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Abstract

We consider a new class of quasilinear elliptic equations with a power-like reaction term:
the differential operator weights partial derivatives with different powers, so that the underlying
functional-analytic framework involves anisotropic Sobolev spaces. Critical exponents for embed-
dings of these spaces into Lq have two distinct expressions according to whether the anisotropy
is “concentrated” or “spread out”. Existence results in the subcritical case are influenced by this
phenomenon. On the other hand, nonexistence results are obtained in the at least critical case
in domains with a geometric property which modifies the standard notion of starshapedness.

Résumé

Nous considérons une nouvelle classe d’équations elliptiques quasilinéaires avec un terme de
réaction du type puissance: les dérivées partielles ont des puissances différentes dans l’opérateur
différentiel, de façon que l’espace fonctionnel naturel devient un espace de Sobolev anisotropique.
Les exposants critiques pour les injections de ces espaces dans Lq ont des espressions différentes
qui dépendent de la “concentration” de l’anisotropie. Nos résultats d’existence dans le cas sous-
critique sont influencés par ce phenomène. D’autre part, nos résultats de non existence dans le
cas critique et sur-critique sont obtenus dans des domaines ayant une propriété qui modifie la
notion usuelle d’ensemble étoilé.
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1 Introduction

We are interested in existence and nonexistence results for the following anisotropic quasilinear

elliptic problem
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−
n
∑

i=1

∂i
(

|∂iu|
mi−2∂iu

)

= λup−1 in Ω

u ≥ 0 in Ω

u = 0 on ∂Ω

(1)

where Ω ⊂ Rn (n ≥ 2) is a smooth bounded domain, mi > 1 for all i, λ > 0 and p > 1. Note that

if mi = 2 for all i, then (1) reduces to the well-known semilinear equation −∆u = λup−1.
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There is by now a large number of papers and an increasing interest about anisotropic problems.

With no hope of being complete, let us mention some pioneering works on anisotropic Sobolev

spaces [14, 19, 24, 25, 27] and some more recent regularity results for minimizers of anisotropic

functionals [1, 5, 10, 17, 18, 28].

Historically, the study of the semilinear problem −∆u = f(x, u) started by settling the back-

ground of a rigorous functional-analytic framework (Sobolev spaces) and by establishing the exis-

tence of solutions in a variational way, that is, minimizing suitable functionals. But then, the fol-

lowing step was to find solutions by means of minimax methods such as Birkhoff theory, Ljusternik-

Schnirelmann category, mountain-pass and linking theorems. As far as we are aware, minimax

methods have not yet been used for problems like (1), so the present paper is a first contribution

in this direction.

A further motivation for the study of (1) is given by the necessity of an explanation of the link

between quasilinear elliptic equations and embedding inequalities. It is known that for quasilinear

elliptic equations involving the m-Laplace operator ∆m (m > 1), power-like reaction terms exhibit

several critical exponents, see [9] and references therein. More precisely, critical exponents of suit-

able embedding inequalities are also the borderline between existence and nonexistence results for

solutions of such equations. Therefore, one may wonder if these results may be obtained only using

functional analysis, without exploiting the typical features of elliptic operators such as regularity

theory, maximum principles, homogeneous eigenvalue problems. And the elliptic operator in (1)

precisely fails to possess these properties.

Our starting point is the observation that embedding theorems for anisotropic Sobolev spaces

occur below a critical exponent which has a different value if the anisotropy is spread out or con-

centrated. More precisely, let m = (m1, ...,mn) and denote by W 1,m
0 (Ω) the closure of C∞c (Ω) with

respect to the norm

‖u‖1,m =
n
∑

i=1

‖∂iu‖mi
.

When the exponents mi are not “too far apart”, the critical exponent m∗ for the embedding

W 1,m
0 (Ω) ⊂ Lq(Ω) is just the usual critical exponent corresponding to the harmonic mean of the

mi; on the other hand, if the mi are “too much spread out” it coincides with the maximum m+

of the mi. Therefore the effective critical exponent is in fact the maximum of these two values,

m∞ = max{m∗,m+}, see Theorem 1 below. Existence results for (1) are quite different in the two

mentioned situations.

However, before wondering about existence results, due to the lack of a satisfactory regularity

theory, one must be careful in describing what is meant by a solution of (1). In next section

(Definition 1), we introduce three different kinds of solutions, weak, mild, and strong, according

to their summability. In Theorem 2 we prove that, in the subcritical case, weak solutions of (1)

are actually strong, namely they are summable at any power. In order to prove this fact, due to

the anisotropy of the differential operator, we need several essential modifications of the method

developed by Brezis & Kato in [4].

Once the different kinds of solutions are clarified, we may turn to existence results. In Theorems

3 and 4 we apply respectively constrained minimization methods and the mountain-pass Theorem

in order to prove the existence of strong solutions of (1) in the “compact” case. It turns out that

also the application of these by now standard tools is not straightforward. First of all, the “kinetic

functional” (which coincides with the Dirichlet integral when mi ≡ 2) is not homogeneous and

rescaling is not allowed. Therefore, the minimization method merely enables us to find some λ for
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which (1) admits nontrivial solutions. Moreover, it is not clear which exponents p yield a resonance

situation, i.e. eigenvalue problems, see Problem 2 in Section 8.3. On the other hand, the application

of the mountain-pass Theorem requires further restrictions on the exponents mi, see (5) below and

the remarks in Section 8.1.

In order to prove nonexistence results for at least critical growth problems, the most common

tool is the celebrated Pohožaev identity [21, 22]. However, even its weaker formulations require

solutions of class C1(Ω) in order to have well-defined boundary terms, see [7, 8, 12]. And it seems a

challenging problem to obtain such regularity for weak solutions of (1), see [10]. To overcome this

difficulty we introduce a sequence of “doubly approximating” problems inspired by a nice idea of

Otani [20]. This procedure turns out to be quite delicate, due to the anisotropy of the operator.

Indeed, we need to prove a strong regularity result for the approximating problems, see Theorem

5. When the approximation procedure is over, we are able to prove our main nonexistence result,

see Theorem 6. It states that, in the at least critical case, (1) admits no mild solutions other than

u ≡ 0. This result requires two assumptions of different kind. First, the domain Ω must have

a new geometrical feature, which modifies the classical notion of starshapedness according to the

anisotropy of the operator; we call this property α-starshapedness and we feel that it sheds some

light on the interplay between the structure of the differential operator and the geometry of the

domain. Second, the exponents mi must be sufficiently concentrated: this technical assumption,

which might probably be relaxed (see Problem 3), guarantees the regularity of solutions to the

coercive approximating problem.

The precise statements of the results are given in Section 2, and their proofs are postponed to

the subsequent sections. Finally in Section 8, we collect some further remarks and we address some

related open problems.

