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Abstract

We consider a new class of quasilinear elliptic equations with a power-like reaction term:
the differential operator weights partial derivatives with different powers, so that the underlying
functional-analytic framework involves anisotropic Sobolev spaces. Critical exponents for embed-
dings of these spaces into L7 have two distinct expressions according to whether the anisotropy
is “concentrated” or “spread out”. Existence results in the subcritical case are influenced by this
phenomenon. On the other hand, nonexistence results are obtained in the at least critical case
in domains with a geometric property which modifies the standard notion of starshapedness.

Résumé

Nous considérons une nouvelle classe d’équations elliptiques quasilinéaires avec un terme de
réaction du type puissance: les dérivées partielles ont des puissances différentes dans 'opérateur
différentiel, de fagcon que I’espace fonctionnel naturel devient un espace de Sobolev anisotropique.
Les exposants critiques pour les injections de ces espaces dans L? ont des espressions différentes
qui dépendent de la “concentration” de ’anisotropie. Nos résultats d’existence dans le cas sous-
critique sont influencés par ce phenomene. D’autre part, nos résultats de non existence dans le
cas critique et sur-critique sont obtenus dans des domaines ayant une propriété qui modifie la
notion usuelle d’ensemble étoilé.
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1 Introduction

We are interested in existence and nonexistence results for the following anisotropic quasilinear
elliptic problem

— Z@i (\(9iu|m"*28iu) = P! in Q

i=1
v>0 inQ (1)
u=0 on OS2

where Q@ C R"™ (n > 2) is a smooth bounded domain, m; > 1 for all i, A > 0 and p > 1. Note that
if m; = 2 for all 4, then (1) reduces to the well-known semilinear equation —Au = AuP~1!.



There is by now a large number of papers and an increasing interest about anisotropic problems.
With no hope of being complete, let us mention some pioneering works on anisotropic Sobolev
spaces [14, 19, 24, 25, 27] and some more recent regularity results for minimizers of anisotropic
functionals [1, 5, 10, 17, 18, 28].

Historically, the study of the semilinear problem —Awu = f(x,u) started by settling the back-
ground of a rigorous functional-analytic framework (Sobolev spaces) and by establishing the exis-
tence of solutions in a variational way, that is, minimizing suitable functionals. But then, the fol-
lowing step was to find solutions by means of minimax methods such as Birkhoff theory, Ljusternik-
Schnirelmann category, mountain-pass and linking theorems. As far as we are aware, minimax
methods have not yet been used for problems like (1), so the present paper is a first contribution
in this direction.

A further motivation for the study of (1) is given by the necessity of an explanation of the link
between quasilinear elliptic equations and embedding inequalities. It is known that for quasilinear
elliptic equations involving the m-Laplace operator A,, (m > 1), power-like reaction terms exhibit
several critical exponents, see [9] and references therein. More precisely, critical exponents of suit-
able embedding inequalities are also the borderline between existence and nonexistence results for
solutions of such equations. Therefore, one may wonder if these results may be obtained only using
functional analysis, without exploiting the typical features of elliptic operators such as regularity
theory, maximum principles, homogeneous eigenvalue problems. And the elliptic operator in (1)
precisely fails to possess these properties.

Our starting point is the observation that embedding theorems for anisotropic Sobolev spaces
occur below a critical exponent which has a different value if the anisotropy is spread out or con-
centrated. More precisely, let m = (mq, ..., m,) and denote by Wolm(Q) the closure of C2°(Q2) with
respect to the norm

n
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When the exponents m; are not “too far apart”, the critical exponent m* for the embedding
VVO1 Q) C L(RQ) is just the usual critical exponent corresponding to the harmonic mean of the
my; on the other hand, if the m; are “too much spread out” it coincides with the maximum m
of the m;. Therefore the effective critical exponent is in fact the maximum of these two values,
Moo = max{m*, m4 }, see Theorem 1 below. Existence results for (1) are quite different in the two
mentioned situations.

However, before wondering about existence results, due to the lack of a satisfactory regularity
theory, one must be careful in describing what is meant by a solution of (1). In next section
(Definition 1), we introduce three different kinds of solutions, weak, mild, and strong, according
to their summability. In Theorem 2 we prove that, in the subcritical case, weak solutions of (1)
are actually strong, namely they are summable at any power. In order to prove this fact, due to
the anisotropy of the differential operator, we need several essential modifications of the method
developed by Brezis & Kato in [4].

Once the different kinds of solutions are clarified, we may turn to existence results. In Theorems
3 and 4 we apply respectively constrained minimization methods and the mountain-pass Theorem
in order to prove the existence of strong solutions of (1) in the “compact” case. It turns out that
also the application of these by now standard tools is not straightforward. First of all, the “kinetic
functional” (which coincides with the Dirichlet integral when m; = 2) is not homogeneous and
rescaling is not allowed. Therefore, the minimization method merely enables us to find some A for



which (1) admits nontrivial solutions. Moreover, it is not clear which exponents p yield a resonance
situation, i.e. eigenvalue problems, see Problem 2 in Section 8.3. On the other hand, the application
of the mountain-pass Theorem requires further restrictions on the exponents m;, see (5) below and
the remarks in Section 8.1.

In order to prove nonexistence results for at least critical growth problems, the most common
tool is the celebrated Pohozaev identity [21, 22]. However, even its weaker formulations require
solutions of class C1(Q2) in order to have well-defined boundary terms, see [7, 8, 12]. And it seems a
challenging problem to obtain such regularity for weak solutions of (1), see [10]. To overcome this
difficulty we introduce a sequence of “doubly approximating” problems inspired by a nice idea of
Otani [20]. This procedure turns out to be quite delicate, due to the anisotropy of the operator.
Indeed, we need to prove a strong regularity result for the approximating problems, see Theorem
5. When the approximation procedure is over, we are able to prove our main nonexistence result,
see Theorem 6. It states that, in the at least critical case, (1) admits no mild solutions other than
u = 0. This result requires two assumptions of different kind. First, the domain 2 must have
a new geometrical feature, which modifies the classical notion of starshapedness according to the
anisotropy of the operator; we call this property a-starshapedness and we feel that it sheds some
light on the interplay between the structure of the differential operator and the geometry of the
domain. Second, the exponents m; must be sufficiently concentrated: this technical assumption,
which might probably be relaxed (see Problem 3), guarantees the regularity of solutions to the
coercive approximating problem.

