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Abstract: First we recall a Faber-Krahn type inequality and an estimate for λp(Ω)
in terms of the so-called Cheeger constant. Then we prove that the eigenvalue
λp(Ω) converges to the Cheeger constant h(Ω) as p → 1. The associated eigen-
function up converges to the characteristic function of the Cheeger set, i.e. a subset
of Ω which minimizes the ratio |∂D|/|D| among all simply connected D ⊂⊂ Ω.
As a byproduct we prove that for convex Ω the Cheeger set ω is also convex.
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Let p ∈ (1,∞), and suppose that Ω ⊂ IRn is a bounded simply connected do-
main with sufficiently smooth boundary. A well-known result in nonlinear partial
differential equations states that the following eigenvalue problem

∆pu + λ|u|p−2u = 0 in Ω,

u = 0 on ∂Ω
(1)

has a positive (weak) solution in W 1,p
0 (Ω), which is unique modulo scaling, in other

words the corresponding eigenvalue is simple. A simple proof of this long-known
fact was recently given in [3]. These functions are also called first eigenfunctions
of the p-Laplace operator, and ∆pv := div(|∇v|p−2∇v). To avoid ambiguity, we
shall normalize it by prescribing ||u||∞ = 1.

One can characterize the eigenvalue and eigenfunction by

λp(Ω) := min
0 6=v∈W 1,p

0 (Ω)

∫
Ω
|∇v|p dx∫

Ω
|v|p dx

, (2)

with u as minimizer. As mentioned above, in this paper the eigenfunction is scaled
to ||u||∞ = 1. The functional in the right hand side is usually called Rayleigh
quotient. The eigenfunction, or rather a multiple of it, can also be characterized
as a critical point, and in fact a minimizer, of the functional

Jp(v) =
∫

Ω

|∇v|p dx on K := { v ∈ W 1,p
0 (Ω) | ||v||Lp(Ω) = 1 }. (3)
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Upper bounds for λp can be obtained by choosing particular test functions v in
(2), but lower bounds are more challenging.

Theorem 1
Among all domains of given n-dimensional volume the ball minimizes every λp,
in other words

λp(Ω) ≥ λp(Ω∗), (4)

where Ω∗ is the n-dimensional ball of same volume as Ω.

As noted in [20, p.224] and [12, p.3353], this is a straightforward consequence of
results in [14]. To prove the theorem, one replaces the first eigenfunction up on
any domain Ω by its Schwarz symmetrization (up)∗ and notes that the Rayleigh
quotient does not increase under this operation. Moreover, (up)∗ is in W 1,p

0 (Ω∗)
and thus an admissible function in (2). Therefore it provides an upper bound for
λp(Ω∗). Theorem 1 was apparently rediscovered in [2] and [12], but λp(Ω∗) does
not seem to be explicitly known unless p = 2.

Remark 2
If the Euclidean modulus of ∇v in (2) is replaced by its `p norm then Theorem 1
must be modified in the sense that Ω∗ is a ball in IRn equipped with the `p′–norm,
see [4]. Analogous isoperimetric inequalities for (linear) operators of fourth order
are discussed in [18].

In order to state the next result we need to define the Cheeger constant h(Ω)
of a domain Ω. Cheeger defines it in [6, p.196] for manifolds with or without
boundary, and in this paper we are only interested in the case with boundary. In
this case

h(Ω) := inf
D

|∂D|
|D|

(5)

with D varying over all smooth subdomains of Ω whose boundary ∂D does not
touch ∂Ω, and with |∂D| and |D| denoting (n− 1)- and n-dimensional Lebesgue
measure of ∂D and D. For ease of notation we call the expression Q(D) :=
|∂D|/|D| the Cheeger quotient of D and a subset ω of Ω for which Q(ω) =
h(Ω) a Cheeger domain of Ω. The existence, (non)uniqueness and regularity of
Cheeger domains is discussed in Theorem 8 and the remarks following it.

In his celebrated paper Cheeger proved the case p = 2 of the following theorem.

Theorem 3 [22]
For every p ∈ (1,∞) the first eigenvalue can be estimated from below via

λp(Ω) ≥
(

h(Ω)
p

)p

. (6)

The proof can be found in the appendix of [22], but since it is short, we repeat
it here for the reader’s convenience. Suppose first that w ∈ C∞0 (Ω) is a positive
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function and set A(t) := { x ∈ Ω | w(x) > t }. Then by the coarea formula and
by Cavalieri’s principle∫

Ω

|∇w| dx =
∫ ∞

−∞
|∂A(t)| dt =

∫ ∞

−∞

|∂A(t)|
|A(t)|

|A(t)| dt

≥ inf
D⊂⊂Ω

|∂D|
|D|

∫ ∞

−∞
|A(t)| dt = h(Ω)

∫
Ω

|w| dx.