2 Results

2.1 Functional setting and summability of solutions

Throughout the paper we assume that Ω is an open bounded domain with (at least) Lipschitz

boundary ∂Ω, and we denote by ( , ) the Euclidean scalar product on Rn. We also always assume,

without recalling it at each statement, that the exponents p and mi appearing in (1) satisfy the

conditions

p > 1 , mi > 1 ∀i = 1, ..., n ,
n
∑

i=1

1

mi
> 1 . (2)

The last condition in (2) ensures that the anisotropic Sobolev space W 1,m
0 (Ω) embeds into some

Lebesgue spaces Lq(Ω); if it is violated, one has embeddings into Orlicz’s or Hölder’s spaces. Em-

beddings of the kind W 1,m
0 (Ω) ⊂ Lq(Ω) are in fact a fundamental tool to study the existence of

solutions for the boundary value problem (1). Let us set

m∗ =
n

∑n
i=1

1
mi
− 1

, m+ := max{m1, . . . ,mn} , m∞ = max{m+,m
∗} . (3)

Note that m∗ is well-defined thanks to (2), and that it coincides with the usual critical exponent

m∗ := nm/(n −m) for the harmonic mean m of the mi. Note also that it may well happen that

m+ > m∗ (this occurs for instance if n = 4, m1 = m2 = m3 = 2, m+ = m4 = 100), thus it is
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meaningful to define the maximal exponent m∞. Actually, m∞ turns out to be the “true” critical

exponent. In Section 1 we prove the following result, which we could not find in the literature.

Theorem 1. Let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary. If (2) holds, then

for all q ∈ [1,m∞] there is a continuous embedding W 1,m
0 (Ω) ⊂ Lq(Ω). For q < m∞, the embedding

is compact.

Remark 1. Theorem 1 is no longer true if the zero trace condition on the boundary is removed.

More precisely, denote by W 1,m(Ω) the closure of the restrictions to Ω of functions in C∞c (Rn)

with respect to the norm ‖ · ‖1,m + ‖ · ‖1. Then, even for smooth domains Ω, in order to have the

embeddingW 1,m(Ω) ⊂ Lm
∗

(Ω) some geometric restrictions on Ω are needed, see e.g. [14, 19, 24, 25].

We are now going to characterize three different kinds of solutions to the boundary value problem

(1). To this end, we also need to consider the smallest exponent

m− := min{m1, . . . ,mn} ,

and, for given q ∈ [1,+∞], we denote by q′ := q/(q − 1) its conjugate exponent.

Definition 1. We say that u ∈W 1,m
0 (Ω) ∩ L(p−1)m

′
∞(Ω) is a weak solution of (1) if u ≥ 0 a.e. in Ω

and

n
∑

i=1

∫

Ω
|∂iu|

mi−2∂iu∂iv = λ

∫

Ω
up−1v ∀v ∈W 1,m

0 (Ω) . (4)

If in addition u ∈ L(p−1)m
′
−(Ω), we say that u is a mild solution. Finally, if u ∈ L∞(Ω) we say that

u is a strong solution.

Clearly, every strong solution is also a mild solution, and the latter is also a weak solution. In

some cases, we may prove the converse implications:

Theorem 2. If one of the two following situations occurs

(i) p < m∞ (ii) p = m∞ and m∞ > m+

then every weak solution of (1) is also a strong solution.

A proof of Theorem 2 is given in Section 4. For related results concerning local minimizers, we

refer to [5, Theorem 2]. We believe that Theorem 2 holds under the mere assumption p ≤ m∞,

see Problem 1 in Section 8.3. In Section 8.2 we discuss an example which suggests the kind of

solutions we should expect, according to the value of p. We also stress that, in the semilinear case

(i.e. mi ≡ 2), elliptic theory enables one to show that a strong solution of (1) in a smooth domain

is a classical solution in C2(Ω), but for general mi this regularity seems out of reach.

2.2 Existence results

First of all, we remark that it is not clear which p yields the so-called resonance for (1). Namely, is

there some p which gives rise to a “generalized eigenvalue” problem? Obviously, if m+ = m−, the

resonance problem corresponds to p = m−, see [3]. In the general case, we have
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Theorem 3. Assume that p < m∞. Then, for any γ > 0 there exist λγ > 0 and uγ ∈ W 1,m
0 (Ω)

such that ‖uγ‖p = γ and uγ is a strong solution of (1) when λ = λγ.

In other words, there exists a continuum of pairs (λγ , uγ) ∈ (0,∞) ×W 1,m
0 (Ω) which solve (1),

seen as an eigenvalue problem. We point out that Theorem 3 cannot be used to deduce the existence

of a solution to problem (1) for a given λ. In fact, unless all the mi are equal, rescaling methods

fail due to the lack of homogeneity of the differential operator.

Then, to recover an existence result for fixed λ, we apply the mountain-pass Theorem [2]. In

order to deal with a “superlinear” subcritical problem we need to assume that

m+ < m∗. (5)

Note that if mi = m+ for n − 1 indices i, then (5) is automatically fulfilled; in particular, it holds

if n = 2.

Then we prove:

Theorem 4. Assume that the exponents mi satisfy assumption (5) and let p ∈ (m+,m
∗). Then,

for all λ > 0 problem (1) admits a nontrivial strong solution.

Due to assumption (5), this statement is probably not optimal, but it seems not clear at all which

are the sharp assumptions that ensure both a mountain-pass geometric structure and the Palais-

Smale condition for the involved functional, see Problem 2 in Section 8.3. In Section 8.1 we exhibit

two examples where the assumptions of Theorem 4 are violated and the mountain-pass Theorem

cannot be applied.

2.3 Regularity and nonexistence results

We now require that the mi satisfy the additional assumption

mi ≥ 2 (6)

and the “not too far apart condition”

m+ <
n+ 2

n
m− . (7)

Note that if (6) and (7) hold, we necessarily have n ≥ 3 and (5), so that m∞ = m∗. In order

to establish our main nonexistence result, we consider some approximating problems, which are

coercive and uniformly elliptic, and we prove that they admit a unique and smooth solution.

Theorem 5. Assume that ∂Ω ∈ C2,γ, and that the exponents mi satisfy assumptions (6) and (7).

Let p > 1, λ > 0 and f ∈ C∞c (Ω). Then, for all ε > 0, the problem



















−
n
∑

i=1

∂i

[

(|∂iw|
mi−2 + ε(1 + |Dw|2)(m−−2)/2)∂iw

]

+ λ|w|p−2w = f in Ω

w = 0 on ∂Ω

(8)

admits a unique (classical) solution w ∈ C2(Ω).
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We finally turn to the at least critical case p ≥ m∗. We prove nonexistence results in domains

which have C2,γ boundary and satisfy the following geometrical condition.

Definition 2. Let α = (α1, ..., αn) ∈ Rn with αi > 0 for all i. We say that a bounded smooth

domain Ω ⊂ Rn is α-starshaped with respect to the origin if

n
∑

i=1

αixiνi ≥ 0 on ∂Ω , (9)

with ν = (ν1, . . . , νn) denoting the outer normal to ∂Ω. We say that Ω is strictly α-starshaped with

respect to the origin if (9) holds with strict inequality. If these inequalities hold after replacing xi
by xi − Pi, we say that Ω is (strictly) α-starshaped with respect to the center P = (P1, . . . Pn). If

Ω is (strictly) α-starshaped with respect to some of its points, we simply say that Ω is (strictly)

α-starshaped.