The precise statements of the results are given in Section 2, and their proofs are postponed to
the subsequent sections. Finally in Section 8, we collect some further remarks and we address some
related open problems.

2 Results

2.1 FUNCTIONAL SETTING AND SUMMABILITY OF SOLUTIONS

Throughout the paper we assume that 2 is an open bounded domain with (at least) Lipschitz
boundary 9f2, and we denote by (, ) the Euclidean scalar product on R"™. We also always assume,
without recalling it at each statement, that the exponents p and m; appearing in (1) satisfy the
conditions

n
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The last condition in (2) ensures that the anisotropic Sobolev space WO1 "™(Q)) embeds into some
Lebesgue spaces L(Q); if it is violated, one has embeddings into Orlicz’s or Hélder’s spaces. Em-
beddings of the kind VVO1 Q) € LIY(Q) are in fact a fundamental tool to study the existence of
solutions for the boundary value problem (1). Let us set

. n

m* = ﬁ , my = max{my,...,mp} , Moo = max{my, m*} . (3)
=1

Note that m* is well-defined thanks to (2), and that it coincides with the usual critical exponent
m* := nm/(n —m) for the harmonic mean m of the m;. Note also that it may well happen that

m4 > m* (this occurs for instance if n = 4, m; = mg = mz = 2, my = my = 100), thus it is



meaningful to define the maximal exponent mq,. Actually, ms turns out to be the “true” critical
exponent. In Section 1 we prove the following result, which we could not find in the literature.

Theorem 1. Let Q C R™ be an open bounded domain with Lipschitz boundary. If (2) holds, then
for all q € [1,muo] there is a continuous embedding Wol’m(Q) C LU(Q). For q < meo, the embedding
18 compact.

Remark 1. Theorem 1 is no longer true if the zero trace condition on the boundary is removed.
More precisely, denote by W1™(Q) the closure of the restrictions to  of functions in C2°(R™)
with respect to the norm || - |1, + || - |[i. Then, even for smooth domains €2, in order to have the
embedding W1™(Q) ¢ L™ (£2) some geometric restrictions on {2 are needed, see e.g. [14, 19, 24, 25].

We are now going to characterize three different kinds of solutions to the boundary value problem
(1). To this end, we also need to consider the smallest exponent

m_ :=min{my,...,my} ,
and, for given ¢ € [1, +00], we denote by ¢’ := ¢q/(¢ — 1) its conjugate exponent.
Definition 1. We say that u € Wolm(Q) N LP=1mx (Q) is a weak solution of (1) if u > 0 a.e. in Q
and

3 /Q 05| 2Budy0 = A /Q Pl Ve e WE(Q) | (4)
=1

If in addition v € LP~V"(Q), we say that u is a mild solution. Finally, if u € L () we say that
u is a strong solution.

Clearly, every strong solution is also a mild solution, and the latter is also a weak solution. In
some cases, we may prove the converse implications:

Theorem 2. If one of the two following situations occurs
(1) p < Mo (17) p =Moo and Mme > my
then every weak solution of (1) is also a strong solution.

A proof of Theorem 2 is given in Section 4. For related results concerning local minimizers, we
refer to [5, Theorem 2]. We believe that Theorem 2 holds under the mere assumption p < mqo,
see Problem 1 in Section 8.3. In Section 8.2 we discuss an example which suggests the kind of
solutions we should expect, according to the value of p. We also stress that, in the semilinear case
(i.e. m; = 2), elliptic theory enables one to show that a strong solution of (1) in a smooth domain
is a classical solution in C?(€2), but for general m; this regularity seems out of reach.

2.2 EXISTENCE RESULTS

First of all, we remark that it is not clear which p yields the so-called resonance for (1). Namely, is
there some p which gives rise to a “generalized eigenvalue” problem? Obviously, if mi = m_, the
resonance problem corresponds to p = m_, see [3]. In the general case, we have



Theorem 3. Assume that p < mso. Then, for any v > 0 there exist A, > 0 and uy € Wol’m(Q)
such that ||uy||, = v and u, is a strong solution of (1) when X\ = \,.

In other words, there exists a continuum of pairs (A, uy) € (0,00) x Wol’m(Q) which solve (1),
seen as an eigenvalue problem. We point out that Theorem 3 cannot be used to deduce the existence
of a solution to problem (1) for a given \. In fact, unless all the m; are equal, rescaling methods
fail due to the lack of homogeneity of the differential operator.

Then, to recover an existence result for fixed A, we apply the mountain-pass Theorem [2]. In
order to deal with a “superlinear” subcritical problem we need to assume that

my < m’. (5)

Note that if m; = m4 for n — 1 indices 4, then (5) is automatically fulfilled; in particular, it holds
if n =2.
Then we prove:

Theorem 4. Assume that the exponents m; satisfy assumption (5) and let p € (m4, m*). Then,
for all A > 0 problem (1) admits a nontrivial strong solution.

Due to assumption (5), this statement is probably not optimal, but it seems not clear at all which
are the sharp assumptions that ensure both a mountain-pass geometric structure and the Palais-
Smale condition for the involved functional, see Problem 2 in Section 8.3. In Section 8.1 we exhibit
two examples where the assumptions of Theorem 4 are violated and the mountain-pass Theorem
cannot be applied.

2.3 REGULARITY AND NONEXISTENCE RESULTS
We now require that the m; satisfy the additional assumption

m; > 2 (6)
and the “not too far apart condition”

n+ 2

my < m_ . (7)

Note that if (6) and (7) hold, we necessarily have n > 3 and (5), so that ms = m*. In order
to establish our main nonexistence result, we consider some approximating problems, which are
coercive and uniformly elliptic, and we prove that they admit a unique and smooth solution.

