An isoperimetric inequality related to a Bernoulli problem^{*}

Daniel Daners

Bernd Kawohl

January 28, 2010

Abstract

Given a bounded domain Ω we look at the minimal parameter $\Lambda(\Omega)$ for which a Bernoulli free boundary value problem for the *p*-Laplacian has a solution minimising an energy functional. We show that amongst all domains of equal volume $\Lambda(\Omega)$ is minimal for the ball. Moreover, we show that the inequality is sharp with essentially only the ball minimising $\Lambda(\Omega)$. This resolves a problem related to a question asked in [Flucher et al., J. Reine Angew. Math. **486** (1997), 165–204.].

Mathematics Subject Classification (2000). 35R35, 49R05 Keywords. isoperimetric inequality, Bernoulli problem, free boundary, symmetrisation

1 Motivation and Result

For given $\lambda > 0$ consider the following Bernoulli type free boundary problem

$$\Delta v = 0 \quad \text{in } \Omega \setminus D,$$

$$v = 0 \quad \text{on } \partial\Omega,$$

$$v \equiv 1 \quad \text{on } D,$$

$$|\nabla v| = \lambda \quad \text{on } \partial D,$$

(1.1)

on a given bounded open set $\Omega \subset \mathbb{R}^N$, where $D \subset \Omega$ is an unknown closed set. Such free boundary value problems originally arose from two dimensional

^{*}This research is part of the ESF program "Global and geometric aspects of nonlinear partial differential equations (GLOBAL)".

flows (see [2, 7]), but also have applications to heat flows or electro-chemical machining (see the references in [4]).

It was shown in [1, Section 1.3] that some solutions to (1.1) can be obtained as non-trivial minimisers of the the functional

$$J_{\lambda}(u) := \int_{\Omega} |\nabla u(x)|^2 \, dx + \lambda^2 |\{u < 1\}|$$
(1.2)

over all $u \in H_0^1(\Omega)$ (Replace u by 1 - u in [1]), where $\{u < 1\} := \{x \in \Omega : u(x) < 1\}$ and is $|\{u < 1\}|$ its Lebesgue measure. One can interpret the second term in J_{λ} as penalising the support of $(1 - u)^+$. By reducing λ we expect the support of $(1 - u)^+$ to grow or D to shrink. When we look at (1.1), we also expect $|\nabla u|$ to decrease as D shrinks. Hence the minimal λ for which a solution exists should occur when the distance between ∂D and $\partial \Omega$ becomes maximal. Therefore we expect an optimal configuration to maximise this distance, and a ball is very likely to do so. We set

 $\Lambda_2(\Omega) := \inf\{\lambda > 0 \colon J_\lambda \text{ has a non-trivial minimiser}\}.$

and prove that $\Lambda_2(\Omega) \ge \Lambda_2(\Omega^*)$, where Ω^* denotes the ball of same volume as Ω . We also prove that equality holds if and only if Ω is a ball.

We will look at a more general problem. In [4] it is shown that for 1 non-trivial minimisers of the functional

$$J_{\lambda,p}(u) := \int_{\Omega} |\nabla u|^p \, dx + (p-1)\lambda^p |\{u < 1\}| \tag{1.3}$$

on $W_0^{1,p}(\Omega)$ solve the over-determined free boundary problem

$$\begin{aligned} \Delta_p v &= 0 & \text{in } \Omega \setminus D, \\ v &= 0 & \text{on } \partial\Omega, \\ v &\equiv 1 & \text{on } D, \\ \nabla v &= \lambda & \text{on } \partial D. \end{aligned}$$
(1.4)

Similarly as before we set

$$\Lambda_p(\Omega) := \inf\{\lambda > 0 \colon J_{\lambda,p} \text{ has a non-trivial minimiser}\}.$$
(1.5)

First we establish the following existence result.

Theorem 1.1. The functional $J_{\lambda,p}$ has a non-trivial minimiser if and only if $\lambda \geq \Lambda_p(\Omega)$. Moreover, $\min J_{\lambda,p} = J_{\lambda,p}(0)$ if and only if $\lambda \leq \Lambda_p(\Omega)$. As zero is the only minimiser of $J_{0,p}(u) = \|\nabla u\|_p^p$ the above theorem implies that $\Lambda_p(\Omega) > 0$. Our main result is the following isoperimetric inequality. The proof of the sharpness of that inequality relies in an essential way on the fact from Theorem 1.1 that zero and a nontrivial $u \in W_0^{1,p}(\Omega)$ both minimize $J_{\Lambda_p(\Omega),p}$.