Several remarks about this notion of “anisotropic starshapedness” are in order. We collect them

in Section 2.5.

Since the solution in Theorem 5 is smooth up to the boundary, we may write the Pohožaev

identity, see Proposition 1. Then, thanks to a suitable double passage to the limit, we prove:

Theorem 6. Assume that ∂Ω ∈ C2,γ, and that the exponents mi satisfy assumptions (6) and (7).

Let α = (α1, ..., αn) with

αi = n

(

1

mi
−

1

m∗

)

.

Assume that either p > m∗ and Ω is α-starshaped, or p = m∗ and Ω is strictly α-starshaped. Then,

for every λ > 0, the unique mild solution of (1) is u ≡ 0.

Note that by (5) the αi in Theorem 6 are all strictly positive. If m+ = m−, then αi = 1 for all i,

and α-starshapedness reduces to standard starshapedness.

2.4 Miscellaneous consequences

Thanks to Theorem 2, we can slightly improve Theorem 6 when p = m∗.

Corollary 1. Assume that ∂Ω ∈ C2,γ, and that the exponents mi satisfy assumptions (6) and (7).

Let α = (α1, ..., αn) be as in Theorem 6. Assume that p = m∗ and Ω is strictly α-starshaped. Then,

for every λ > 0, the unique weak solution of (1) is u ≡ 0.

As already mentioned, existence results are strongly affected by the validity of condition (5);

notice indeed that, as a consequence of Theorems 3 and 6, there holds

Corollary 2. If p = m∗ < m+, then for any domain Ω there exists λ > 0 such that (1) admits a

nontrivial strong solution. If p = m∗ > m+, and (6) and (7) hold, then there exist domains Ω such

that for every λ > 0 the unique weak solution of (1) is u ≡ 0.

By analyzing the proof of Theorem 6, we realize that in some cases we may state a stronger result,

which excludes also the existence of sign-changing solutions. Indeed we have:
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Corollary 3. Assume that ∂Ω ∈ C2,γ, and that the exponents mi satisfy assumptions (6) and (7).

Let α = (α1, ..., αn) be as in Theorem 6. Assume that p > m∗ and Ω is α-starshaped. Then u ≡ 0

is the unique mild solution to the problem



















−

n
∑

i=1

∂i
(

|∂iu|
mi−2∂iu

)

= λ|u|p−2u in Ω

u = 0 on ∂Ω .

2.5 About α-starshapedness

The notion of α-starshapedness with respect to the center P may be reformulated in a more geo-

metric way as

(Tα(x− P ), ν) = (x− P, Tαν) ≥ 0 on ∂Ω , (10)

where Tα denotes the second order tensor
∑n

i=1 αiei ⊗ ei. In the following, by starshapedness we

mean the classical notion, which corresponds to our definition when all the αi coincide, namely

when the tensor Tα is a positive multiple of the identity matrix. Some basic differences between

α-starshapedness and (ordinary) starshapedness as well as the relationship between the two notions

reveal themselves by looking at simple examples in dimension n = 2.

Example 1. The simplest example of α-starshaped domain is a ball B: it is immediate that it

is α-starshaped with respect to its center O for any choice of α. Nevertheless, if α1 6= α2, and

we move the center P of α-starshapedness away from the the center O of the ball, B may result

not α-starshaped with respect to P (recalling (10), see Figure 1). This shows that, as it happens

for starshapedness, the notion of α-starshapedness is sensitive to the choice of the center. But, in

contrast to starshapedness, even a convex domain may be not α-starshaped with respect to some

of its points.

O
P

ν
Tανx

O

x

νTαν

Figure 1 Figure 2

Example 2. Consider an ellipse E with equation ax2 + y2 < 1 (a > 0). One can check that E is

α-starshaped with respect to O = (0, 0) for every α. Now rotate E clockwise by an angle π/4: the

rotated domain E ′ may be no longer α-starshaped with respect to O (recalling (10), see Figure 2).

Thus, in contrast to starshapedness, α-starshapedness is not invariant under rotations.
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Example 3. For fixed α with α1 6= α2, it may happen that a domain is starshaped with respect

to some center, but not α-starshaped with respect to any center. For instance, consider the set M

represented in Figure 3. Clearly, it is starshaped with respect to O. However, take α with α1 À α2,

and let P ∈M . To make the sum α1(x1−P1)ν1+α2(x2−P2)ν2 positive on ∂M , the point P should

belong to both shadowed subsets of M . The intersection between such regions is empty.

Example 4. Again for fixed α with α1 6= α2, the converse situation with respect to the previous

example may occur, that is, it may happen that a domain is α-starshaped with respect to some

center, but not starshaped with respect to any center. Consider for instance the set N represented

in Figure 4. Since the product x1ν1 remains positive on the whole boundary of N , choosing α with

α1 À α2 the condition α1x1ν1 + α2x2ν2 > 0 is satisfied on ∂N , so N is strictly α-starshaped with

respect to O. On the other hand, N cannot be starshaped with respect to any P , because such a

P should belong to the intersection of the two disjoint shadowed subsets of N .

O O

Figure 3 Figure 4

3 Proof of Theorem 1

The continuity of the embedding W 1,m
0 (Ω) ⊂ Lm+(Ω) relies on a well-known Poincaré-type inequal-

ity. More precisely, denoting by {e1, ..., en} the canonical basis of Rn, assume that Ω has width

a > 0 in the direction of ei, namely supx,y∈Ω (x − y, ei) = a. We claim that, for every q ≥ 1, we

have

‖u‖q ≤
aq

2
‖∂iu‖q ∀u ∈ C1c (Ω). (11)

We prove (11) in the case q > 1, the case q = 1 being simpler. Assume without loss of generality

that Ω ⊂ {x ∈ Rn; 0 < xi < a}, and, for all x ∈ Rn, set x = (xi, x
′) in order to emphasize its i-th

component. Let u ∈ C1c (Ω) and let v(x) = u(x)∂iu(x). We consider u (and v) as defined on the

whole Rn, set to 0 outside spt(u). Denote by v+ (resp. v−) the positive part (resp. negative part)

of v. Then, we have

0 =
|u(a, x′)|q − |u(0, x′)|q

q

=

∫ a

0
|u(t, x′)|q−2v(t, x′)dt =

∫ a

0
|u(t, x′)|q−2v+(t, x′)dt+

∫ a

0
|u(t, x′)|q−2v−(t, x′)dt

8



and
∫ a

0
|u(t, x′)|q−2v+(t, x′)dt−

∫ a

0
|u(t, x′)|q−2v−(t, x′)dt =

∫ a

0
|u(t, x′)|q−2|v(t, x′)|dt

which show that
∫ a

0
|u(t, x′)|q−2v+(t, x′)dt =

1

2

∫ a

0
|u(t, x′)|q−2|v(t, x′)|dt.

Therefore, we also have

|u(xi, x
′)|q = q

∫ xi

0
|u(t, x′)|q−2v(t, x′)dt ≤ q

∫ xi

0
|u(t, x′)|q−2v+(t, x′)dt

≤ q

∫ a

0
|u(t, x′)|q−2v+(t, x′)dt =

q

2

∫ a

0
|u(t, x′)|q−1|∂iu(t, x

′)|dt.

