ2(Ω)
)−1

,

the estimate in (2.6) follows from the definition of λc(Ω). Notice that (2.6)
implies in particular λc(Ω) < λ1(Ω). This argument is found in [19].
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To prove (2.5) we start with the same ansatz for f . By similar arguments as
above we obtain then the bound for µc(Ω).

Another argument is needed in order to show that bc(Ω) is bounded. We
will modify an example from [9, Lemma 6.3]. Set v0 = G21 and assume that
B(0,3R) ⊂ Ω. By the strong maximum principle there exists s > 0 such that
v0(x) ≥ s for x ∈ B(0,2R). Let χ ∈ C∞(R) be such that 0 ≤ χ ≤ 1 with
χ(r) = 0 for r > R and χ(r) = 1 for r < 1

2R. Set

(5.5) ṽ(x) = χ(|x|)(16|x|2 − 1)+ (1− χ(|x|))v0(x).

The function ṽ is constructed in such a way that it changes sign. In fact ṽ(0) =
−1, and one may show that for some positive δ and M:

∆2ṽ = 0 and ṽ < 0 in B(0, 1
4R),∆2ṽ = 0 and ṽ ≥ 0 in B(0, 1
2R) \ B(0, 1

4R),∆2ṽ ≥ −M and ṽ ≥ δ in B(0, R) \ B(0, 1
2R),∆2ṽ = 1 and ṽ ≥ 0 in Ω \ B(0, R).

If we set a(x) =Mδ−1(1− χ(2|x|)) and note that a vanishes in B(0, 1
4R), then

(5.6) ∆2ṽ + a(x)ṽ =: g ≥ 0 in Ω.
Let us define

(5.7) b := max{a(x) | x ∈ Ω},
and see that ṽ satisfies

(5.8) ∆2v + bv = g + (b − a(x))v in Ω.
Assuming that the inverse operator for ∆2 + b with appropriate boundary con-
ditions is positivity preserving, we will obtain a contradiction. Let us denote the
solution operator by Bb, that is, w = Bbf solves ∆2w + bw = f in Ω, and
w = ∆w = 0 on ∂Ω. The eigenvalues of ∆2 + bI under Navier boundary con-
ditions are λi(Ω)2 + b, and the corresponding eigenfunctions (which coincide
with eigenfunctions for the Dirichlet Laplacian) form a complete orthonormal
system in L2(Ω). Since the inverse operator Bb is compact, its spectrum consists
of the inverted eigenvalues (λi(Ω)2 + b)−1 and hence its spectral radius equals
(λ1(Ω)2 + b)−1. Denoting the multiplication with (b − a(x)) by Mb−a, the
spectral radius of BbMb−a is bounded by b/(λ1(Ω)2 +b) < 1 and it follows that

(5.9) ṽ = (I −BbMb−a)−1Bbg =
∞∑
k=0

(BbMb−a)kBbg.
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But Bb and Mb−a are positive operators. Therefore (5.9) and (5.6) imply that ṽ
is positive, a contradiction. This proves that, for the positive b from (5.7), the
solution operator to (1.1) is not positivity preserving.

Comparison estimates. The estimates (2.5) and (2.6) were already obtained as a
byproduct in the second step of the proof. The proof of the right hand side
estimate in (2.4) is a consequence of the maximum principle. To prove the left
hand side estimate in (2.4), we use a Neumann series expansion for an operator
containing the inverse Dirichlet Laplacian. With this G, which is defined at the
beginning of the section, (1.2) is reformulated as (I + µG2)u = Gf or u =
(I + µG2)−1Gf , provided the inverse exists. Since the spectral radius of G is
1/λ1(Ω), the Neumann series

(5.10) u =
∞∑
k=0

(−µG2)kGf

does converge to (I + µG2)−1Gf when µ < λ1(Ω)2. But now elementary algebra
leads to

(5.11) u =
( ∞∑
k=0

(µ2G4)k
)
(I +√µG)(I −√µG)Gf .