(7)

Since C∞0 (Ω) is dense in W 1,1
0 (Ω), relation (7) holds also for any w ∈ W 1,1

0 (Ω). For
p > 1 take any v ∈ W 1,p

0 (Ω) and define Φ(v) = |v|p−1v. Then Hölder’s inequality
implies ∫

Ω

|∇Φ(v)| dx = p

∫
Ω

|v|p−1|∇v| dx ≤ p ||v||p−1
p ||∇v||p , (8)

so that w = Φ(v) ∈ W 1,1
0 (Ω). Therefore (7) applies and∫

Ω

|∇Φ(v)| dx ≥ h(Ω)
∫

ω

|v|p dx , (9)

or rather, using (8),

h(Ω) ≤
∫
Ω
|∇w| dx∫

Ω
|w| dx

≤
p ||v||p−1

p ||∇v||p∫
Ω
|v|p dx

= p
||∇v||p
||v||p

. (10)

Sinve v ∈ W 1,p
0 (Ω) is arbitrary, we obtain (6). This proves Theorem 3.

Remark 4
Cheeger’s original result [6] treated also manifolds without boundary, and an
extension of this result from p = 2 to general p was done in [23], resulting in the
same relation (6).

Remark 5
Since Cheeger’s constant is known for special domains, Theorem 3 provides con-
crete numbers. If Ω is a ball BR of radius R in n-space, then h(BR) = n

R , the
Cheeger domain ω of Ω coincides with Ω and

λp(BR) ≥
(

n

Rp

)p

. (11)

Note that (after taking the p-th root) the right hand side of (11) goes to zero as
p → ∞, while the left hand side goes to 1/R, see [13]. It is the limit p → 1, for
which (11) becomes sharp.

If Ω is a stadium, that is the convex hull of two balls of same radius, then
h(Ω) = Q(Ω) and the Cheeger domain ω coincides again with Ω.
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However, if Ω is a plane square Sa = (−a, a)2, then a longer but straightforward
calculation gives

h(Sa) =
4− π

(4− 2
√

π)a
≈ 1.886226925

a
.

Note that |∂S1|/|S1| = 2 and |∂B1|/|B1| = 2 are larger than 1.886226925. The
Cheeger domain ω that minimizes the quotient in (5) for S1 is a square with its cor-
ners rounded off by circular arcs of radius ρ = (4−2

√
π)/(4−π) ≈ 0.5301589043.

Its area |ω| is 4− (4−2
√

2)2/(4−π) ≈ 3.758728766. This was shown in [15, p.22],
but not stated in context with the name Cheeger. Now Theorem 3 states

λp(Sa) ≥
(

1.886
pa

)p

. (12)

For p = 2 and a = 1 this is λ2(S1) = 2π2 ≈ 19.73920881 ≥ 0.8894531, not a very
sharp estimate; and for p → ∞ the estimate (12) is trivially λ∞(S1) = 1 ≥ 0.
More instructive details on how to obtain such results will be given below after
Remark 7.

Corollary 6
As p → 1, the first eigenvalue λp(Ω) of the p-Laplacian converges to Cheeger’s
constant h(Ω).
The lower bound (6) converges to h(Ω) as p → 1. Therefore it suffices to give
an upper bound for λp(Ω) with the same limit as p → 1. To this end we choose
a smooth subdomain Dk ⊂⊂ Ω, such that |∂Dk|/|Dk| − h(Ω) ≤ 1/k and ap-
proximate the characteristic function of Dk by a function v(x) with the following
properties: v ≡ 1 on Dk, v ≡ 0 outside an ε-neighborhood of Dk and |∇v| = 1/ε
on an ε-layer outside Dk. For sufficiently small ε this function is in W 1,∞

0 (Ω).
Plugged into (2) it provides the upper bound

λp(Ω) ≤ |∂Dk|
|Dk|

ε1−p. (13)

Now one sends first p → 1, then k →∞ to complete the proof of Corollary 6.

Remark 7
If we define λ1(Ω) := limp→1+ λp(Ω)(= h(Ω)) we can ask for the solvability of the
formal limit problem

−div
(
∇u

|∇u|

)
= λ1(Ω) in Ω,

u = 0 on ∂Ω.

(14)

Suppose there exists a classical solution u of (14). Then also f(u) solves (14)
for any Lipschitz-continuous f . Moreover, if we assume that |∇u| is nonzero in
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the neighborhood of a point x ∈ Ω, then in intrinsic coordinates the p-Laplace
operator can be written as

∆pu = (p− 1)|∇u|p−4 < D2u∇u,∇u > −|∇u|p−2(n− 1)H(x)|∇u| .