Hence, by integrating first with respect to xi ∈ (0, a) and then with respect to x′ ∈ Rn−1 we obtain

‖u‖qq ≤
aq

2
‖u‖q−1q ‖∂iu‖q

via Hölder’s inequality and (11) follows. Hence, by density, the embedding W 1,m
0 (Ω) ⊂ Lm+(Ω)

is continuous. On the other hand, for the continuity of the embedding W 1,m
0 (Ω) ⊂ Lm

∗
(Ω), we

refer to [27, Teorema 1.2] and [29, Corollary 2]. Thus, the embedding W 1,m
0 (Ω) ⊂ Lm∞(Ω) is also

continuous.

In order to show the compactness of the embedding W 1,m
0 (Ω) ⊂ Lq(Ω) for q < m∞, we combine

the continuous embedding W 1,m
0 (Ω) ⊂W

1,m−

0 (Ω) with the compact embedding W
1,m−

0 (Ω) ⊂ L1(Ω)

to deduce the compact embedding W 1,m
0 (Ω) ⊂ L1(Ω). Then we conclude by interpolation between

L1(Ω) and Lm∞(Ω). ¤

4 Proof of Theorem 2

We first show that any weak solution of (1) belongs to Lq(Ω) for all q ∈ [1,∞). We have two

different proofs under assumptions (i) and (ii), and we begin with

(ii) The case m+ < m∗ = p.

Let u be a weak solution to (1). The assertion that u belongs to Lq(Ω) for all q < ∞ may be

equivalently reformulated as

u ∈ L(a+1)m
∗

(Ω) for all a > 0 . (12)

By Theorem 1, to have (12) it is enough to show that ua+1 ∈W 1,m
0 (Ω), which is in turn equivalent

to

lim
L→+∞

n
∑

i=1

(
∫

Ω

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

)1/mi

< +∞ . (13)
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In any case (i.e. if the l.h.s. of (13) is bounded or unbounded), as L → ∞, up to a subsequence,

there exists at least one index j such that

n
∑

i=1

(
∫

Ω

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

)1/mi

≤ C

(
∫

Ω

∣

∣

∣
∂j(u ·min[ua, L])

∣

∣

∣

mj

)1/mj

, (14)

where C denotes some positive constant independent of L. Fix such an index j, and, for every

L > 0, set ϕL := u ·min[uamj , Lmj ] ∈W 1,m
0 (Ω). Note that

|∂iu|
mi−2∂iu∂iϕL ≥ min[uamj , Lmj ] |∂iu|

mi for a.e. x ∈ Ω , ∀ i = 1, . . . , n , (15)

and
∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

≤ (a+ 1)mi min[uami , Lmi ]|∂iu|
mi for a.e. x ∈ Ω , ∀ i = 1, . . . , n. (16)

Test (1) with ϕL, integrate by parts and use (15), Hölder’s inequality and Theorem 1 to obtain (for

any k > 0)

n
∑

i=1

∫

Ω
min[uamj , Lmj ] · |∂iu|

mi ≤

n
∑

i=1

∫

Ω
|∂iu|

mi−2∂iu∂iϕL = λ

∫

Ω
um

∗

·min[uamj , Lmj ]

= Ck + λ

∫

u≥k
um

∗−mj umj ·min[uamj , Lmj ]

≤ Ck + λ

(
∫

u≥k
um

∗

)(m∗−mj)/m
∗

·

(
∫

u≥k

(

umj ·min[uamj , Lmj ]
)m∗/mj

)mj/m
∗

≤ Ck + εk

(
∫

Ω
(u ·min[ua, L])m

∗

)mj/m
∗

≤ Ck + εk

[

n
∑

i=1

(
∫

Ω

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

)1/mi

]mj

,

where Ck → ∞ and εk → 0 as k → ∞ and they may denote different constants from line to line

(with Ck independent of L provided one takes L > ka). We also stress that in applying the Hölder’s

inequality, we have used the assumption m+ < m∗). ¿From the last inequality and from (16) we

infer (for L > ka)

∫

Ω

∣

∣

∣
∂j(u ·min[ua, L])

∣

∣

∣

mj

≤ Ck + εk

[

n
∑

i=1

(
∫

Ω

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

)1/mi

]mj

(17)

Inserting (14) into (17), we get
∫

Ω

∣

∣

∣
∂j(u ·min[ua, L])

∣

∣

∣

mj

≤ Ck + εk

∫

Ω

∣

∣

∣
∂j(u ·min[ua, L])

∣

∣

∣

mj

.

Choosing k sufficiently large (i.e. εk sufficiently small), this shows that the r.h.s. of (14) remains

bounded as L→ +∞ and (13) follows.

(i) The case p < m∞.

Let u be a weak solution to (1). We claim that, if the implication

u ∈ Lam++p(Ω) =⇒ u ∈ L(a+1)m∞(Ω) (18)

10



holds for all a > 0, then u ∈ Lq(Ω) for all q <∞. Indeed, define the sequence {ak} by setting

a0 =
m∞ − p

m+
, ak+1 =

m∞
m+

ak +
m∞ − p

m+
.

Since ak → +∞ (thanks to the assumption p < m∞), applying (18) with a = ak, we deduce that

u ∈ Lq(Ω) for every q <∞.

Let us prove (18). By arguing as in the case m+ < m∗ = p, with mj = m+, we arrive at

n
∑

i=1

∫

Ω
min[uam+ , Lm+ ] · |∂iu|

mi ≤ λ

∫

Ω
up ·min[uam+ , Lm+ ] ≤ C , (19)

where C is a positive constant independent of L because u ∈ Lam++p(Ω).

Assume that L ≥ 1, let Ω1 = {x ∈ Ω; u(x) ≤ 1} and note that

min[uam+ , Lm+ ] ≥ min[uami , Lmi ] a.e. in Ω \ Ω1 , ∀i = 1, ..., n. (20)

Then, by (16), (19) and (20) we obtain (for constants C indepedent of L)

n
∑

i=1

∫

Ω\Ω1

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

≤ C
n
∑

i=1

∫

Ω\Ω1

min[uami , Lmi ] · |∂iu|
mi ≤ C . (21)

On the other hand,

n
∑

i=1

∫

Ω1

∣

∣

∣
∂i(u ·min[ua, L])

∣

∣

∣

mi

=
n
∑

i=1

(a+ 1)mi

∫

Ω1

uami · |∂iu|
mi ≤ C

n
∑

i=1

∫

Ω
|∂iu|

mi < +∞. (22)

Hence, combining (21) and (22) and letting L→∞ we obtain that

n
∑

i=1

∫

Ω

∣

∣

∣
∂i(u

a+1)
∣

∣

∣

mi

< +∞ .

By Theorem 1, u ∈ L(a+1)m∞(Ω), and (18) is proved.

Conclusion. Put f(x) := λup−1(x) so that also f ∈ Lq(Ω) for all q <∞. Then, (1) reads



















−
n
∑

i=1

∂i
(

|∂iu|
mi−2∂iu

)

= f in Ω

u = 0 on ∂Ω .

