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Abstract

The paper addresses symmetry results for positive solutions of semilinear

elliptic di�erential equations on a class of non-convex symmetrical domains. An

example in two dimensions is the star of David. The moving plane method just

shows that solutions coincide on three alternate corners of the star. We will

show that the solution is symmetric with respect to remaining reections, that

is, the solution will have the full symmetry. To obtain such type of result, even

for domains in higher dimensions, we use a variant of the sliding-method and

the maximum principle for domains with small measure.

Transmission des propri�et�es de sym�etrie pour des solutions positives des
probl�emes elliptiques semilin�eaires

R�esum�e

Des r�esultats concernant la sym�etrie des solutions positives d' �equations el-

liptiques semilin�eaires sur une classe de domaines sym�etriques nonconvexes sont

�etablis. Un exemple en dimension deux est l' �etoile de David. La m�ethode des

plans mobiles dans sa forme habituelle permet de montrer le sym�etrie de telles

solutions seulement par rapport �a trois axes. Nous sommes en mesure de prou-

ver la sym�etrie par rapport au centre et donc la sym�etrie totale. Pour obtenir

ce type de r�esultat, même pour des domaines en dimension sup�erieure �a deux,

nous utilisons la m�ethode des balayages et le principe du maximum pour les

domaines de mesure petite.

1 Introduction

A basic question for positive solutions of the elliptic boundary value problem�
��u = f(u) in 
;

u = 0 on @
;
(1)

with 
 � R
N bounded and f Lipschitz, is the following:

Is the symmetry of the domain passed on to the symmetry of the solution?

�
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For 
 = B, a ball, this question is solved by Gidas, Ni and Nirenberg in [9]: any
positive solution of (1) with 
 = B is radially symmetric. The same question on
other domains may not give a positive answer. For domains such as an annulus (see
[4], [11, Theorem 3]), or a symmetric starshaped bar-less dumb-bell (see [6]), there are
nonlinearities with positive solutions that do not reect the symmetry of the domain.

The result of [9] can be used to obtain symmetry of positive solutions on domains
with a reection symmetry that are more general than just a ball. The additional
condition necessary for the argument of [9] is that the domain is also convex in the
direction perpendicular to the plane of symmetry. The combination of these two con-
ditions is known as Steiner-symmetry. And indeed, then the method of moving planes,
with the extension of [2], implies that any positive solution is symmetric and even sym-
metrically (strictly) decreasing with respect to that plane. As a direct consequence it
follows that positive solutions on regular polygons inherit the symmetry of that poly-
gon. For example, if the domain is a square, 
 = Q := fx 2 R

2 ; jxij < 1; i = 1; 2g,
then

u(x1; x2) = u(x2; x1) = u(�x2; x1) for all x 2 Q:

Obviously, a convex domain 
 is Steiner-symmetric in
all of its planes of symmetry, and one �nds that the
solution has the full symmetry. But one can do with
less. We will prove that there are many cases where
Steiner-symmetry in some directions is suÆcient for
any positive solution to inherit the full symmetry. A
typical example in R2 is the star of David. Although Figure 1: Star of David

it has 6 axes of symmetry, it is Steiner-symmetric in only 3 directions. Hence by using
the arguments as in [9] one �nds

u(x1; x2) = u(�x1; x2) = u
�
R2�=3(x1; x2)

�
for all x 2 S.o.D. (as in Fig. 1);

where R2�=3 is the rotation around the center with angle 2�=3. The argument does
not show that the solution is invariant under a rotation R�=3. In other words, if u is a
solution, then, a priori, uÆR�=3 could be a di�erent solution. We will supply an argu-
ment that allows us to compare a solution with its reection in a non-Steiner direction.
As a consequence positive solutions on domains such as the Star of David have the
full symmetry. The question whether or not positive solutions on the hexagonal and
pentagonal star are symmetric was mentioned in [15].

