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Abstract. We investigate the first eigenvalue of a highly nonlinear class of elliptic op-
erators which includes the praplace operator Apu = Y, 2 7o ((Vul?™ 2o 52 ), the pseudo-
p-Laplace operator Aju = pe B (| |p 20 oy <43 and others. We derlve the positivity of
the first eigenfunction, simplicity of the first eigenvalue, Faber-Krahn and Payne-Rayner
type inequalities. In another chapter we address the question of symmetry for positive
solutions to more general equations. Using a Pohozaev-type inequality and isoperimetric
inequalities as well as convex rearrangement methods we generalize a symmetry result
of Kesavan and Pacella. Our optimal domains are level sets of a convex function H°.
They have the so-called Wulff shape associated with H and only in special cases they are
Euclidean balls.
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1 Introduction

Throughout this paper let H : IR" +— IR be a nonnegative convex function of class
CY(IR™\{0}) which is even and positively homogeneous of degree 1, so that

H(t€) = [t|H(€) forany (€ IR, €€ IR™. (1.1)
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A typical example is H(€) = (32, 1&]7)'/9 for ¢ € [1,00). Note that there are
positive constants « and 3 such that H satisfies

alg| < H(E) < Bl¢| forany €€ IR™. (1.2)
We can assume without loss of generality that the convex closed set
K={xeR"; H(z) <1}

has the same measure |K| = w,, as the unit ball in JR" equipped with the Fuclidean
{5 norm.

We shall investigate Fuler equations which involve functionals containing the
expression

fﬂ (H(Vu))? dz . (1.3)

The differential equations contain operators of the form

Qu == Z
i=1

In particular for H(¢) = (32, [€x|9)/7 the operator Q becomes

q> (r—a)/q

Note that for ¢ = 2 this is the usual p—Laplace operator, while for p = ¢ it is
the pseudo—p-Laplace operator that was extensively studied in [5]. For these cases
and for g = oo the equation —Qu = f(x) and its limit as p — oo was adressed in
[18]. For general H and p = 2 the equation —Qu = f(z) in £ was investigated
in [2]. In [2] it became clear that the isoperimetric role that is played by the
ball (among all domains  of given volume) is now replaced by a set homothetic
to the polar set K¢ of K. For H(£) = c,(3;]&]7)'/9 the set K° is given by
K°.={zxeR"; c;l(zi |§i|q,)1/q, < 1}, with ¢’ conjugate to g and with

e (V) e, (V) (1.4

_2
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Su
aajk

ou
8:);5

Qu :— ; aii (Z (1.5)

k=1

—1
Cq

r(1/2) [T(1+n/g)\""
I'(1/q) (F(1+n/2)> - (1.6)

In this paper we study positive solutions of the general eigenvalue problem
Qu + Ap|u[P"2u = 0 and of equations such as Qu = f(u) with subcritical growth
for f, both under zero boundary conditions.

4
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2 Preliminaries

This section is devoted to recall some results about functions having the properties
of the function H introduced in the previous section. Let H : IR™ — [0,+oc| be a
convex function satisfying the homogeneity property:

H(tzx) = |t|H(x), Ve IR", Vit IR. (2.1)
Recall that H satisfies
algl < H(¢) < B, vée R, (2.2)

for some positive constants o < 3. Because of (2.1) we can assume, without loss
of generality, that the convex closed set

K={zeR": H(z) <1}

has measure | K| equal to the measure w,, of the unit sphere in IR™. Sometimes, we
will say that H is the gauge of K. If one defines (see [31]) the support function of
K as:
H(z) =sup < z,€ >,
§EK
it is easy to verify that H® : IR" — [0,+oo| is a convex, homogeneous function,
and that H, H? are polar to each other in the sense that:

<z,&>

e i e
and
=su s8>
H(m) = oo HOE) 24)

For example it follows:
| <z, &> | < H(z)H(§).

Clearly H?(x) itself is the gauge of the set:
K°={zeR":H(z) <1}.