Theorem 5. Assume that 9 € C>7, and that the exponents m; satisfy assumptions (6) and (7).
Letp>1,A>0 and f € CX(Q). Then, for all € > 0, the problem

>0, [(|aiwymf2 +e(1+|Dw)) ™" gw| + NwP2w=f  nQ
i=1 (8)
w=0 on 992

admits a unique (classical) solution w € C%(Q).



We finally turn to the at least critical case p > m*. We prove nonexistence results in domains
which have C?7 boundary and satisfy the following geometrical condition.

Definition 2. Let o = (aq,...,a,) € R™ with «; > 0 for all i. We say that a bounded smooth
domain 2 C R" is a-starshaped with respect to the origin if

Z o;ziv; > 0 on 0N , (9)
=1

with v = (v1,...,1,) denoting the outer normal to J€2. We say that Q is strictly a-starshaped with
respect to the origin if (9) holds with strict inequality. If these inequalities hold after replacing z;
by z; — P;, we say that € is (strictly) a-starshaped with respect to the center P = (Py,... P,). If
Q is (strictly) a-starshaped with respect to some of its points, we simply say that Q is (strictly)
a-starshaped.

Several remarks about this notion of “anisotropic starshapedness” are in order. We collect them
in Section 2.5.

Since the solution in Theorem 5 is smooth up to the boundary, we may write the Pohozaev
identity, see Proposition 1. Then, thanks to a suitable double passage to the limit, we prove:

Theorem 6. Assume that 92 € C?7, and that the exponents m; satisfy assumptions (6) and (7).

Let a = (o, ..., ) with
()
Oy =N | — — " .
m; m

Assume that either p > m™* and ) is a-starshaped, or p = m* and Q is strictly a-starshaped. Then,
for every X\ > 0, the unique mild solution of (1) is u = 0.

Note that by (5) the a; in Theorem 6 are all strictly positive. If m4 = m_, then a; = 1 for all 4,
and a-starshapedness reduces to standard starshapedness.

2.4 MISCELLANEOUS CONSEQUENCES

Thanks to Theorem 2, we can slightly improve Theorem 6 when p = m™.

Corollary 1. Assume that 9Q € C?7, and that the exponents m; satisfy assumptions (6) and (7).
Let a = (aq, ..., ) be as in Theorem 6. Assume that p = m* and Q) is strictly a-starshaped. Then,
for every A > 0, the unique weak solution of (1) is u = 0.

As already mentioned, existence results are strongly affected by the validity of condition (5);
notice indeed that, as a consequence of Theorems 3 and 6, there holds

Corollary 2. If p = m* < my, then for any domain Q there exists A > 0 such that (1) admits a
nontrivial strong solution. If p=m* > m4, and (6) and (7) hold, then there exist domains Q0 such
that for every A > 0 the unique weak solution of (1) is u = 0.

By analyzing the proof of Theorem 6, we realize that in some cases we may state a stronger result,
which excludes also the existence of sign-changing solutions. Indeed we have:



Corollary 3. Assume that 9Q € C?7, and that the exponents m; satisfy assumptions (6) and (7).
Let o = (aq, ..., ) be as in Theorem 6. Assume that p > m* and Q is a-starshaped. Then u =0
is the unique mild solution to the problem

=30 (|0u™ 2 0u) = Aulf?u in Q

=1

u=20 on 0N} .

2.5 ABOUT a-STARSHAPEDNESS

The notion of a-starshapedness with respect to the center P may be reformulated in a more geo-
metric way as

(To(x — P),v) =(x — P, Tov) >0  on 09, (10)

where T, denotes the second order tensor ) ! | a;e; ® e;. In the following, by starshapedness we
mean the classical notion, which corresponds to our definition when all the «; coincide, namely
when the tensor T, is a positive multiple of the identity matrix. Some basic differences between
a-starshapedness and (ordinary) starshapedness as well as the relationship between the two notions
reveal themselves by looking at simple examples in dimension n = 2.

Example 1. The simplest example of a-starshaped domain is a ball B: it is immediate that it
is a-starshaped with respect to its center O for any choice of a. Nevertheless, if a; # a9, and
we move the center P of a-starshapedness away from the the center O of the ball, B may result
not a-starshaped with respect to P (recalling (10), see Figure 1). This shows that, as it happens
for starshapedness, the notion of a-starshapedness is sensitive to the choice of the center. But, in
contrast to starshapedness, even a convex domain may be not a-starshaped with respect to some
of its points.

Figure 1 Figure 2

Example 2. Consider an ellipse E with equation az? + y? < 1 (a > 0). One can check that E is
a-starshaped with respect to O = (0,0) for every a. Now rotate E clockwise by an angle 7/4: the
rotated domain E’ may be no longer a-starshaped with respect to O (recalling (10), see Figure 2).
Thus, in contrast to starshapedness, a-starshapedness is not invariant under rotations.



Example 3. For fixed a with a; # a9, it may happen that a domain is starshaped with respect
to some center, but not a-starshaped with respect to any center. For instance, consider the set M
represented in Figure 3. Clearly, it is starshaped with respect to O. However, take o with ay > g,
and let P € M. To make the sum aq(x1 — Py)v1 + ag(xe — Pa)ve positive on OM, the point P should
belong to both shadowed subsets of M. The intersection between such regions is empty.

Example 4. Again for fixed o with a; # a3, the converse situation with respect to the previous
example may occur, that is, it may happen that a domain is a-starshaped with respect to some
center, but not starshaped with respect to any center. Consider for instance the set N represented
in Figure 4. Since the product x1171 remains positive on the whole boundary of IV, choosing a with
a1 > ag the condition ayx1v1 + asxare > 0 is satisfied on N, so N is strictly a-starshaped with
respect to 0. On the other hand, N cannot be starshaped with respect to any P, because such a
P should belong to the intersection of the two disjoint shadowed subsets of N.