All but one of the factors in (5.11) are positive operators. The operator (I−√µG)
is never positive for µ > 0, but for √µ ≤ λc(Ω) the product (I − √µG)G is
positive. This concludes the proof of (2.4).

Connected intervals. Due to the trivial coupling in (1.3) one has u = Gf −λG2f ,
and one directly finds that if for some f ≤ 0 and λ > 0 the solution u of (1.3)
changes sign, then for any λ∗ > λ the corresponding solution u∗ satisfies u∗ < u
and is hence somewhere negative. Therefore the set of admissible λ’s is an interval.

In order to show that the µ and b for which (1.1) respectively (1.2) are posi-
tivity preserving form an interval, one may proceed as follows. Since G is compact,
I+µG2 is Fredholm and since the eigenvalues equal 1+µ(λi(Ω))−2, the operator
(I + µG2) is invertible for all µ ≥ 0. Hence u = (I + µG2)−1Gf and one finds

d
dµ
(I + µG2)−1G = −(I + µG2)−2G3,

which means that µ , (I + µG2)−1G is decreasing as long as (I + µG2)−1G is
positivity preserving. To make the argument precise, let us fix some µ > 0 for
which the system is positivity preserving and set µ∗ ∈ (0, µ). We may assume
that µ ≤ λ1(Ω)λ2(Ω). Replacing µ by µ∗ in (1.2) we may solve by

(5.12) u∗ = (I + µG2)−1G(µ − µ∗)Gu∗ + (I + µG2)−1Gf ,
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with (I + µG2)−1G positive by assumption. Since for the spectral radius holds

(5.13) ν((I + µG2)−1G(µ − µ∗)G) ≤ µ
λ1(Ω)2 + µ < 1,

we may solve by a Neumann series of positive operators as in (5.9) implying that
u∗ is positive:

u∗ =
∞∑
k=0

((I + µG2)−1G(µ − µ∗)G)k(I + µG2)−1Gf .

In a similar way one proceeds for b, using v = (I + µG2)−1G2f . In fact
an inspection of (5.8), with a(x) replaced by b∗ ∈ (0, b), shows that it is still
positivity preserving for b∗.

Sign change. We have shown for all three cases there is f > 0 such that, when
the parameter becomes large, the corresponding solution cannot be positive. It
remains to show that it cannot be purely negative either, but that it must change
sign. Testing the corresponding solution withϕ1 one finds, respectively for (1.1),
(1.2), and (1.3), that ∫

Ωϕ1v dx = 1
λ2

1 + b
∫
Ωϕ1f dx > 0,

∫
Ωϕ1udx = λ1

λ2
1 + b

∫
Ωϕ1f dx > 0,

∫
Ωϕ1udx = λ1 − λ

λ2
1

∫
Ωϕ1f dx.

The first two inequalities imply that u and v are somewhere positive, and hence
sign-changing. For the solution of (1.3) this argument holds true only for λ ∈
〈λc(Ω), λ1(Ω)〉. If λ ≥ λ1(Ω), then u is somewhere negative for every positive
f . In this situation it remains to show that there is a positive f such that u is
somewhere positive. For this purpose one can take f sufficiently close to a Dirac
δ-function at y , with y sufficiently close to the boundary for small dimensions, or
even anywhere for higher dimensions. Then u(·) is close to a linear combination
G1(·, y)− λG2(·, y) of Green functions. Therefore we can use explicit estimates
for the Green function from [10, 20], [15, page 143].

We have to distinguish several cases according to the space dimension n.
If n = 1, u(x) = (1− x)(1− λx(2− x)/6) and v(x) = 1− x satisfy (1.3)

in the limit case k→∞ for fk = 2
3k

2χ[1/k,2/k], with χ the characteristic function.
Note that u is positive for x near zero for any λ > 0, and negative near 1 for
λ > 6 = λc(I). See also the proof of Proposition 3.1.
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If n = 2, then the Green function G1 has a logarithmic singularity
− log |x−y|, while G2 is bounded. Therefore G1(·, y) − λG2(·, y) is positive
near y .