2 Main results

First let us recall the de�nition of Steiner-symmetry:

De�nition 1 A domain 
 � R
N is called Steiner-symmetric with respect to the

(hyper-)plane x1 = 0, if it is convex and symmetric in the x1-direction, in other

words, if for every (x1; x
0) := (x1; x2; : : : ; xN ) 2 
,h

(x1; x
0); (�x1; x0)

i
:=

n
(t; x0); jtj � jx1j

o
� 
: (2)

De�nition 2 A function u : 
 7! R is called Steiner-symmetric with respect to the

plane x1 = 0, if all of its level sets 
c := fx 2 
 : u(x) > cg are Steiner-symmetric

with respect to the plane x1 = 0.
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To present our results we distinguish two cases. First we consider domains which
are invariant under rotations about one axis, and reections about a hyperplane
containing this axis, later those which are invariant under rotations about multiple
axes.

2.1 Symmetry of 
 � R
N under rotations and reections for

the �rst two coordinates

The domains that we consider in this section are symmetric under the rotation R�=n

in the (x1; x2)-plane of angle �=n and a reection across the plane x1 = 0. Here n
is some �xed number in N+ . Domains with this symmetry include the star of David
and domains in R3 as in Figure 2. The corresponding algebraic group is known as the
dihedral group D2n. We exclude geometries that are symmetric under odd rotations
such as the pentagonal \red" star or the tetrapod in R3 from Figure 3.

Figure 2: Invariant under rotation/reection with a Steiner-symmetry

Figure 3: Odd order rotation-symmetries, no Steiner-symmetry.

Theorem 3 Let n 2 N and suppose that 
 � R
N is invariant under rotation by �=n

in the (x1; x2)-plane. Moreover, assume that 
 is Steiner-symmetric with respect to

the plane x1 = 0. Then any positive solution u 2 C
�
�

�
\ C

2 (
) of (1) satis�es

u(x1; x
0) = u(�x1; x0) = u

�
R�=n(x)

�
for all x = (x1; x

0) 2 
: (3)

2.2 Invariance of 
 under cubic symmetry

Representations of this group are well known: the rotation and reection symmetries
of both the cube and the regular octahedron. The corresponding point group is
denoted by Oh . Oh ' O � Z2 where the octahedral group O corresponds to the
rotations of the regular octahedron and Z2 with the reection in the point (0; 0; 0).
Since we are interested in geometric, and not algebraic questions, we have to de�ne
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the respective group actions in relation to a �xed direction for the Steiner-symmetry.
For algebraic properties of symmetry groups we refer to [1] and [13]. For regular
polyhedra see [5].

� R1 represents Oh as generated by the rotations of angle �=2 about every carte-
sian axis, and the reections in the planes xi = 0, i = 1; 2; 3.

� R2 represents Oh as generated by the rotation of angle �=2 about the x3-axis,
the rotations of angle �=2 about lines through zero perpendicular to the planes
x1 = x2 resp. x1 = �x2, and the reections in the planes xi = 0, i = 1; 2; 3.

See [13, page 74] to �nd that Oh can be generated by three elements.
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Figure 4: a) A stellated cube and b) Kepler's Stella Octangula, which are invariant
under R1, respectively R2. The symmetries of both bodies give rise to the same
algebraic group Oh .

In this subsection we restrict our attention to two model cases of nonconvex do-
mains. The �rst one is a three-dimensional star like the one in Figure 4a), whose
corners point into the direction of the axes, just like the normal vectors on a cube.
This domain is invariant under elements T 2 R1. It is Steiner-symmetric with respect
to the planes xi = 0, i = 1; 2; 3. By the method of moving planes any positive solution
of (1) is identical in opposite points, i.e.

u(x1; x2; x3) = u(�x1;�x2;�x3) for all x 2 
: (4)

However, a priori u(x) = u(x1; x2; x3), v(x) = u(x2; x1; x3) and w(x) = u(x1; x3; x2)
could all be di�erent from each other. Therefore the following result is new.