\/

@) 0
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Figure 3 Figure 4

3 Proof of Theorem 1

The continuity of the embedding I/VO1 Q) € L™+(Q) relies on a well-known Poincaré-type inequal-
ity. More precisely, denoting by {ey,...,e,} the canonical basis of R", assume that Q has width
a > 0 in the direction of e;, namely sup, ,cq (* — y,e;) = a. We claim that, for every ¢ > 1, we
have

aq
lullg < S llGully — Vu e CH (). (11)

We prove (11) in the case ¢ > 1, the case ¢ = 1 being simpler. Assume without loss of generality
that Q@ C {z € R™; 0 < x; < a}, and, for all z € R", set x = (z;,2') in order to emphasize its i-th
component. Let u € C}(Q) and let v(x) = u(x)d;u(x). We consider u (and v) as defined on the
whole R, set to 0 outside spt(u). Denote by vt (resp. v~) the positive part (resp. negative part)
of v. Then, we have

|u(a, z)|? — [u(0,2")|?

q
_ / u(t, )12 (t, 2/ )dt = / lu(t, )12 (¢, 2')dt + / ult, )20 (¢, ') dt
0 0 0

0=
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and

/ fu(t, )20 (¢, 2')dt — / fu(t, )20 (¢, 2”)dt = / fu(t, )| o(t, ')\ de
0 0 0

which show that

a 1 a
(U e e
0 0

Therefore, we also have

Ty

|u(xi, 2")|? = q/O Z lu(t, z)|? 20 (t, 2’)dt < q/o lu(t, )| 20 (t, 2" )dt

a a
<q [ lutta) P ()t = § [ e ) o ).
0 0
Hence, by integrating first with respect to x; € (0,a) and then with respect to 2/ € R"~! we obtain

Jully < SHllullg=0ull,
via Holder’s inequality and (11) follows. Hence, by density, the embedding VVO1 Q) © L™ (Q)
is continuous. On the other hand, for the continuity of the embedding VVO1 Q) C L™(Q), we
refer to [27, Teorema 1.2] and [29, Corollary 2]. Thus, the embedding WO1 Q) C L™= () is also
continuous.

In order to show the compactness of the embedding WO1 Q) C LIY(Q) for ¢ < Mmoo, We combine
the continuous embedding Wol’m Q) C Wol’m_ (Q) with the compact embedding Wol’m_ () c LY()
to deduce the compact embedding VVO1 Q) € LY(Q). Then we conclude by interpolation between
LY(Q) and L™= (). 0

4 Proof of Theorem 2

We first show that any weak solution of (1) belongs to LY(2) for all ¢ € [1,00). We have two
different proofs under assumptions (i) and (ii), and we begin with

(ii) The case my < m* = p.
Let u be a weak solution to (1). The assertion that u belongs to L%(Q2) for all ¢ < co may be

equivalently reformulated as
u e Letm™ () foralla >0 . (12)

By Theorem 1, to have (12) it is enough to show that u*! VVO1 ™(€1), which is in turn equivalent
to

im 3 (/Q &:(u - min[u®, L)) mi)l/mi < 400 (13)

L—+o00 4
=1




In any case (i.e. if the Lh.s. of (13) is bounded or unbounded), as L. — oo, up to a subsequence,
there exists at least one index j such that

Z.Zn: (/n mi>1/mi < C(/Q ‘aj(u ' min[uavL])’mvl/mj : (14)

1
where C denotes some positive constant independent of L. Fix such an index j, and, for every
L >0, set ¢, :=w - min[u®", L™i] € Wolm(ﬂ) Note that

O;(u - min[u®, L])

|0u|™ 2 0ud;0r, > min[u®™ | L™ |Qju|™ forae. z€Q,Vi=1,...,n, (15)
and

m;

< (a+ 1)™ minf[u®™, L"]|0ju|™ forae. x€Q,Vi=1,...,n. (16)

Oi(u - min[u®, L])

Test (1) with ¢, integrate by parts and use (15), Holder’s inequality and Theorem 1 to obtain (for
any k > 0)

n n
Z/ min[u®™, L] - |0u|™ < Z/ |Ou|™ 2 0ud; 01, = /\/ u™ - min[u®™, L]
i=1 79 i—1 Y Q

=C + )\/ uw™ T ™ min[u®™ | L™
u>k

. (m*—mj)/m* m* /m; mj/m*
<Cp+ A (/ u™ ) . </ (umj -min[u“mﬂ',Lmﬂ']) J)
u>k u>k
n mi 1/m1'
>(/, )

i=1
where C}, — oo and ¢, — 0 as £k — oo and they may denote different constants from line to line

mj

0;(u - min[u®, L]) ,

m;/m*
< O + ek </ (u- min[u“,L])m*> < Ck +e¢p
Q

(with Cf independent of L provided one takes L > k%). We also stress that in applying the Holder’s
inequality, we have used the assumption m4 < m*). ;From the last inequality and from (16) we
infer (for L > k%)

n

>

/ 0w - minfu, 1)) < G + 2
Q 1

8i(u - minfu®, L)) )m> l/mi] " (17)

Inserting (14) into (17), we get

m;

/Q)aj(u-min[u“,L])‘mj gcﬁgk/ﬂ‘aj(u.mm[ua,m)

Choosing k sufficiently large (i.e. ), sufficiently small), this shows that the r.h.s. of (14) remains
bounded as L — 400 and (13) follows.

(i) The case p < Meo.