We say that K and K° are polar to each other. Finally we denote by k, the
measure of K°. Further details can be found, e.g., in [21], [31].
Let  be an open subset of IR". It is possible to give the following definition

of the total variation of a function v € BV () with respect to a gauge function H
(see [3]):

/ |Dulg = sup{/ udivedzs : 0 € CYH(Q; IR™), H(0) < 1} .
Q Q
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This yields the following “generalized” definition of perimeter of a set E with
respect to H:

Py(E;Q) :/ |Dxglg = Sup{/ diveds : o € C}( IR™), H°(0) < 1}.
o 2

The following co-area formula

/Q | Dl = /0°° Pr({u> s};Q)ds, Yu € BV (),

and the equality
Py (E;Q) = / H(v)dH™ (=)

QNo*E
hold, where 0" F is the reduced boundary of E and v is the outer normal to F (see

[3])-
One obtains readily that by definition Py (E;€Q) is finite if and only if the usual
perimeter:

P(E;Q) _sup{/ divedz : o € Cy(Q R™), |o| < 1}
E
is finite. In fact, (2.1) and (2.2) give
—[€] < Ho(€) < ~e] ve e I
g R ’

and then
aP(E;Q) < Py(E;Q) < BP(E;Q).

Finally we quote a result which can be found in [2], [7], [13]

Theorem 2.1 (Wulff theorem)
If E is a set of finite pertmeter in IR™, then

Py (E; R™) > nkl/™|E|*"Y/", (2.5)

and equality holds if and only if E has Wulff shape, i.e. E is a sub-level set of H®,

modulo translations.

3 The eigenvalue problem

For p € (1,00) let us consider the following variational problem:

Ap(€2) = inf{/Q(H(Vv))p dz ; v e WEr(Q), /Q|U|P dz =1 } (3.1)
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The direct method in the calculus of variations provides an existence proof for a
minimizer u,. Without loss of generality the minimizing function is nonnegative
(otherwise replace u, by |u,|). But more can be said.

Theorem 3.1 (The first eigenvalue is simple and the first eigenfunction positive.)
Problem (3.1) has a unique positive solution w,, which solves the Euler-Lagrange
equation

wy + AP 2w, = 0 inQ 3.2
P 2 et 4 P ?
up = 0 on 0.

Proof: We observe that u, minimizes also the nonnegative functional J,(v) =
Jo H(Vu)? — X (Q)|ul? dz. According to the regularity theory for quasiminima in
[16] minimizers of J, are bounded [16], Thm. 7.5, Hélder continuous [16], Thm. 7.6
and satisfy a strong maximum principle [16], Thm. 7.12. Therefore u, is positive
in Q. Moreover, if 90 € C?, then u, € CH*(Q) according to [33], [32] or [23].
To prove its uniqueness we follow the idea from [4] and assume that there are two
positive minimizers v and U of (3.1). For ¢ € (0,1) we set = tu? + (1 — t)UP and
u, = n*/P. Notice that u; is an admissible function for problem (3.1). To evaluate
the functional in (3.1) at u; we calculate

Vu = 5 VP (P Vu o+ (1 - )UPTIVU)
so that by the homogeneity of H

tuP V 1-HUPVU
e R e

Now we set s(x) := tuP /n, observe that it belongs to the interval (0,1) and exploit
first the convexity and then the homogeneity of H to arrive at

H(NVuy)?» = nH (S(ZE)% +(1- s(x))v—UU> (3.3)

. (s@)H (%) T (- s@)H (V_UU))
= tw'H (%)p +(1—-t)UPH (v_UU>p
— tH(Vu)” + (1 - H(VUY .

AN

After integration of (3.3) we see that also w; is a minimizer and that equality holds
a.e. in © in (3.3). But then «VU = UVu a.e. in Q, i.e. u/U is constant a.e..
This and the norm constraint for « implies uniqueness and completes the proof of
Theorem 3.1
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Remark 3.2 The last result was first proved by Lindqvist in [24], [25] for the
p—Laplacian operator with a different proof.