Corollary 4 Let 
 be invariant under R1 and Steiner symmetric with respect to

x1 = 0, such as in Figure 4a). Then any positive solution u 2 C
�
�

�
\ C

2 (
) of (1)

satis�es

u(x1; x2; x3) = u (T (x; x2; x3)) for all x = (x1; x2; x3) 2 
 and T 2 R1: (5)

The second model domain is constructed as follows. If we glue a regular tetra-
hedron on each face of a regular octahedron, we obtain a stellated octahedron as in
Figure 4b). This polyhedron is known as Kepler's Stella Octangula. One can also look
at it as a combination of two large tetrahedrons. It is invariant under the elements of
R2. From the moving plane method we may conclude that

u(x1; x2; x3) = u(�x1;�x2; x3) = u(�x2;�x1;�x3) for all x 2 
: (6)

However, a priori u(x) = u(x1; x2; x3) and v(x) = u(x1; x2;�x3) could be di�erent
from each other. This is ruled out by the following result.
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Corollary 5 Let 
 be invariant under R2 and Steiner symmetric with respect to

x1 = 0, such as in Figure 4b). Then any positive solution u 2 C
�
�

�
\ C

2 (
) of (1)

satis�es

u(x1; x2; x3) = u (T (x; x2; x3)) for all x = (x1; x2; x3) 2 
 and T 2 R2: (7)

3 Proofs

Proof of Theorem 3. Although the theorem above holds for general dimensions
for the sake of simplicity we will illustrate the proof by the two-dimensional star of
David.

Using the Steiner-symmetry with respect to the plane x1 = 0 and generalizations
of the result by Gidas, Ni and Nirenberg [9] to nonsmooth domains (see [2], [3] and
[8, Theorem 3.3]) one �nds that

u(x1; x
0) = u(�x1; x0) for all (x1; x

0) 2 
; (8)
@
@x1

u(x1; x
0) < 0 for all (x1; x

0) 2 
 with x1 > 0: (9)

Similar claims are true with respect to rotations in the (x1; x2)-plane by 2�=n. This
does not yield the full symmetry as claimed in the theorem, because we are not allowed
to draw conclusions for a rotation by �=n yet. Comparing with the star of David we
only �nd that the value of u is identical at identical symbols in Figure 5.

x2 "

x1
�!

}}

}}

}}

||

||

||

Figure 5: Symmetries due to the moving plane method

In the next step we will compare u with its reection v in the plane x2 = 0. Because
of the already known symmetries of u this reection coincides with a rotation by �=n.
Even if these two functions u and v are not identical we �nd by the symmetry from
the moving plane argument above, that

u(x) = v(x) for all x 2 `i; i = 1; : : : ; n (10)

where the `i, i = 1; : : : ; n, denote the remaining planes of symmetry of 
 .
We intend to show that u and v coincide everywhere in 
. To do so we proceed by

contradiction and consider one of the components of 
n
Sn
i=1 `i. To �x the argument

we choose the one between `1 and `2 on the right half space and denote it by C1. It
will suÆce to show that u and v coincide on C1. Without loss of generality we may
assume that there is y 2 C1 such that u(y) < v(y).
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Figure 6: Notations used in the proof

On this component we will apply a sweeping argument. See [12] for a statement of
the so-called sweeping principle. Instead of joining the solution and a reected copy
as in [9] we start with u and a copy of v which is shifted to the left. Then we move v
in the x1-direction `under' u until it touches u from below somewhere on C1. We set

v(t;x1; x
0) := v(x1 + t; x

0) for x = (x1; x
0) 2 
; (11)

and denote by 
(t) the support of v(t; �). Note that for large positive t the set 
(t)
lies to the left of 
. Suppose that u 6� v(0; �).