In view of [13, Theorem 2], we obtain u ∈ L∞(Ω). ¤
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5 Proof of Theorems 3 and 4

By Theorem 2, for both statements it suffices to prove the existence of weak solutions.

We first prove Theorem 3. Let γ > 0 and consider the minimization problem

min

{

n
∑

i=1

∫

Ω

|∂iu|
mi

mi
; u ∈W 1,m

0 (Ω), ‖u‖p = γ

}

. (23)

Consider a minimizing sequence {uk} for (23). Since it is bounded in W 1,m
0 (Ω), by Theorem 1 up

to a subsequence {uk} converges in Lp(Ω) to some u. Clearly, ‖u‖p = γ, so that u 6= 0. By weak

lower semicontinuity of the norm, we also infer

lim inf
k→∞

‖∂iuk‖mi
≥ ‖∂iu‖mi

∀i = 1, ..., n.

Therefore, u is a minimizer for (23) and there exists a Lagrange multiplier λγ > 0 satisfying the

requirements of the statement. Moreover, u may be taken nonnegative since |u| has the same norms

as u. ¤

The proof of Theorem 4 is obtained as a consequence of the mountain-pass Theorem [2] in its

simplest form. Therefore, we just quickly outline it.

On the space W 1,m
0 (Ω) consider the functional

J(u) =
n
∑

i=1

∫

Ω

|∂iu|
mi

mi
−
λ

p

∫

Ω
|u|p.

Theorem 1 ensures that J ∈ C1(W 1,m
0 (Ω)). Its Fréchet derivative J ′ is defined by

〈J ′(u), v〉 =

n
∑

i=1

∫

Ω
|∂iu|

mi−2∂iu∂iv − λ

∫

Ω
|u|p−2uv ∀v ∈W 1,m

0 (Ω).

By elementary calculus, it is not difficult to show that there exists a constant C > 0 independent

of ` such that

ai > 0 ∀i ,
n
∑

i=1

ai = ` ∈ (0, 1) =⇒
n
∑

i=1

ami

i

mi
≥ C`m+ . (24)

By the embedding W 1,m
0 (Ω) ⊂ Lp(Ω) we obtain

J(u) ≥
n
∑

i=1

∫

Ω

|∂iu|
mi

mi
− c‖u‖p1,m ∀u ∈W 1,m

0 (Ω).

This, combined with (24) by taking ai = ‖∂iu‖mi
, proves that there exists α, β > 0 such that

J(u) ≥ α ∀‖u‖1,m = β. (25)

12



Moreover, if u ∈W 1,m
0 (Ω) \ {0} and t > 0 is sufficiently large, then v := tu satisfies

J(v) < 0 and ‖v‖1,m > β . (26)

Conditions (25) and (26) show that the functional J has a mountain-pass geometry.

Consider now a Palais-Smale sequence {uk} for J . It satisfies (for some c)

J(uk)→ c and J ′(uk)→ 0 in [W 1,m
0 (Ω)]′ as k →∞.

To derive a contradiction, assume that ‖uk‖1,m diverges; then,

o(‖uk‖1,m) = J(uk)−
1

p
〈J ′(uk), uk〉 =

n
∑

i=1

(

1

mi
−

1

p

)
∫

Ω
|∂iuk|

mi

against the assumption mi < p for all i. Therefore, up to a subsequence, {uk} converges weakly

in W 1,m
0 (Ω) to some u. By the compact embedding stated in Theorem 1, we also have uk → u in

Lp(Ω). Hence, since both 〈J ′(uk), uk〉 → 0 and 〈J ′(uk), u〉 → 0, we have

n
∑

i=1

∫

Ω
|∂iuk|

mi → λ

∫

Ω
|u|p =

n
∑

i=1

∫

Ω
|∂iu|

mi . (27)

By weak lower semicontinuity of the norms, for all i we have lim infk ‖∂iuk‖mi
≥ ‖∂iu‖mi

; this,

together with (27) and weak convergence, shows that uk → u in W 1,m
0 (Ω). Therefore, the Palais-

Smale condition holds.

As a straightforward consequence of the mountain-pass Theorem, we deduce that J admits a

critical point. Since J(u) = J(|u|) for all u, we may assume that such critical point is nonnegative.

This concludes the proof of Theorem 4. ¤

6 Proof of Theorem 5

It is not restrictive to assume that λ = 1. The proof consists of four steps.

Step 1. There exists a unique function w ∈ X := W 1,m
0 (Ω) ∩ Lp(Ω) which solves (8). For all test

functions ϕ ∈ X it satisfies

∫

Ω

{

n
∑

i=1

[

(|∂iw|
mi−2 + ε(1 + |Dw|2)(m−−2)/2)∂iw

]

∂iϕ+ |w|p−2wϕ
}

=

∫

Ω
fϕ . (28)

In fact, equation (28) holds if and only if J ′(w) = 0, where J is the integral functional

J(u) =

∫

Ω

[

j(Du) +
1

p
|u|p − fu

]

, u ∈ X ,

with j(ξ) :=
n
∑

i=1

|ξi|
mi

mi
+

ε

m−

(

1 + |ξ|2)m−/2. If we endow X with the weak W 1,m
0 (Ω) topology, the

functional J is lower semicontinuous, because j is convex and coercive. Thus, by the direct method

of the calculus of variations, J admits at least one minimizer w ∈ X, which satisfies (28). Finally,

the uniqueness is gained by the strict convexity of the functional J .
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Step 2. The weak solution w found in Step 1 belongs to L∞(Ω).

Set k := (sup |f |)1/(p−1), and Ωk := {x ∈ Ω : |w(x)| > k}. By taking ϕ = (signw)max{|w| − k, 0}

as a test function in (28), we have:

∫

Ωk

n
∑

i=1

|∂iw|
mi ≤

∫

Ωk

[

n
∑

i=1

|∂iw|
mi + ε(1 + |Dw|2)(m−−2)/2|Dw|2

]

=

∫

Ωk

(|w| − k)[f · (signw)− |w|p−1] ≤ 0 ,

which shows that ‖w‖∞ ≤ k.

Step 3. The weak solution w found in Step 1 belongs to W 1,∞
loc (Ω) ∩H2

loc(Ω).

The first equation in (8) may be written in the form
∑n

i=1 ∂iai(Du) = b(x), by setting

ai(ξ) :=
[

|ξi|
mi−2 + ε

(

1 + |ξ|2
)(m−−2)/2]ξi , b(x) := −f(x) + |w|p−2w . (29)

The functions ai satisfy assumptions (2.3)-(2.6) of [18] (taking therein p = m− and q = m+). The

function b(x) is in L∞(Ω) (using the global boundedness of w already proved in Step 2). Finally,

(4.2) in [18] is valid in view of (6) and (7). Hence, by Theorem 4.1 of [18], there exists a function

w̃ ∈W 1,q
loc (Ω) which satisfies, for every Ω′ ⊂ Ω,

∫

Ω

[

n
∑

i=1

ai(Dw̃)∂iϕ+ b(x)ϕ
]

= 0 ∀ϕ ∈W
1,m+

0 (Ω′) . (30)

We notice that also w satisfies (30); then, since the functional J is strictly convex, we deduce that

w = w̃. Using again Theorem 4.1 of [18], we deduce that w ∈W 1,∞
loc (Ω) ∩H2

loc(Ω).