Here H(x) is the mean curvature of the level surface of u in x. As p → 1, the
equation from (14) turns into (n − 1)H(x) = h(Ω), that is every level set Ωc :=
{x ∈ Ω; u(x) > c } has a boundary with the same constant mean curvature h(Ω)
independent of c. Therefore (14) cannot have a classical solution, because its level
sets would be strictly nested in the sense that Ωc ⊂⊂ Ωd for c > d. This reasoning
goes back to [16, p.355]. Problem (14) was already adressed in [15], where it was
shown that one cannot even expect solutions in BV (Ω) for a constant positive
right hand side different from h(Ω).

A natural problem arises: Does the variational problem (5) have a minimizing
domain and what does it look like? An analysis of (7) reveals that (5) is equivalent
to solving

min
v∈BV (Ω), ||v||∞=1

H(v) :=

∫
Ω
|Dv| dx +

∫
∂Ω
|v| ds∫

Ω
|v| dx

(15)

in the following sense: Any solution of (15) has the property that almost all of
its level sets are Cheeger sets. Moreover, if ω minimizes h, then χω solves (15).
Here |Dv| denotes the distributional derivative of v. For a definition of BV (Ω)
and its norm we refer to [10]. Because of the coarea formula the numerator of (15)
can also be written as

∫∞
0

P (Ωt, IR
n) dt, where Ωt := {x ∈ Ω| |v(x)| > t} and

P (Ωt, IR
n) = Hn−1(∂Ωt) denote a level set and its perimeter in IRn.

Solving (15) is straightforward. There exists a sequence of domains Dk ⊂⊂ Ω
which minimizes h. Let vk = χDk

. Then the sequence vk is bounded in BV (Ω)
and after passing to a subsequence it converges strongly in L1(Ω), see [10, p.17].
This and the weak lower semicontinuity of the BV -norm along this sequence (see
[10, p.7]) show, that it converges to a solution v∞ = χω of (15). Thus we have
shown:

Theorem 8
Problems (5) and (15) have a solution ω and χω, but ω is not in the admissible
class for (5) because it touches the boundary ∂Ω. Therefore ũ1(x) := cχω with
ω as a Cheeger domain can be considered to be the first eigenfunction of the
operator −∆1 and the Cheeger constant h(ω) is the associated eigenvalue.

For the special case that Ω is a ball this was recently published in [8], see also
[15, (3.18)]. The existence proof was already given. To see that ω cannot be a
compact subset of Ω, one blows it up by a factor larger than one until it touches
the boundary. This would decrease h, a contradiction to ω being optimal.

Remark 9 On the regularity of a Cheeger domain
Several qualitative properties can be shown. Once the existence of a Cheeger
domain ω is known, we can look for its shape. Given the volume constraint |D| =

5



|ω|, we can look for subdomains of Ω which minimize surface area |∂D|. Variational
problems of this type were studied in [11] and [29], where it was shown, that the
boundaries of the optimal domain are as smooth as ∂Ω where they touch it,
and analytic except on a set of (n − 8) dimensional measure where they do not
touch ∂Ω. Moreover, for C1 domains they are globally C1. For n = 2 this means
that the boundaries have only finitely many singular points. Clearly ω solves this
variational problem, and ∂ω ∩Ω is a surface of constant mean curvature h(Ω). In
two dimensions it must consist of circular arcs. This is how we arrived at (12), by
minimizing Q(D) among “squares with rounded corners”.

Remark 10 On the convexity of a Cheeger domain for convex Ω
The boundary of the Cheeger set splits into two parts. ∂ω ∩Ω has constant mean
curvature h(Ω), and ∂ω ∩ ∂Ω has the same mean curvature as ∂Ω. From this it
is evident, that for convex Ω the Cheeger set ω is convex if n = 2 and at least
mean-convex, i.e. ∂ω has nonnegative mean curvature, if n ≥ 3. But more can be
said if Ω is convex. In this case, a result of Sakaguchi [27] states that the positive
eigenfunctions up which minimize (2) are all logconcave, i.e. ln up is concave for
every p > 1. The functions up are admissible in (15) and uniformly bounded in
BV (Ω). Therefore after passing to a subsequence they converge in L1(Ω) to a
logconcave limit u1, and H(u1) ≤ lim infp→1+ H(up). Suppose we can show that

u1(x) = χω(x) (16)

with ω a Cheeger domain. Then ω must be convex because u1 is logconcave. To
prove (16) we observe that u1 minimizes (15), because H(up) = λp and λp → h(Ω),
see Corollary 2. Therefore by the argument following (15) almost every level set
of u1 is a Cheeger domain. Now another argument yields that the level sets Ωt all
coincide for t ∈ (0, 1]. In two dimensions the Cheeger set is unique by Remark 12
and in general dimension n one notes that the level sets of u1 are all convex and
must be nested. But the fact that they are Cheeger domains implies that they
cannot be strictly nested, see the proof of Theorem 8. This observation can then
be used to reach a contradiction. More details on this and related results will be
given in [9].