Theorem 3.3 (Faber-Krahn type inequality)

Among all domains 0 of given volume the shape function \,(2) is minimized by
a set homothetic to K°, in other words A\py(2) > X\, (2*), where Q* has the Wulff
shape (of K°) and the volume of Q. Moreover, equality holds only if 1 = Q* modulo
translation.

Proof: In Schwarz-symmetrization of functions one replaces their level sets by con-
centric balls of same measure. In convex symmetrization a la [2] the balls are
replaced by equimeasurable centered sets homothetic to K°. This way a func-
tion « with support Q is transformed into a function «* with support Q*. We
apply convex symmetrization to the first eigenfunction v, on Q. Then uj is an
admissible function for the variational problem that characterizes A,(2*), because
fQ |up|P dx = fQ* |ug|P dz. Now an application of the Pélya-Szegd type inequality
2], Thm. 3.1

/ H(Vo)? dz> | H(Vu*)P dz  for any v € WP (Q) (3.4)
Q Q*

shows that A,(Q2) > A, (£2*). It remains to discuss the sharpness of the inequality.
To do this one has to analyze the case of equality in (3.4). Fortunately this was
already done in [11], Thm. 5.1 and in [12], and ends the proof of Theorem 3.3.

From Holder’s inequality one can see that for 0 < ¢ < r the estimate ||u||, <
(r, g, 19]) ||u|]- holds for any w € L™(Q) with c(r, q,|Q|) = |Q|~9/9. If u is an
eigenfunction, then one can reverse the inequality sign.

Theorem 3.4 (Payne-Rayner type inequality)
If u, solves Problem (3.1) then for every 0 < g < r < oo there exisls a posilive
constant B3(r, q,p,n, Ap(Q)) such that

||up||7“5ﬁ(r7qap7n7)‘ﬁ) ||up||q : (35)
Moreover, equality in (3.5) holds if and only if 2 = Q* modulo translation.

We can adapt the proof from [1], Section 4. We fix ¢ and p and let v, be a positive
eigenfunction on a set B of shape K° with eigenvalue A, (2) which is suitably scaled
so that

gl Lacy = llpllLace) - (3.6)

So v, solves

{qu F AplvglP 2w, =0  in B, 57)

Vg =0 on 0B.
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with @ as in (1.4). Because of (3.1) it is clear that |B| < |2|. Moreover B is given
by

B= {:13 e R"; H(z) < (H,,/A,,(Q))l/p} , (3.8)

where &, denotes the first eigenvalue of problem (3.7) in the unit ball K°. The
Payne-Rayner inequality is now a consequence of the following comparison result
among the onedimensional rearrangements of u, and v,.

Theorem 3.5 (Comparison of rearrangements)
If u, and v, are as defined above we have

/Os(u;(t))q dt < /Os(v;(s))q dt for s € [0,|B]] and ¢ € (0,00) (3.9)
uy(s) > v (s) for s €[0,|B]|] and g = 0o

Moreover, equality in (3.9) holds if and only if 8 = B modulo translation.

The proof of Theorem 3.5 is essentially contained in [1], pp. 446f and can be almost
literally copied from there, except that now Lemma 4.2 in [1] has to be replaced by

Lemma 3.6 (Estimate for —(u*(s))" )
If u, solves Problem (3.1) then the following inequality holds:

AL/ =D s 2
—(ux(s)) < ( s ‘1’ y )p/@fl) (/0 (ur(o))P da) a.e. in (0, Q).
nky, st—/T

(3.10)

For p = 2 the proof of this Lemma can be found in [2], pp. 285f, but we repeat it
here for the benefit of the reader and for a more general application later. Suppose
that u € Wy P (£2) solves

(3.11)

—Qu = f(x) in Q
u=20 on 02

with Qu as in (1.4) and f € L°°(£2). A weak solution of (3.11) satisfies

[5: (s e

) dz — / fo dz,  for all € W P(9).
Q
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Using the following test function ¢y (x) for A >0 and ¢t > 0
h if Ju| >t +h
on(x) = ¢ (Jul = )sign v ift<|u|<t+h