Step 4. The weak solution w is of class C2(Ω).

The coefficients ai and a defined in (29) are differentiable in their variables, bounded with their

first derivatives on every compact region of Ω×R×Rn, and satisfy a uniform ellipticity condition

(
∑

i,j ∂jai(ξ)ηiηj ≥ ε|η|2). Therefore, the interior C2 regularity of w is obtained in a standard

way, by applying the theory of uniformly elliptic equations (see e.g. [11, Chapters 13, 14, 15] or

Theorems 6.2 and 6.3 in Chapter 4 of [15]). In order to obtain gradient bounds up to the boundary

(which entail w ∈ C2(Ω)), one may either combine the interior gradient bound with the boundary

Lipschitz estimate in [11, Theorem 14.1], or adapt the technique used by Lieberman in [16] or by

Tolksdorf in [26].

7 Proof of Theorem 6

The proof of Theorem 6 is inspired by a work of Otani [20], and is based on the construction of a

sequence of “doubly approximating” problems for (1). More precisely, let u be a mild solution to

(1). Let uk = gk(u), where the gk (k ∈ N) are C1(R+) functions such that

gk(s) = s ∀ s ≤ k , gk(s) = k + 1 ∀ s ≥ k + 2 , 0 ≤ g′k(s) ≤ 1 ∀ s ≥ 0.

Then, for all k ∈ N and all ε ∈ (0, 1) there exists a function f ε ∈ C∞c (Ω) such that

‖f ε‖∞ ≤ Ck ∀ε > 0 , f ε → 2λup−1k in Lr(Ω), ∀r ∈ [1,∞) (31)
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for some constant Ck > 0 independent of ε. By Theorem 5, we know that for all ε ∈ (0, 1) there

exists a unique solution wk
ε ∈ C

2(Ω) to:



















−

n
∑

i=1

∂i

[

[

|∂iw|
mi−2 + ε(1 + |Dw|2)(m−−2)/2

]

∂iw
]

+ λ|w|p−2w = f ε in Ω

w = 0 on ∂Ω .

(32)

The structure of the proof will be the following. We first establish some a priori estimates satisfied

by wk
ε for fixed k (see (33)). Then we apply to wk

ε a generalized Pohožaev identity for solutions

to variational equations, see Proposition 1. Thanks to the a priori estimates we deduce an integral

inequality satisfied by the limit wk of wk
ε as ε→ 0 (Lemma 1). In the next step, we pass to the limit

in k, proving that the limit w0 of wk as k → +∞ coincides with u (the initial mild solution to (1)),

and that u satisfies in turn an integral inequality. Finally, we conclude the proof by showing that,

when Ω is α-starshaped (resp. strictly α-starshaped), and p is strictly supercritical (resp. critical),

such integral inequality is fulfilled if and only if u is identically zero.

We now begin with the a priori estimates. We drop the index k since we maintain it fixed, so we

simply denote by wε the unique solution to (32). By using (31) and by arguing as in the proof of

Step 2 in Theorem 5 we infer that ‖wε‖∞ ≤ C
1/(p−1)
k for every ε ∈ (0, 1). Then, multiplying (32)

by wε and integrating over Ω gives

n
∑

i=1

∫

Ω
|∂iwε|

mi ≤

∫

Ω
f εwε ≤ |Ω|C

p/(p−1)
k .

We have thus obtained that, for some C > 0 and all ε ∈ (0, 1),

‖wε‖1,m ≤ C , ‖wε‖∞ ≤ C . (33)

By (33), Theorem 1 and interpolation, up to a subsequence, there exists wk such that

wε ⇀ wk in W 1,m
0 (Ω) , wε → wk in Lr(Ω) ∀r ∈ [1,∞). (34)

Test (32) with some v ∈ W 1,m
0 (Ω) and let ε → 0. By (34), we know that |∂iwε|

p−2∂iwε remains

bounded in Lm
′
i(Ω) for all i = 1, . . . , n, thus Theorem 1 in [6] gives |∂iwε|

p−2∂iwε ⇀ |∂iwk|
p−2∂iwk

in Lm
′
i(Ω). Hence, using also (31), we obtain

n
∑

i=1

∫

Ω
|∂iwk|

mi−2∂iwk∂iv = −λ

∫

Ω
|wk|

p−2wkv + 2λ

∫

Ω
up−1k v ∀v ∈W 1,m

0 (Ω) . (35)

In particular, taking v = wk in (35), yields

n
∑

i=1

∫

Ω
|∂iwk|

mi = −λ

∫

Ω
|wk|

p + 2λ

∫

Ω
up−1k wk. (36)

Next, multiply (32) by wε and integrate by parts. Letting ε→ 0 and taking into account (31) and

(34), gives
n
∑

i=1

∫

Ω
|∂iwε|

mi → −λ

∫

Ω
|wk|

p + 2λ

∫

Ω
up−1k wk.
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This, together with (36) and (34), shows that

wε → wk in W 1,m
0 (Ω). (37)

Without loss of generality, in the sequel we assume that the center of α-starshapedness is the

origin, that is (10) holds (with strict inequality if p = m∗).

In order to derive an integral inequality for wk, we shall apply to wk
ε the generalized Pohožaev

identity [22], as stated in [23, §1].

Proposition 1. Let Ω be a smooth bounded open set in Rn, and let u be a function in C2(Ω)∩C1(Ω)

with u = 0 on ∂Ω. Assume that u solves the Euler-Lagrange equation

divFξ(x, u,Du) = Fs(x, u,Du) ,

where the integrand F = F(x, s, ξ) is supposed to be of class C1 on Ω ×R ×Rn together with Fξ.

Then, for any scalar function a and vector field h of class C1(Ω)∩C(Ω) the function u satisfies the

identity

∫

∂Ω
[F(x, 0, Du)− (Du,Fξ(x, 0, Du))](h, ν) ds =

∫

Ω
F(x, u,Du)divh+

∫

Ω
(h,Fx(x, u,Du))

−

∫

Ω
(DuDh+D(au),Fξ(x, u,Du))−

∫

Ω
auFs(x, u,Du) .

We are now ready to prove

Lemma 1. Let mi, α, Ω, and p satisfy the assumptions of Theorem 6. Assume that wk ∈W
1,m
0 (Ω)

satisfies (35). Then

n

m∗

n
∑

i=1

∫

Ω
|∂iwk|

mi +
nλ

p

∫

Ω
|wk|

p + 2λ
n
∑

i=1

αi

∫

Ω
up−1k xi∂iwk +Rk ≤ 0 ,

where Rk := lim sup
ε→0

n
∑

i=1

(

1−
1

mi

)

∫

∂Ω
|∂iwε|

mi(x, Tαν) ds.