If n ≥ 3, then the singular part of G(x,y) behaves like |x−y|2−n, while G2

has a singularity which grows like |x−y|4−n for n > 4. For n = 4 the singularity
of G2 is logarithmic, and for n = 3 the function G2 is even bounded. Therefore
in each case G1(·, y)− λG2(·, y) is positive near y . ❐

6. DERIVATION OF THE EXPLICIT NUMBERS IN ONE DIMENSION

Proof of Proposition 3.1.
� The number λc follows through direct computation of the Green function and
the iterated Green function as has been done in [19]. Let us recall some elementary
results. Direct computations yield

G1(x,y) =
x(1−y) for 0 ≤ x ≤ y ≤ 1,

y(1− x) for 0 ≤ y < x ≤ 1,

G2(x,y) =


1
6
x(1−y)(1− x2 − (1−y)2) for 0 ≤ x ≤ y ≤ 1,

1
6
y(1− x)(1−y2 − (1− x)2) for 0 ≤ y < x ≤ 1,

and 1
6 as the maximum of the quotient G2(x,y)/G1(x,y). Hence λc(I) = 6

follows from (2.2).
The solution v of (1.1) can be written in terms of a Green function:

(6.1) v(x) =
∫
Ω Bδ(x,y)f(y)dy,

with δ = 4
√
b/4 and where for x, y ∈ 〈0,1〉

8δ3(cosh(2δ)− cos(2δ))Bδ(x,y)

= cosh((2− |x −y|)δ) sin(|x −y|δ)+ cos((2− |x −y|)δ) sinh(|x −y|δ)
− cosh((2−(x+y))δ) sin((x+y)δ)−cos((2−(x+y))δ) sinh((x+y)δ)
+ cosh((x−y)δ) sin((2−|x−y|)δ)+cos((x−y)δ) sinh((2−|x−y|)δ)
− cosh((x+y)δ) sin((2−(x+y))δ)−cos((x+y)δ) sinh((2−(x+y))δ).

Such a formula has been derived by Ulm in [21]. The numbers µc and bc appear
as follows. We look for a parameter δ so that the one-dimensional function x ,
Bδ(x,y) loses its concavity for some y , while bc appears when this mapping
ceases to be positive. Schröder [18, page 101] suggests (and for bc he proves) that
both effects happen first when x and y are in opposite endpoints, e.g for x = 0
and y = 1. A direct approach for bc can be found in [21].
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Remark 6.1. A physical interpretation goes as follows. See also [12]. We
interpret Bδ(x,y) as the deformation at point x of a hinged beam, embedded in
an elastic ambient medium with elasticity constant b, and exposed to an upward
pointing point load at y . The ambient medium exerts a force proportional to the
vertical displacement which tries to drive the beam back into the trivial shape. For
b = δ = 0, and any y , the deformation is clearly concave in x, but for larger δ
we expect its influence to destroy concavity or even positivity. In fact, obviously
concavity gets destroyed before positivity, which is expressed in (2.4). Both effects
are most likely to happen when x is as far away as possible from y .

� The number bc can be traced in the the papers of Schröder, [17] and [18].
His elegant arguments can be applied in a rather general setting. Unaware of
this earlier result, the number has recently been computed again by a brute force
method in [21].

Schröder finds that this critical number bc appears as an eigenvalue with a
positive eigenfunction for the following problem:

(6.2)


ψiv + bψ = 0 in 〈0,1〉,
ψ(0) = ψ′(0) = ψ′′(0) = 0,
ψ(1) = 0.

The corresponding eigenfunction, with 4δ4
0 = bc , is as follows:

(6.3) ψ(x) = sin(δ0x) cosh(δ0x)− cos(δ0x) sinh(δ0x).

The condition ψ(1) = 0 determines δ0 as the first positive zero κ1 of tan(δ) −
tanh(δ). The corresponding b = 4(κ1)4 is called bc .

0.2 0.4 0.6 0.8 1

2
4
6
8

10

FIGURE 1. The eigenfunction for (6.2) with δ0 = κ1.

Since the paper of Schröder [17] is not easily accessible, we take the liberty to
give a rough sketch of his arguments.