0 if |u| < ¢

one gets in a standard way,

/u>t Z < (V)™ 1H&(

=1

) do < /0 O as, (3.12)

where p(t) = |[{u > t}| is the distribution function of w. Taking the functional
underlying (3.11) into account it follows

d
di Ju|>t

u(t)
(H(Vu))? < / Fr(s)ds. (3.13)
0
At this point, one has to use the isoperimetric inequality (2.5)
Py(E; R™) > nkl/™|E|*~ /" (3.14)

in order to estimate the left-hand side of (3.13) from below. In fact, the estimate

Ju| >t

l/p
Py (F;IR™) = —% H(Vu)dr < (—% / Dt(H(VU))P dx) (_ul(t))lfl/p

and (3.14) give

(ki) —1m)" < (—d% /M(H(Vu»p dx) (—#@®yF . (315)

Now a combination of (3.13) and (3.15) yields, for a.e. ¢ € [0,sup u),

1

(=4 (1) ( e )
1< — *(s)ds . (3.16)
(nki/”u(t)lfl /n>p/(p ) /0

For f(z) = Ap|u,(x)|P~2u,(x) relation (3.16) becomes (3.10). This proves Lemma
3.6.

In contrast to the previous estimates the last estimate in this section is optimal
(as p — 1) for any shape of £ and not just for Q = Q*.
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Theorem 3.7 (Cheeger type inequality)
For every p € (1,00) the eigenvalue A\, (2) can be estimated from below as follows:

Ap(Q) > (MY : (3.17)

p

Here h(Q) = inf{ Py(D,IR")/|D| ; D simply connected and D CC § } is the
Cheeger constant associated with . Moreover, \,(2) converges to h(2) asp — 1.

For H(€) = |¢] and p = 2 this is Cheeger’s original estimate [6] and for H(§) = [{]
and general p it can be found in [22]. For a more general H one can easily modify
the proof from [22] by using the generalized coarea formula from [11] or [12]. To
prove the limiting behaviour of A,(2) as p — 1 we proceed as in [19] and observe
that (3.6) implies liminf, .1 A,(Q) > A(2). Therefore is suffices to find a suitable
upper bound. Let {Dg}r=12 .. be a sequence of admissible domains for which
Py (Dy, IR™)/|Dg| converges to h(€2). Approximate the characteristic function of
each D by a function w; with the following properties: w = 1 on Dg, w = 0
outside an s-neighborhood of Dy and |Vwg| = 1/ in an e-layer outside Dy. For
small £ the function wy, is in I/VO1 **°(€2) and provides the upper bound

Py (Dg, IR™)

A () <
P( )— |Dk|

(ag)t~P . (3.18)

Now one sends first p — 1, then & — oo to complete the proof of Theorem 3.7.

4 Symmetry of positive solutions
In this section we consider positive solutions to the following problem:

-2 ai ((H(Vu))" 'He,(Vu))= f(u)  inQ

(4.1)
u=20 on 901,

where Q@ = {z € IR" : H°(z) < R}, with R > 0, n > 2 has the so-called Wulfl-
shape. The function f : IR — IR is supposed to be continuous and to satisfy the
following conditions:

f(s)>0 for s> 0, (4.2)
f(s) <cils|” + e for s>0, (4.3)

for some r > 0.
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Our aim is to show that any positive solution w to (4.1) necessarily satisfies
a symmetry property. More precisely we prove that all level sets of « have Wulff
shape and are homothetic to 2. We immediately observe that such a result contains
the well known symmetry result proved in [15] in the case that H(§) = H®(£) = ]
and € is a ball of radius R. We have the following;:

Theorem 4.1

Suppose that H is strictly convez, that H(E)™ is of class C2(IR™) and that [ satisfies
the assumptions (4.2) and (4.3). Then the level seis of any positive solution o
problem (4.1) have Wulff shape and are homothetic to €.