Proof. Let wε ∈ C
2(Ω) be the unique solution of (32), see Theorem 5. We observe that (32) is the

Euler-Lagrange equation of the integral functional with integrand

F(x, s, ξ) :=
n
∑

i=1

|ξi|
mi

mi
+

ε

m−

(

1 + |ξ|2
)m−/2 +

λ

p
|s|p − f ε(x)s .

Then, we apply Proposition 1, by choosing as a scalar function a(x) the constant a ≡ n/m∗ and as

a vector function h(x) the field x deformed through the tensor Tα, namely h(x) = (α1x1, . . . , αnxn).
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We obtain

∫

∂Ω

[ n
∑

i=1

( 1

mi
− 1

)

|∂iwε|
mi +

ε

m−

(

1 + |Dwε|
2
)(m−−2)/2(

1 + (1−m−)|Dwε|
2
)

]

· (x, Tαν) ds

= n

∫

Ω

[ n
∑

i=1

|∂iwε|
mi

mi
+

ε

m−

(

1 + |Dwε|
2
)m−/2 +

λ

p
|wε|

p − f εwε

]

−
n
∑

i=1

αi

∫

Ω
wεxi∂if

ε

−
n
∑

i=1

αi

∫

Ω

[

|∂iwε|
mi + ε

(

1 + |Dwε|
2
)(m−−2)/2

|∂iwε|
2

]

−
n

m∗

∫

Ω

[ n
∑

i=1

|∂iwε|
mi + ε

(

1 + |Dwε|
2
)(m−−2)/2

|Dwε|
2 + λ|wε|

p − f εwε

]

.

We observe that, by the present choice (6) of the αi and (3) of m∗, the terms containing
∫

Ω |∂iwε|
mi

for all i cancel. We now want to send ε→ 0. First note that

lim sup
ε→0

ε

∫

∂Ω

(

1 + |Dwε|
2
)(m−−2)/2(

1 + (1−m−)|Dwε|
2
)

· (x, Tαν) ds ≤ 0 ,

because the map s 7→ (1+s2)(m−−2)/2(1+(1−m−)s
2) is bounded from above onR, and (x, Tαν) ≥ 0

by the α-starshapedness assumption. Moreover, integrating by parts and using (32), yields

−

∫

Ω
wεxi∂if

ε =

∫

Ω
f εxi∂iwε +

∫

Ω

[

λ|wε|
p +

n
∑

j=1

|∂jwε|
mj + ε

(

1 + |Dwε|
2
)(m−−2)/2|Dwε|

2
]

Therefore, using (31), (34), (37) and Lemma 1,

0 ≥ lim sup
ε→0

∫

∂Ω

n
∑

i=1

(

1−
1

mi

)

|∂iwε|
mi(x, Tαν) ds+ nλ

∫

Ω

[1

p
|wk|

p − 2up−1k wk

]

+2λ
n
∑

i=1

αi

∫

Ω
up−1k xi∂iwk + n

∫

Ω

[

λ|wk|
p +

n
∑

j=1

|∂jwk|
mj

]

−
nλ

m∗

∫

Ω

[

|wk|
p − 2up−1k wk

]

.

Finally, using (36), we obtain the result. ¤

Next, we let k →∞ and we obtain

Lemma 2. Let mi, α, Ω, and p satisfy the assumptions of Theorem 6. Assume that u is a mild

solution of (1). Then

nλ
( 1

m∗
−

1

p

)

∫

Ω
up +R ≤ 0

where R := lim sup
k→+∞

Rk, with Rk as in Lemma 1.
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Proof. By (36), Hölder’s inequality, and the convergence uk → u in Lp(Ω), we have

n
∑

i=1

∫

Ω
|∂iwk|

mi + λ

∫

Ω
|wk|

p ≤ C
(

∫

Ω
|wk|

p
)1/p

∀k ∈ N .

Hence, {wk} is bounded in Lp(Ω) and in W 1,m
0 (Ω), and therefore there exists w0 ∈W

1,m
0 (Ω)∩Lp(Ω)

such that, up to a subsequence, wk ⇀ w0 in W
1,m
0 (Ω) and in Lp(Ω). Thus, letting k → +∞ in (36),

we get

lim
k→+∞

[

n
∑

i=1

∫

Ω
|∂iwk|

mi + λ

∫

Ω
|wk|

p
]

= 2λ

∫

Ω
up−1w0 . (38)

On the other hand, taking v = w0 in (35), and letting k → +∞, gives

n
∑

i=1

∫

Ω
|∂iw0|

mi + λ

∫

Ω
|w0|

p = 2λ

∫

Ω
up−1w0 ,

which together with (38) and weak convergence proves that wk → w0 (strongly) inW
1,m
0 (Ω)∩Lp(Ω).

We claim that w0 = u. Indeed, by letting k → +∞ in (35), we infer that w0 satisfies

n
∑

i=1

∫

Ω
|∂iw0|

mi−2∂iw0∂iv = −λ

∫

Ω
|w0|

p−2w0v + 2λ

∫

Ω
up−1v ∀v ∈W 1,m

0 (Ω) ∩ Lp(Ω).

Since u is a mild solution to (1), the above identity holds when replacing w0 with u, and by

subtracting we obtain, for all v ∈W 1,m
0 (Ω) ∩ Lp(Ω),

n
∑

i=1

∫

Ω

(

|∂iw0|
mi−2∂iw0 − |∂iu|

mi−2∂iu
)

∂iv = λ

∫

Ω

(

|u|p−2u− |w0|
p−2w0

)

v . (39)

Choosing v = w0 − u, and taking into account that

∫

Ω

(

|∂iw0|
mi−2∂iw0 − |∂iu|

mi−2∂iu
)

(∂iw0 − ∂iu) ≥

∫

Ω

(

|∂iw0|
mi−1 − |∂iu|

mi−1
)

(|∂iw0| − |∂iu|) ,

(40)

the left hand side of (39) is nonnegative. Since its right hand side is nonpositive, we get immediately

w0 = u.

We can now pass to the limit as k → +∞ in Lemma 1. Since u is a mild solution we have

∫

Ω
up−1k xi∂iwk →

∫

Ω
up−1xi∂iu ∀i = 1, ..., n . (41)

Therefore, using the identities

∫

Ω
up−1xi∂iu = −

1

p

∫

Ω
up and

n
∑

i=1

∫

Ω
|∂iu|

mi = λ

∫

Ω
up ,

we obtain the statement. ¤
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We are now in a position to give the proof of Theorem 6.

If p > m∗, since R ≥ 0, by Lemma 2 we obtain u ≡ 0.

If p = m∗, Lemma 2 yields

0 = R = lim sup
k→+∞

lim sup
ε→0

n
∑

i=1

(

1−
1

mi

)

∫

∂Ω
|∂iwε|

mi(x, Tαν) ds . (42)

Integrating (32) (with w = wε) over Ω, by the divergence Theorem, we obtain

∣

∣

∣

∫

Ω
λ|wε|

p−2wε − f ε
∣

∣

∣
=

∣

∣

∣

n
∑

i=1

∫

∂Ω

[

|∂iwε|
mi−2 + ε(1 + |Dwε|

2)(m−−2)/2
]

∂iwε νi

∣

∣

∣
.