Let us denote by Bδ the Green function for (1.1), where 4δ4 = b and Ω =
〈0,1〉. For δ = 0 the Green function is positive, and by continuously increasing
δ one reaches a first δ0 > 0 such that a further increase leads to sign change. For
the Green function Bδ0 there exists x0 and y0, with 0 ≤ x0 ≤ y0 ≤ 1, such that

(6.4) Bδ0(x0, y0) = ∂
∂x
Bδ0(x0, y0) = 0.
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Note that the eigenvalues lie on the other side of 0. Let us assume that x0 or y0 lies
in the interior. Using the continuity of (∂k/∂xk)Bδ(·, y0), k = 0, 1, 2, and the
jump in the third derivative at y0, one obtains two coupled eigenvalue problems
for x , Bδ(x,y0) on (0, y0) and (y0,1). The ‘smallest’ δ that allows a nontrivial
function satisfying (6.4), one gets for x ↓ 0. In a similar way, considering y ,
Bδ(x0, y), the smallest δ ‘appears’ for y ↑ 1. The word appears is misleading
since limy↑1 Bδ(x,y) ≡ 0. Only after scaling to

(6.5) ψ(x) := lim
y↑1
Bδ0(x,y)

1−y
one obtains a nontrivial solution to (6.2). The jump-condition replaces

∂2

∂x2Bδ0(x,1)x=1 = 0

by (∂/∂x)Bδ0(x,1)x=1 = 0. The scaling in (6.5) replaces (∂/∂x)Bδ0(x,1)x=1 =
Bδ0(x,1)x=1 = 0 by ψ(1) = 0; the condition in (6.4) adds ψ′(0) = 0. In other
words, ψ is an eigenfunction to (6.2).

� The number µc is obtained by a similar approach, but will involve a nonlocal
term. Although the methods of Schröder do give the result, we have not been able
to trace an actual statement in the literature.

In terms of the inverted Dirichlet Laplace operator G we can rewrite (1.2) as

(6.6)

{−u′′ + µGu = f in 〈0,1〉,
u(0) = u(1) = 0,

and we are interested in the critical µ for which the positivity preserving property
of (6.6) breaks down. Let us denote Dδ the Green function for (6.6), with 4δ4 =
µ. Again one increases δ until one encounters δ0, after which a sign change will
start. It will not be an eigenvalue, since these lie on the other side of 0. The
remaining possibility is that there is (x0, y0) with

(6.7) Dδ0(x0, y0) = 0.

Again we may assume that 0 ≤ x0 ≤ y0 ≤ 1. Like for Bδ, one finds by comparison
that the critical case occurs for x0 ↓ 0 and y0 ↑ 1. And again a nontrivial function
is obtained after rescaling

(6.8) ψ(x) := lim
y↑1
Dδ0(x,y)

1−y .

This scaling removes the condition ψ(1) = 0 and by (6.7) an extra condition at
0, namely ψ′(0) = 0, appears. In other words, ψ is a positive eigenfunction to

(6.9)

{−ψ′′ + 4δ4
0Gψ = 0 in 〈0,1〉,

ψ(0) = ψ′(0) = 0,
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which is, using the boundary conditions for G, equivalent to

(6.10)


ψiv + 4δ4

0ψ = 0 in 〈0,1〉,
ψ(0) = ψ′(0) = ψ′′(0) = 0,
ψ′′(1) = 0.

0.2 0.4 0.6 0.8 1
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FIGURE 2. The eigenfunction ψ (dashed) and u = ψ′′ (solid)
for (6.10) with δ0 = κ0, both ψ and u are normalized.

Hence ψ is as in (6.3), except that the condition at 1 now determines δ0 as
the first positive zero of

(6.11) ψ′′(x) = 2δ2
0
(
cos(δ0x) sinh(δ0x)+ sin(δ0x) cosh(δ0x)

)
,

that is, the first positive zero κ0 of tan(δ) + tanh(δ). The corresponding µ =
4(κ0)4 we call µc . �
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