The proof of the above theorem is based on arguments similar to those in [26]
(see also [20]), where H had the special structure H(E) = (32, |€[")Y™. A key
point of the proof is a suitable version of the well known identity of Pohozaev
[29]. Various extensions of this identity have been given under various assumptions
on the structure of the differential operator in (4.1) and on the regularity of the
solution u (see, for instance, [30], [17], [9], [14]). We will use the version contained
in [9], which can be used because for n > 2 the function H ()" is strictly convex.

Theorem 4.2 (Pohozaev identity from [9]) B
Under the assumptions of Theorem 4.1, suppose u € C1(Q) is a weak solution to
problem (4.1). Then the following identity holds true:

n—1

H(Vu)* < z,v > dH" ! = n/ F(u) dz,

n fs19) Q

where v is the outer normal to Q and F(s) = / flo) do.
0

To prove Theorem 4.1 suppose that « € Wol’n(ﬂ) is a positive solution of (4.1).
First we observe that u € C'(Q) due to well-known regularity results contained in
[10], [16], [23], [32], [33]. Therefore Theorem 4.2 applies and, taking into account
the fact that (2.4) implies < z,v >= R H(v) on 0%, we get

n—1

R | H(Vu)"H(v)dH"* :n/ F(u)dz. (4.4)
n a0 Q

After integration of equation (4.1) on Q we obtain

/Q flu)ds — — /B (V) He (Fus ar! (4.5)

UBQ e de) N (/ag H(v) dH”1> %

n—1

IA

(k) R ( LQ(H(VU))"H(v)dH”1> "
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where we have used the following facts: because of the homogeneity of H we have
Yo He ()& = H(E) and the isoperimetric inequality (2.5) holds as an equality for
our special 2, that is, Py (€ IR"™) = nkL/™|Q| /" = nk,R™ L.

We can now apply the rearrangement techniques that were already used in the
previous section. Arguing as in the proof of Lemma 3.6 in order to get (3.16) we
easily obtain, for a.e. ¢ € [0,supu),

(e < oy [ s (1.6)

An integration, together with (4.6), yields

/Q F(u) dz

|

/ " r oy a (47)

1

< ﬁ /(/ F(u da:) T )= ) de

- (fee)”

Collecting (4.4), (4.5) and (4.7) gives now

/Qf(u)dxﬁ (nn’jﬂ%(nkn)i </QF(u)dm>nTl S/Qf(u)dx-

This means that all the inequalities we have used are in fact equalities. In particular
(4.6) holds as an equality for a.e. ¢t € [0,supw). By standard rearrangement
properties we then get (see also the proof of Lemma 3.6):

1 LB T
u*(s) = ( )n/(n ) / (/ f(u da) dr in (0,]122))  (4.8)
1/ s
It turns out (see [2]) that the function u#(z) = w*(k,(H°(x))") solves problem

(4.1). Therefore, using u and u# as test functions in the differential equations for
u and u¥ | we have

[y do— [ fudo— [ sty do— [ oty o

At this point we recall a result contained in [11], [12] which states that, provided
{z € Q:0<u¥(x) <supu, |Vul(z) =0} =0,

/Q (H(Va))" dz — /Q (H(Vut )" da
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if and only if w = w#. Observing that «# has the required symmetry property
the theorem will be completely proved if we verify that |[{z € Q : 0 < «¥(z) <
supu, |Vul(x) = 0} = 0. Indeed, it is sufficient to observe that from (4.8) and
from assumption (4.2) it results that «* is strictly decreasing in (0, |©2]).

Remark 4.3 The approach used in the above proof allows us to obtain a symmetry
result under hypotheses which, also in the simple case H(&) = |£|, are weaker than
those needed in [15]. On the other hand our proof works only for a problem in the
form (4.1) and it is not clear how to extend it to the case the differential operator
is in the general form (1.4) with p % n (see [26], [20] for similar observations). We
also remark that, while in the case H(&) = |£| the moving plane method turns out
to be useful to prove results as Theorem 4.1, in our general context the possibility
to apply it does not seem to be immediate.

Acknowledgement. Partially supported by GN.AM.P.A. - .LN.d.A.M. Progetto
“Proprieta analitico-geometriche di soluzioni di equazioni ellittiche e paraboliche”

(2002/03).
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