Letting first ε→ 0 and then k → +∞, we deduce

λ

∫

Ω
up−1 ≤ lim sup

k→+∞
lim sup
ε→0

n
∑

i=1

∫

∂Ω

[

|∂iw|
mi−1 + ε|∂iw|(1 + |Dw|

2)(m−−2)/2
]

ds .

Since inf∂Ω(x, Tαν) > 0 (by strict α-starshapedness), by (42), the right hand side above equals zero.

We deduce that u ≡ 0, and the proof of Theorem 6 is complete.

Remark 2. To ensure the convergence (41), it is sufficient to have xiu
p−1 ∈ Lm

′
i(Ω) for all i.

Actually, for Ω α-starshaped with respect to the origin, the condition u ∈ L(p−1)m
′
−(Ω) for mild

solutions in Definition 1, may be relaxed to xiu
p−1 ∈ Lm

′
i(Ω) for all i = 1, . . . , n.

8 Concluding remarks and open problems

8.1 About Theorem 4

We show here that the assumption p > m+ in Theorem 4 is necessary to apply the mountain-pass

Theorem.

• An example of an unbounded Palais-Smale sequence.

Assume that Ω ⊂ R10 is the cylinder Ω = (0, π)×B1, where B1 is the unit ball in R
9. Take λ = 1,

m1 = m+ = p = 2, mi =
4
3 for i = 2, ..., 10 and let m = (m1, ...,m10). Then, the corresponding

functional reads

J(u) =
1

2

∫

Ω
|∂1u|

2 +
3

4

10
∑

i=2

∫

Ω
|∂iu|

4/3 −
1

2

∫

Ω
|u|2.

For all k ∈ N, consider the function φk : [0, 1]→ R defined by

kφk(r) =















k15 − 1 if r ∈ [0, k−3]

r−5 − 1 if r ∈ [k−3, 1]

kφ′k(r) =















0 if r ∈ [0, k−3)

−5r−6 if r ∈ (k−3, 1] .

Consider also the sequence of functions

uk(x1, x
′) = sinx1 · φk(|x

′|) , x′ = (x2, ..., x10).
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Then, we have (c denotes possibly different positive constants)

‖∂1uk‖
2
2 = ‖uk‖

2
2 = c

∫ π

0
sin2 x1dx1 ·

∫ 1

0
r8φ2k(r)dr

≥
c

k2

∫ 1

k−3

r8(r−10 − 2r−5 + 1)dr ≥
c

k2

∫ 1

k−3

r−2dr + o(1) ≥ ck

so that the sequence {uk} is unbounded in W 1,m
0 (Ω). On the other hand,

10
∑

i=2

∫

Ω
|∂iuk|

4/3 ≤ c

∫

B1

|∇x′uk|
4/3 = c

∫ 1

0
r8|φ′k(r)|

4/3dr ≤
c

k4/3
.

Hence, by Hölder’s inequality

|〈J ′(uk), v〉| ≤
10
∑

i=2

∫

Ω
|∂iuk|

1/3|∂iv| ≤ o(1) · ‖v‖1,m ∀v ∈W 1,m
0 (Ω) .

Therefore, as k →∞ we have

J(uk)→ 0 and J ′(uk)→ 0 in [W 1,m
0 (Ω)]′

so that {uk} is an unbounded Palais-Smale sequence for J .

• Failure of the mountain-pass geometry.

Take n = 2, m1 = 4
3 , m2 = 3, and note that m∗ = 24, so that (2) and (5) are satisfied. Take

p = 2, then

J(u) =
3

4
‖∂1u‖

4/3
4/3 +

1

3
‖∂1u‖

3
3 −

λ

2
‖u‖22 .

Hence, by inequality (11) and interpolation we obtain

J(u) ≥ C1‖u‖
4/3
4/3 + C2‖u‖

3
3 −

λ

2
‖u‖

4/5
4/3‖u‖

6/5
3 .

By applying Young’s inequality we then obtain J(u) > 0 for all u 6= 0, provided λ is sufficiently

small. Clearly, in this case J does not have the standard mountain-pass geometry.

An even simpler argument works when p = m+. Take any n, any mi and assume that p = m+.

Then, by applying inequality (11), we see that J does not have a mountain-pass geometry if λ ≤

(2/ap)p, where a is the width of Ω in the direction corresponding to the maximal exponent m+.

8.2 About mild solutions

Consider the semilinear problem (mi ≡ 2)































−∆u = λ(1 + u)p−1 in B

u ≥ 0 in B

u = 0 on ∂B

(43)
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where λ > 0, p > 1 and B denotes the unit ball in Rn (n ≥ 3).

It is well-known [4] (see also Theorem 2 above), that any weak solution of (43) is a strong solution

whenever p ≤ 2n
n−2 .

A simple calculation shows that, if

p >
2n− 2

n− 2
and λ =

2

p− 2

(

n−
2p− 2

p− 2

)

,

then the function

U(x) = |x|−2/(p−2) − 1

satisfies (43) in B \ {0}. It is also not difficult to prove the following facts

U ∈ H1
0 (B)⇐⇒ p >

2n

n− 2
, U ∈ Lq(B)⇐⇒ q <

n(p− 2)

2
.

Therefore:

(i) U is a weak solution of (43) (i.e. U ∈ H1
0 (B) ∩ L2n(p−1)/(n+2)(B)) if and only if p > 2n

n−2 .

(ii) U is a mild solution of (43) (i.e. U ∈ L2(p−1)(B)) if and only if n > 4 and p > 2n−4
n−4 .

These statements suggest that, in general, one cannot expect a weak solution of (1) to be a mild

solution if p > m∞. Moreover, it seems more likely that a weak solution is indeed a mild solution

for large values of the exponent p.

8.3 Some open problems

Problem 1. Prove Theorem 2 under the only assumption that p ≤ m∞. The example in Section

8.2 shows that it is not reasonable to expect strong solutions of (1) if p > m∞. Note that our proof

of Theorem 2, case (i), does not work if p = m∞ = m+ due to the failure of the step which uses

Hölder’s inequality: no εk appears. On the other hand, our proof in case (ii) cannot be followed

when p = m∞, because there is no positive a0 which can initialize (18).

Problem 2. Find sharp statements in the situation of Theorems 3 and 4. For which exponents

p < m∞ does (1) admit a solution for all λ > 0? It seems that the resonance situation occurs as

soon as p ≤ m+ (see also Section 8.1) but maybe there are some “spectral gaps”, namely some

p ∈ (m−,m+) such that (1) admits a strong solution for all λ > 0.

Problem 3. Prove Theorems 5 and 6 under less restrictive assumptions on the exponents mi.

For instance, one could try to relax (6) and (7) with (5). In fact, (6) and (7) are used in Step 3 of

the proof of Theorem 5. As suggested in [1], we actually believe that a gradient estimate for the

solution of the approximating problems can be obtained under the sole assumption (5). Assumption

(6) is also needed in some of the estimates in the proof of Theorem 6, but the case where mi < 2

for some i may be handled in a similar way as in (4.22) in [20].
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