Let u be a weak solution to (1). We claim that, if the implication

we L+P(Q) = u e LiotDme(Q) (18)

10



holds for all @ > 0, then u € L4(Q2) for all ¢ < oo. Indeed, define the sequence {aj} by setting

_ Moo — P _ Moo Moo — P
ap = ——, k41 = ak + .
m4 my m4

Since ap — +oo (thanks to the assumption p < my), applying (18) with a = ax, we deduce that
u € L1(Q) for every ¢ < oo.
Let us prove (18). By arguing as in the case my < m* = p, with m; = m,, we arrive at

Z/ min[u®" ) L] - |Qju|™ < )\/ uP - min[u®+ L] < C, (19)
Q

where C' is a positive constant independent of L because u € L*+7P(().
Assume that L > 1, let Q; = {x € Q; u(x) < 1} and note that

min[u®"*, L"™+] > min[u®", L] ae. inQ\Q, Vi=1,.,n (20)

Then, by (16), (19) and (20) we obtain (for constants C' indepedent of L)

w - minfu®, L]) RS CZ/ minfu®™, L™ - |ju|™ < C' . (21)
Q

> [ Jostu vt 1|
i—1 7\ i=1 \ 2

On the other hand,

WL

Hence, combining (21) and (22) and letting L — oo we obtain that

n

:Z(a—l—l)mi/g e

i=1 1

mi
(u - minfu® L])‘

M |Gl < O Z/ O™ < o0, (22)
i=1 79

a+1

<+oo.

By Theorem 1, u € L@+t (Q) and (18) is proved.

Conclusion. Put f(x) := AuP~!(z) so that also f € L4(2) for all ¢ < co. Then, (1) reads

- Z@Z (\&u\ml_z@u) = f in

i=1
u=20 on 0N} .
In view of [13, Theorem 2|, we obtain u € L>(12). O

11



5 Proof of Theorems 3 and 4
By Theorem 2, for both statements it suffices to prove the existence of weak solutions.

We first prove Theorem 3. Let v > 0 and consider the minimization problem

min{Z O™ e W@, Jully = 7}- (23)

i=179

Consider a minimizing sequence {uy} for (23). Since it is bounded in T/VO1 "™(Q), by Theorem 1 up
to a subsequence {uy} converges in LP(f2) to some u. Clearly, |lul[, = 7, so that u # 0. By weak
lower semicontinuity of the norm, we also infer

lim inf ||0ug|m; > ||0itt||m, Vi=1,..,n.
k—o0
Therefore, u is a minimizer for (23) and there exists a Lagrange multiplier A\, > 0 satisfying the

requirements of the statement. Moreover, u may be taken nonnegative since |u| has the same norms
as u. O

The proof of Theorem 4 is obtained as a consequence of the mountain-pass Theorem [2] in its
simplest form. Therefore, we just quickly outline it.
On the space W& "™ (Q) consider the functional

sy = [0 2

Theorem 1 ensures that J € C 1(I/Vol "(Q)). Its Fréchet derivative J' is defined by

Z/ |Ou|™ ~20;udv — A /|u|p 2w VUEWOLm(Q).

By elementary calculus, it is not difficult to show that there exists a constant C' > 0 independent
of ¢ such that

a; >0 Vi, Za_ée(()l :>Z >C£m+ (24)

m;
=1 =1 v

By the embedding W, (Q) C LP(€2) we obtain

) > 2/ 0 “' W, Vue WM Q).

This, combined with (24) by taking a; = ||0jul|m,, proves that there exists o, f > 0 such that

J(u) >« V|| w|[1,m = 5. (25)

12



Moreover, if u € Wolm(Q) \ {0} and ¢ > 0 is sufficiently large, then v := tu satisfies

J(v) <0 and [lv > 0. (26)

Conditions (25) and (26) show that the functional J has a mountain-pass geometry.
Consider now a Palais-Smale sequence {uy} for J. It satisfies (for some c)

Jup) — ¢ and  J'(ug) — 0in [W™(Q))  as k — oo,

To derive a contradiction, assume that ||ug||1 m, diverges; then,

n

o) = ) = 2 ) sy =3 (= 1) [ ol

=1

against the assumption m; < p for all i. Therefore, up to a subsequence, {uy} converges weakly
in VVO1 (Q)) to some u. By the compact embedding stated in Theorem 1, we also have uy — u in
LP(Q). Hence, since both (J'(ug),ur) — 0 and (J'(ug),u) — 0, we have

oju mi—>)\/ ulP = /aluml 27
;/Q\ N e =3 [ 10w (27)

By weak lower semicontinuity of the norms, for all i we have liminfy, ||Ojuk|lm, > ||Oitw|/m,; this,
together with (27) and weak convergence, shows that u; — u in VVO1 "™(Q). Therefore, the Palais-
Smale condition holds.

As a straightforward consequence of the mountain-pass Theorem, we deduce that J admits a
critical point. Since J(u) = J(|u|) for all u, we may assume that such critical point is nonnegative.
This concludes the proof of Theorem 4. O

6 Proof of Theorem 5

It is not restrictive to assume that A = 1. The proof consists of four steps.

Step 1. There exists a unique function w € X := VVOl Q) N LP(Q2) which solves (8). For all test
functions ¢ € X it satisfies

/Q {Xn: [(If%w!"””*2 +e(l+ \DwP)(m—*?’/?)aiw] Bip + |wyp*2wgo} - /Qfgo . (28)

i=1

In fact, equation (28) holds if and only if J'(w) = 0, where J is the integral functional

J(U)zA[j(DU)+%Iulp—fu]7 wex,

with j(& Z |£7’ + — (1 + |€]2)™=/2. If we endow X with the weak W&m(Q) topology, the

functional J i 1s lower semicontinuous, because j is convex and coercive. Thus, by the direct method
of the calculus of variations, J admits at least one minimizer w € X, which satisfies (28). Finally,
the uniqueness is gained by the strict convexity of the functional J.

13



Step 2. The weak solution w found in Step 1 belongs to L>(£2).
Set k := (sup |f))/®V and Q; := {z € Q : |w(z)| > k}. By taking ¢ = (signw) max{|w| — k, 0}
as a test function in (28), we have:

/Z\@-wm g/ [ Bl + (1 + [Du) ™| Duf’]
D =1 Qe = i=1
= [ Gl = bf - (signw) = w1 <0,
k

which shows that ||w|« < k.