Now let us remind that, since x1 > 0 for x 2 C1, the moving plane argument in
the �rst step of this proof gives us that both u and v are strictly decreasing on C1 in
the x1-direction:

@
@x1

u(x1; x
0) < 0 for all (x1; x

0) 2 C1;
@
@x1

v(x1; x
0) < 0 for all (x1; x

0) 2 C1:

Hence we have for 0 � t1 < t2 that

v(t2;x) < v(t1;x) for x 2 C1 \ 
(t1) \ 
(t2): (12)

Setting A(t) := fx 2 C1 \ 
(t);u(x) < v(t;x)g, the previous observation yields that
A(t2) � A(t1) for 0 � t1 < t2. Since we have assumed that u(y) < v(0; y) it follows
that A(0) is nonempty. Moreover, since A(t) is empty for t large and since the A(t)
are open for all t, there exists a smallest t0 > 0 such that A(t) is empty. Next we �x
a point z where u and v(t0; �) `touch'. Indeed by the minimality of t0, for every n 2 N
there exists a zn in A(t � 1

n
), and this sequence has a convergent subsequence with

limit z. We assume without loss of generality that zn ! z.
Two possibilities are conceivable: either z 2 C1\ 
(t0) or z 2 C1\ @
(t0): If

z 2 C1\ 
(t0), then z 2 C1\ 
(t0) because t0 > 0 and

v(t0;x) < v(0;x) = u(x) for all x 2 @
 \ 
(t0):

We �nd that(
��

�
u� v(t; �)

�
= g(x) �

�
u� v(t; �)

�
in C1 \ 
(t0);�

u� v(t; �)
�

� 0 in C1 \ 
(t0);
(13)

where the Lipschitz condition for f implies that g, de�ned by

g(x) :=

Z 1

0

f
0
�
� u(x) + (1� �) v(x)

�
d�;
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is bounded. By the strong maximum principle one �nds that either u � v(t0; �) or
u > v(t0; �) in C1 \ 
(t0), which both give a contradiction.

The case z 2 C1 \ @
(t0) remains. Moreover, since we already excluded z 2
C1\ 
(t0), we may assume that

u > v(t0; �) in C1\ 
(t0):

Now we will use the maximum principle for small domains. See [3] or [8, Th. 2.19]:

There exists Æ = Æ (n; kc+k
1
; diam (D)), such that if the Lebesgue measure

of D satis�es jDj < Æ; then a solution of ��u � cu in D and u � 0 on

@D, is nonnegative.

Fix Æ = Æ (n;Lf ; diam (C1)) where Lf is the Lipschitz constant of f: Next we choose
an open neighborhood O of C1\ @
(t0) such that the Lebesgue measure of N1 :=
O \ C1\ 
(t0) satis�es

jN1j < 1

2
Æ:

On K :=
�
x 2 C1\
(t0);x =2 N1

	
there is " > 0 such u � v(t0; �) + ": Hence by

continuity there exists t1 < t0 such that

u � v(t1; �) on K: (14)

The number t1 can be choosen suÆciently close to t0 such that N2 := C1\
(t1)n
(t0)
satis�es

jN2j < 1

2
Æ:

One may conclude by noting that @ (N1 [ N2) � @K [ @
(t1) implies u � v(t1; �) on
@ (N1 [ N2) and hence by the above maximum principle

u � v(t1; �) in N1 [ N2:

With (14) it follows that

u � v(t1; �) in N1 [N2 [ K � C1\ 
(t1);

which contradicts the minimality of t0:

Proof of Corollary 4. To verify this corollary, one has to realize that Theorem 3
can be applied with respect to each cartesian plane (xi; xj), i 6= j, and that the star
in Figure 4a) is Steiner symmetric with respect to each plane xi = 0, i; j = 1; 2; 3.