Remark 11 On monotone dependence between Ω and h(Ω)
The variational characterization (5) of the Cheeger constant implies the monotone
dependence h(Ω1) ≥ h(Ω2) if Ω1 ⊂ Ω2. However, strict inclusion of the domains
Ω1 ⊂6= Ω2 does not always imply strict inequality h(Ω1) > h(Ω2) of the corre-
sponding Cheeger constants. As one example imagine the square S1 from Remark
5 and modify it near one of the corners. Then both ω and the Cheeger constant
are not affected by this modification.

Remark 12 On uniqueness of the Cheeger domain
Suppose that Ω is the union of two disjoint squares of length 2a, which are

connected by a thin pipe that enters each square in a corner. Then (in the notation
of Remark 5) h(Ω) = h(Sa), and now there are at least two disjoint rounded
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squares ω1 and ω2 (and maybe even their union) which qualify for a Cheeger
domain, since Q(ω1) = Q(ω2) = h(Ω) = Q(ω1 ∪ ω2). However, for convex Ω and
n = 2 the Cheeger domain is unique, provided it is large enough. This follows
from [29, Theorem 3.14]. In fact, let us call HΩ the union of all largest balls in Ω.
Then (at least for convex plane Ω) the Cheeger domain is unique if |ω| is at least
as large as |HΩ|. But the fact that |ω| ≥ |HΩ| follows from Remarks 11 and 13. If
n ≥ 3 and Ω convex, and if Ω satisfies a “great circle condition”, then Theorem
3.13 of [29] applies to yield uniqueness of the Cheeger domain. In fact the volume
of |ω| is at least as large as that of a largest ball inside Ω. If |ω| < |HΩ|, then |ω|
is the convex hull C of two largest balls, but elementary calculations show that
h(HΩ) < h(C), so that |ω| must be at least equal to |HΩ|.

Remark 13 On guessing the Cheeger domain
Once h(Ω) is determined, we can take a ball of radius (n − 1)/h and sweep Ω

with it. Then one may wonder if D := ∪x∈Ω, d(x,∂Ω)>(n−1)/h B(x, n−1
h(Ω) ) is a good

candidate for the minimizer of (5). If n = 2 this is clearly the case, but for n ≥ 3 it
is not true in general. Consider a large parallelepiped P and sweep it from inside
with balls of radius h. The resulting set has mean curvature h near the rounded
corners and h/(n− 1) near the rounded edges of P .

Remark 14 On parabolic equations
Cheeger domains play an important role in the qualitative study of certain

quasilinear parabolic equations, see [17, (1.5) and section 4] and [24]. Suppose
that u(x, t) solves the differential equation

ut − div

(
∇u√

1 + |∇u|2

)
= 1 in Ω× (0,∞)

under vanishing initial and boundary data, and suppose that h(Ω) < 1. Then
solutions of these equations grow in time with speed proportional to 1− h(Ω) on
the Cheeger domain ω. In fact, since there are no classical stationary solutions, the
growth and “detachment” of the solution u from its homogeneous boundary data
can only be understood by passing to a viscosity limit in a more regular problem.
We refer to [17] for details of the analysis and to [24] for numerical confirmation
of the predictions from [17].

Corollary 15
The following inequalities hold and become equalities if Ω is a ball.

λ1(Ω) ≥ n

(
ωn

|Ω|

)1/n

(17)

lim
p→∞

(λp(Ω))1/p ≥
(

ωn

|Ω|

)1/n

(18)
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To see (17) one combines Theorem 1, Corollary 6 and Remark 5. For the square
Sa from Remark 5 estimate (17) boils down to 1.886226925/a ≈ λ1(Sa) ≥√

π/a ≈ 1.772453851/a, a fairly good estimate. In a similar way the estimate
(18) follows from Theorem 1 and the result in [13] that limp→∞ (λp(Ω))1/p =
max{dist(x, ∂Ω) : x ∈ Ω}. It is remarkable that the left hand sides in (17) and
(18) depend only on the geometry of Ω.

Remark 16 On related results
The equation −∆pu = f(x) and the limiting behaviour of solutions as p → 1

were studied in [13] for f ≡ 1 and in [7] for more general f . In both cases the
solution was shown to converge to zero as p → 1, provided f is sufficiently small or
the Cheeger constant is sufficiently large. [28] adresses a multivalued differential
inclusion of type κ∆pu + u ∈ f(x) + ∂I[−1,1](u) with small positive κ in case of
one space dimension as p → 1 and under Neumann boundary conditions.
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