Step 3. The weak solution w found in Step 1 belongs to Wlifo(Q) NHZ.(Q).

The first equation in (8) may be written in the form )" | dia;(Du) = b(x), by setting

ai(€) = [|GI™ 2+ e(1+[€P) ™ e, b)) = —f(a) + [w]P 2w . (29)

The functions a; satisfy assumptions (2.3)-(2.6) of [18] (taking therein p = m_ and ¢ = my). The
function b(x) is in L*>°(§2) (using the global boundedness of w already proved in Step 2). Finally,
(4.2) in [18] is valid in view of (6) and (7). Hence, by Theorem 4.1 of [18], there exists a function
W € W,29(Q) which satisfies, for every Q' C Q,

n

/Q [ a(DB)drg + b(z)p] =0 Vi€ WEm (). (30)
=1

We notice that also w satisfies (30); then, since the functional J is strictly convex, we deduce that
w = w. Using again Theorem 4.1 of [18], we deduce that w € W,">(Q) N H2 ().

loc loc
Step 4. The weak solution w is of class C?().

The coefficients a; and a defined in (29) are differentiable in their variables, bounded with their
first derivatives on every compact region of 2 x R x R"™, and satisfy a uniform ellipticity condition
(221 95ai(E)ninj > g|n|?). Therefore, the interior C? regularity of w is obtained in a standard
way, by applying the theory of uniformly elliptic equations (see e.g. [11, Chapters 13, 14, 15] or
Theorems 6.2 and 6.3 in Chapter 4 of [15]). In order to obtain gradient bounds up to the boundary
(which entail w € C?(Q)), one may either combine the interior gradient bound with the boundary
Lipschitz estimate in [11, Theorem 14.1], or adapt the technique used by Lieberman in [16] or by
Tolksdorf in [26]. O

7 Proof of Theorem 6

The proof of Theorem 6 is inspired by a work of Otani [20], and is based on the construction of a
sequence of “doubly approximating” problems for (1). More precisely, let u be a mild solution to
(1). Let up = gp(u), where the g;, (k € N) are C'(R™T) functions such that

ge(s)=s Vs<k, ge(s) =k+1 Vs>k+2, 0<g.(s)<1 Vs>0.
Then, for all £ € N and all € € (0,1) there exists a function f € C2°(£2) such that

1fole <Cr ¥e>0,  ff=2xb ' inL7(Q), Vre[l,o00) (31)
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for some constant Cj > 0 independent of €. By Theorem 5, we know that for all ¢ € (0,1) there
exists a unique solution w¥ € C%(Q) to:

- Z@i [U@iwlmi_Q +e(1+ \Dw|2)(m*_2)/2]6iw} + AMw|P~2w = f¢ in Q
=1 (32)

w=20 on 0N} .

The structure of the proof will be the following. We first establish some a priori estimates satisfied
by wk for fixed k (see (33)). Then we apply to w¥ a generalized Pohozaev identity for solutions
to variational equations, see Proposition 1. Thanks to the a priori estimates we deduce an integral
inequality satisfied by the limit wy, of wlg as ¢ — 0 (Lemma 1). In the next step, we pass to the limit
in k, proving that the limit wqy of wy, as k — 400 coincides with w (the initial mild solution to (1)),
and that u satisfies in turn an integral inequality. Finally, we conclude the proof by showing that,
when Q is a-starshaped (resp. strictly a-starshaped), and p is strictly supercritical (resp. critical),
such integral inequality is fulfilled if and only if u is identically zero.

We now begin with the a priori estimates. We drop the index k since we maintain it fixed, so we
simply denote by w, the unique solution to (32). By using (31) and by arguing as in the proof of
Step 2 in Theorem 5 we infer that ||wq||c < C;/(p_l) for every £ € (0,1). Then, multiplying (32)
by w,. and integrating over ) gives

Z/Q|8Zw€|ml < /QwaE < |Q‘Clls/(p*1) .
=1

We have thus obtained that, for some C' > 0 and all € € (0, 1),

[[we

By (33), Theorem 1 and interpolation, up to a subsequence, there exists wy such that
we = wy, 0 Wy(Q),  we —wy, in L'(Q) Vre [1,00). (34)
Test (32) with some v € Wol’m(Q) and let ¢ — 0. By (34), we know that |9;w.|P~20;w. remains

bounded in Lmé(Q) for all i = 1,...,n, thus Theorem 1 in [6] gives |9;w|P~20;w. — |0;wy|P~20;wy,
in L™i(Q). Hence, using also (31), we obtain

Z/Q | 05wy, |™ 20w 05 = —)\/Q |wk|p_2wkv—|—2)\/§2uilv Yo € Wol’m(Q) . (35)
=1

In particular, taking v = wy in (35), yields

Z/ D™ —)\/ |wk|p+2x/ Ly, (36)
— Jo Q Q

Next, multiply (32) by we and integrate by parts. Letting ¢ — 0 and taking into account (31) and

(34), gives
n
> o = a [ ok 423 [ o
— Ja Q Q
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This, together with (36) and (34), shows that
we — wy,  in Wy (Q). (37)

Without loss of generality, in the sequel we assume that the center of a-starshapedness is the
origin, that is (10) holds (with strict inequality if p = m*).

In order to derive an integral inequality for wy, we shall apply to w” the generalized Pohozaev
identity [22], as stated in [23, §1].