Proof of Corollary 5. The proof of this corollary is reduced to another application
of Theorem 3, but the details are more delicate, because of the star's geometry. We
notice that 
 is Steiner symmetric with respect to the six planes x1 = 0, x2 = 0,
x1+x2+

p
2x3 = 0, x1�x2+

p
2x3 = 0, �x1+x2+

p
2x3 = 0 and �x1�x2+

p
2x3 = 0.

From the moving plane method we may then conclude that

u(x1; x2; x3) = u(�x1;�x2; x3) = u(�x2;�x1;�x3) for all x 2 
: (15)

These results are illustrated by each of con�gurations in Figure 7, in which analogously
to Figure 5, identical colors indicate symmetries due to the moving plane method.
Moreover, Figure 5 shows that under this symmetry the reection in x3 = 0 coincides
with a rotation.

However, since 
 is reection symmetric in x3, but not Steiner symmetric with
respect to x3 = 0, a priori u(x) = u(x1; x2; x3) and v(x) = u(x1; x2;�x3) could be
di�erent from each other. Moreover, this reection cannot be generated from those
that are used in the moving plane method. It is in this situation, that one can
mimmick the proof of Theorem 3.
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Figure 7: Several views of the Stella Octangula

4 Related results and open problems

In this paragraph we record some related observations.

Remark 6 If problem (1) has a maximal positive solution u, then this u inherits all

the symmetries of 
:

Indeed, suppose that 
 is invariant under some group action T , but u is not.
Then u(x) and u(Tx) are two di�erent, non-ordered solutions, a contradiction to the
maximality of u.

Remark 7 If problem (1) has a positive solution u and if f(0) is positive, then (1)

has at least one positive solution with all the symmetries of 
.

To see this, assume that 
 is invariant under a �nite group R with elements
Ti, i = 1; : : : ; n. Set v(x) := minfu(Tix); i = 1; : : : ; n g. Then v(x) is a positive
symmetric supersolution of (1), while zero is a strict subsolution of (1). Therefore
(1) has a maximal positive solution w(x) in the interval (0; v(x)], see [7]. Notice that
w(Tix) � v(Tix) = v(x) for every i = 1; : : : ; n. This and the maximality of w imply
w(x) = w(Tix) for all Ti 2 R.

For some domains the case f(0) < 0 can be excluded on other grounds.

Remark 8 If 
 � R
2 has an acute angle and if f(0) < 0, then (1) cannot have a

positive solution, see [14]. Therefore existence of a positive solution on the star of

David implies that f(0) � 0:

Let us explicitly point out, that in the context of the above remarks there may
also be nonsymmetric positive solutions of (1). This is the case for instance if 
 is
an annulus, see [4, 10, 11], or a dumb-bell [6]. To rule out any nonsymmetric positive
solution of (1), as we have done in this paper, we need to assume Steiner symmetries,
starshapedness and invariance of 
 under an appropriate reection, i.e. a reection
across a hyperplane, with respect to which 
 is not Steiner-symmetric. However, we
expect every positive solution of (1) to be symmetric on a larger class of domains,
some of which are depicted in Figure 8. To be more speci�c, we believe that any
domain 
 with the property that all sets 
d := fx 2 
; d(x; @
) > d g (for d > 0)
are starshaped with respect to zero, inherits any symmetry to any positive solution
of (1).

Note that the �rst three domains in Figure 8 fail to have Steiner-symmetries. Al-
though the last one has such a Steiner-symmetry it is not in an appropriate direction.
For this domain any positive solution u(x1; x2; x3) of (1) satis�es (4), but u(x1; x2; x3)
might still di�er from u(x2; x1; x3).

Remark 9 Finally we should mention that our main result, Theorem 3, remains true

if the semilinear di�erential equation in (1) is replaced by a quasilinear one such as

�div ( a(u; jruj)ru ) = f(u; jruj), with a and f satisfying suitable assumptions.
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Figure 8: Domains without appropriate symmetry. The third one is known as a
Kepler-Poinsot polyhedron: the `small stellated dodecahedron'.
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