Proposition 1. Let Q be a smooth bounded open set in R™, and let u be a function in C%(Q)NC* ()
with u = 0 on 0. Assume that u solves the Fuler-Lagrange equation

divFe(x,u, Du) = Fo(x,u, Du) ,

where the integrand F = F(x,s,£) is supposed to be of class C* on Q x R x R™ together with Fe.
Then, for any scalar function a and vector field h of class C1(Q)NC(Q) the function u satisfies the
identity

/ [F(x,0,Du) — (Du, F¢(x,0, Du))](h,v) ds:/f(:c,u,Du)divh+/(h,]-}(m,u,Du))
o0 Q Q

—/(DuDh—kD(au),}}(m,u, Du))—/aufs(:p,u, Du) .
Q Q

We are now ready to prove

Lemma 1. Let m;, a, 2, and p satisfy the assumptions of Theorem 6. Assume that wy, € Wol’m(ﬂ)
satisfies (35). Then

n n
n / CnA 1
*Z |0zwi|™ + / |wy|P +2>\ZO¢¢/ uf " xiOpwy + R <0,
m* = Jo P Ja i=1 Q

e—0 my;

= 1
where Ry, 1= limsupz (1 - —) / |0;we|™ (z, Tov) ds.
i=1 o9

Proof. Let w. € C%(Q) be the unique solution of (32), see Theorem 5. We observe that (32) is the
Fuler-Lagrange equation of the integral functional with integrand

. || € m—/2 | A e
Pl €)= S ()™ - e

i—1 i

Then, we apply Proposition 1, by choosing as a scalar function a(z) the constant a = n/m* and as
a vector function h(x) the field = deformed through the tensor Ty, namely h(z) = (a121,...,anTy).
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We obtain

/8Q [Zn: (i - 1) |Dywe|™ + %(1 n |Dw5|2)(m:2)/2(1 +(1- m)|Dwg|2)] (, Tav) ds

e
i=1 ¢

n 61 mg m_ A n
:n/ [Z‘ ws| _+mi(1+|Dw€|2) /2+E|w€p_fsw€:| —Zai/wewi&fe
“ . a i=1 Q

m
i=1 v

n

(m_—2)/2
_Zai/ |:’8iws|mi +5<1+ ‘Dw€|2) |aiws|2:|
i=1 Q

n " _ (m--2)/2
m*/Q[;|aiws|ml+€(l+|l)ws‘2) |Dw€2+/\|ws‘p_f€ws:| .

We observe that, by the present choice (6) of the c; and (3) of m*, the terms containing [, |9;w|™
for all ¢ cancel. We now want to send € — 0. First note that

(m-—2)/2
lim sup E/ (1 + |Dw5]2) (1 +(1- m_)]Dw5|2> (z,Tar)ds <0,
o0

e—0

because the map s +— (1+52)(™==2/2(14(1-m_)s?) is bounded from above on R, and (x, T,v) > 0
by the a-starshapedness assumption. Moreover, integrating by parts and using (32), yields

— [ wewiong = [ vt [ [N+ 310 o1+ Duc) " D]
Q Q ) =
Therefore, using (31), (34), (37) and Lemma 1,

, - 1 , 1 1
0> hmsup/ (1 — —) Oywe|™ (x, Tov ds+n)\/ [f wi|P — 2u? wk}
o2 (1= ) el o T [ [t =2

e—0

n n
_ _ nA _
+2)\;ai/9ug 1:Ei8¢wk+n/ﬂ [)\]wk|p+ g ‘3jwk|mj} - /Q ka|p_2ui 17»%} '

j=1
Finally, using (36), we obtain the result. O

Next, we let kK — oo and we obtain

Lemma 2. Let m;, «, 2, and p satisfy the assumptions of Theorem 6. Assume that u is a mild

solution of (1). Then
1 1
n)\( *——>/up+R§0
m b/ Ja

where R :=limsup Ry, with Ry as in Lemma 1.
k—+o00
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Proof. By (36), Holder’s inequality, and the convergence uy — u in LP(2), we have

Z/ l@-wklmi—i—)\/ ]wk\p§C</ wel?)”" VRN
— Jo Q Q

Hence, {wy} is bounded in LP(2) and in Wol’m(ﬂ), and therefore there exists wg € Wolm(Q) NLP(§)
such that, up to a subsequence, wy — wp in Wolm(Q) and in LP(Q). Thus, letting k& — 400 in (36),
we get

lim [ /@wkmi—i—)\/ wkp}:2)\/uplwo. 38
i [ [ oo [ ] =21 [ (59)

On the other hand, taking v = wy in (35), and letting k¥ — 400, gives

n
Z/ |Oswo|™ +>\/ lwol” :2)\/ T
~ Ja Q Q

which together with (38) and weak convergence proves that wy — wq (strongly) in W& TQ)NLP(Q).
We claim that wg = u. Indeed, by letting k — 400 in (35), we infer that wq satisfies

> / |9ywo|™ 2 Dwodv = —A / |wo|P~2wov 4 2 / WPl Yo e W) N LP(Q).
=/ Q Q

Since u is a mild solution to (1), the above identity holds when replacing wo with u, and by
subtracting we obtain, for all v € Wy "™ (Q) N LP(Q),

n
Z/ (\&-wolmi_zaiwg - |0iu]mi_281~u)8iv = )\/ <|u\p_2u - \wo\p_Qw(])v . (39)
=17/ Q
Choosing v = wg — u, and taking into account that

/ (w0l ™ 20u0 — Dyl 20p0) Dyt — D) > / (1Biwol ™" — foyu™ =) (30| — i)
Q Q

(40)
the left hand side of (39) is nonnegative. Since its right hand side is nonpositive, we get immediately

wo = Uu.
We can now pass to the limit as & — 400 in Lemma 1. Since u is a mild solution we have

/ Ui_lxi@w - / W0 Vi=1,..,n. (41)
Q Q

Therefore, using the identities

1 n
/uplxiﬁiu:——/up and Z/ |Osu|™ :)\/up,
Q pJa — Ja Q

we obtain the statement. O
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We are now in a position to give the proof of Theorem 6.
If p > m*, since R > 0, by Lemma 2 we obtain u = 0.
If p = m*, Lemma 2 yields

- 1
0 = R =limsup lim supz (1 - —) / |0jwe|™ (z, Tov) ds . (42)
i=1 oK

k——+oc0 e—0 my;

Integrating (32) (with w = w,) over €2, by the divergence Theorem, we obtain

)/ )‘|ws|p_2w€ - f°
Q

Letting first € — 0 and then k — 400, we deduce

- ‘ i /dQ [|8iw€|mi_2 + 5(1 + ‘Dws|2)(m7_2)/2} O;we Vil .
=1

k——+o00 e—0

)\/ uP™1 < limsup limsupZ/ [|c{9iw|mﬁ1 + elow|(1 + |Dw|2)(m‘*2)/2} ds .

Q = Joa

Since infyq(z, T,v) > 0 (by strict a-starshapedness), by (42), the right hand side above equals zero.
We deduce that v = 0, and the proof of Theorem 6 is complete.

Remark 2. To ensure the convergence (41), it is sufficient to have zuP~' € L™ (Q) for all i.
Actually, for Q a-starshaped with respect to the origin, the condition u € Lp=1)m’ (Q) for mild
solutions in Definition 1, may be relaxed to z;u?~! € L™ (Q) foralli=1,...,n.

8 Concluding remarks and open problems

8.1 ABouT THEOREM 4

We show here that the assumption p > m4 in Theorem 4 is necessary to apply the mountain-pass
Theorem.

e An example of an unbounded Palais-Smale sequence.
Assume that Q C R is the cylinder 2 = (0, 7) x By, where Bj is the unit ball in R?. Take A = 1,
my=my =p=2,m; = % for i = 2,...,10 and let m = (my,...,mig). Then, the corresponding

functional reads
J(u :—/ o>+ = /aiu ——/u.
=g f, o+ [ 1ol =5 [l

For all k € N, consider the function ¢ : [0,1] — R defined by

kKB —1 if rel0,k? / 0 it  rel0,k3)
kor(r) = ke (r) =
rh—1 it re[k31) —5r=% if re(k73,1].

Consider also the sequence of functions

ug(z1,2") =sinzy - op(|2’]) , x' = (za,...,T10).
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Then, we have (c denotes possibly different positive constants)

™ 1
fovunl = = ¢ [ st arde - [ 56k
0 0

1

1
> ¢ P10 9075 4 Dar > S r=2dr + o(1) > ck
k2 =3 k2 k=3

so that the sequence {u} is unbounded in Wol’m(Q). On the other hand,

10 1
Z/ |Bsup,| Y3 < c/ |V g3 = c/ 81 () |3 dr < S
= Jo B 0 kA3

Hence, by Holder’s inequality

10
(" (ur), v)] < Z/Q [Oiur] P|0p0] < o(1) - ol Vo€ Wy™(Q) .
=2

Therefore, as £k — oo we have
J(ur) — 0 and  J'(ug) — 0 in [Wy ()]

so that {ux} is an unbounded Palais-Smale sequence for J.

e Fuailure of the mountain-pass geometry.
Take n = 2, my mg = 3, and note that m* = 24, so that (2) and (5) are satisfied. Take
p = 2, then

_ 4

=4
3 a3 1 3 Ao

J(w) = 7110wl + Sl10vulls = Sllullz -

Hence, by inequality (11) and interpolation we obtain

4/3 A u4/5y 06/5
J(u) = Cillul[y73 + Calluld = Slul 3l -

By applying Young’s inequality we then obtain J(u) > 0 for all u # 0, provided A is sufficiently
small. Clearly, in this case J does not have the standard mountain-pass geometry.

An even simpler argument works when p = my. Take any n, any m; and assume that p = m...
Then, by applying inequality (11), we see that J does not have a mountain-pass geometry if A <
(2/ap)P, where a is the width of €2 in the direction corresponding to the maximal exponent m .

8.2 ABOUT MILD SOLUTIONS

Consider the semilinear problem (m; = 2)

(

—Au = A1+ u)P~1 in B

wu>0 inB (43)

u=20 on 0B
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where A > 0, p > 1 and B denotes the unit ball in R"™ (n > 3).

It is well-known [4] (see also Theorem 2 above), that any weak solution of (43) is a strong solution
2

=t

A simple calculation shows that, if

2n — 2 2 2p — 2
p > n and Az—(n— P >,
n—2 p—2 p—2

whenever p <

then the function
U(x) = Jaf 202 1

satisfies (43) in B\ {0}. It is also not difficult to prove the following facts

2 -2
UeH&(B)<:>p>n—f2, UELq(B)<:>q<%.
Therefore:
(i) U is a weak solution of (43) (i.e. U € H}(B) N L#P=1/("+2)(B)) if and only if p > 21

. . . . . _ . . n—4
(ii) U is a mild solution of (43) (i.e. U € L*?~Y(B)) if and only if n > 4 and p > Zn—d,

These statements suggest that, in general, one cannot expect a weak solution of (1) to be a mild
solution if p > ms. Moreover, it seems more likely that a weak solution is indeed a mild solution
for large values of the exponent p.

8.3 SOME OPEN PROBLEMS

PROBLEM 1. Prove Theorem 2 under the only assumption that p < m«,. The example in Section
8.2 shows that it is not reasonable to expect strong solutions of (1) if p > ms. Note that our proof
of Theorem 2, case (i), does not work if p = mo = m4 due to the failure of the step which uses
Holder’s inequality: no e appears. On the other hand, our proof in case (ii) cannot be followed
when p = me, because there is no positive ag which can initialize (18).

PROBLEM 2. Find sharp statements in the situation of Theorems 3 and 4. For which exponents
p < Mo does (1) admit a solution for all A > 0?7 It seems that the resonance situation occurs as
soon as p < my (see also Section 8.1) but maybe there are some “spectral gaps”, namely some
p € (m—,my) such that (1) admits a strong solution for all A > 0.

PROBLEM 3. Prove Theorems 5 and 6 under less restrictive assumptions on the exponents m;.
For instance, one could try to relax (6) and (7) with (5). In fact, (6) and (7) are used in Step 3 of
the proof of Theorem 5. As suggested in [1], we actually believe that a gradient estimate for the
solution of the approximating problems can be obtained under the sole assumption (5). Assumption
(6) is also needed in some of the estimates in the proof of Theorem 6, but the case where m; < 2
for some i may be handled in a similar way as in (4.22) in [20].
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