Theorem 1.2. Let Ω be an arbitrary bounded domain in \mathbb{R}^N and Ω^* a ball of same volume as Ω . Then

$$\Lambda_p(\Omega) \ge \Lambda_p(\Omega^*),\tag{1.6}$$

with equality if and only if Ω is a ball up to a set of p-capacity zero. Moreover, if Ω^* has radius r then

$$\Lambda_p(\Omega^*) = \frac{p}{p-1} \left(\frac{p}{N}\right)^{(N-1)/(p-N)} \frac{1}{r}$$

if $N \neq p$ and

$$\Lambda_N(\Omega^*) = \frac{N}{N-1} e^{(1-1/N)} \frac{1}{r}.$$

if N = p.

Note that $\Lambda_p(\Omega^*)$ is a continuous function of $p \in (1, \infty)$. Also, if p > N, then points have positive *p*-capacity. Hence, if $\Lambda_p(\Omega) = \Lambda_p(\Omega^*)$ and p > N, then Ω is a ball.

Remark 1.3. If the integral $\int_{\Omega} |\nabla u|^p dx$ in $J_{\lambda,p}(u)$ is replaced by $\int_{\Omega} G(|\nabla u|) dx$, with suitable assumptions on G, including convexity of G, one can consider a more general quasi-linear equation for functions in the appropriate Orlicz space. Details of this can be found in [12].

A conjecture related to the above theorem appears in Flucher and Rumpf [5, page 202]. The difference is that we only look at solutions of (1.4) which minimise the energy functional $J_{\lambda,p}$, whereas [5] look at all solutions, that is,

 $\lambda_p(\Omega) := \inf\{\lambda > 0: (1.4) \text{ has a non-trivial solution}\}.$

A comparison of the optimal constants on the ball as computed in Section 4 reveals that $\lambda_p(B) < \Lambda_p(B)$ if $\Omega = B$ is a ball. The new result in Theorem 1.1 is that there exists a non-trivial minimiser for $\lambda = \Lambda_p(\Omega)$. A similar result is proved in [9, Theorem 3.1] for $\lambda = \lambda_p(\Omega)$ and for convex Ω , but with completely different techniques to the ones we use. Also, [11] claim to prove the conjecture by Flucher and Rumpf.

Since the energy minimising solutions have attracted quite some interest with the work in [1] in case p = 2 and [4] for general $p \in (1, \infty)$, our result should still be of interest. We give a proof of (1.6) in Section 3 and compute the optimal values in Section 4. Theorem 1.1 is proved in Section 2.

2 Existence of minimisers

In this section we establish the existence results for minimisers stated in Theorem 1.1. We throughout assume that $\Omega \subset \mathbb{R}^N$ is a bounded open set.

Proposition 2.1. Let $J_{\lambda,p}$ and $\Lambda_p(\Omega)$ be defined as in the previous section.

- (i) If there exists $w \in W_0^{1,p}(\Omega)$ such that $J_{\lambda,p}(w) < J_{\lambda,p}(0) = (p-1)\lambda^p |\Omega|$, then $J_{\lambda,p}$ has a non-trivial minimiser.
- (ii) For $\lambda > 0$ large enough $J_{\lambda,p}$ has a non-trivial minimiser.
- (iii) Suppose $\mu > 0$ is such that $J_{\mu,p}$ has a nontrivial minimiser $u \in W_0^{1,p}(\Omega)$. Then $J_{\lambda,p}$ has a non-trivial minimiser for all $\lambda > \mu$.
- (iv) We have min $J_{\lambda,p} = J_{\lambda,p}(0)$ if and only if $\lambda \leq \Lambda_p(\Omega)$.

Proof. (i) Since $J_{\lambda,p}(u) \geq 0$ for all $u \in W_0^{1,p}(\Omega)$ we can choose a minimising sequence $u_n \in W_0^{1,p}(\Omega)$ with $J_{\lambda,p}(u_n) \to \inf_{u \in W_0^{1,p}(\Omega)} J_{\lambda,p}(u)$. By definition of $J_{\lambda,p}$ the sequence (u_n) is bounded in $W_0^{1,p}(\Omega)$ and therefore has a subsequence (u_{n_k}) converging weakly in $W_0^{1,p}(\Omega)$ and pointwise almost everywhere in Ω to some function u. Hence

$$\|\nabla u\|_p^p \le \liminf_{k \to \infty} \|\nabla u_{n_k}\|_p^p$$

and by Fatou's Lemma

$$\int_{\Omega} \chi_{\{u<1\}} \, dx \le \liminf_{k \to \infty} \int_{\Omega} \chi_{\{u_{n_k}<1\}} \, dx,$$

where χ_A is the indicator function of a set $A \subseteq \mathbb{R}^N$ given by $\chi_A(x) = 1$ if $x \in A$ and zero otherwise. By definition of $J_{\lambda,p}$ and the choice of (u_n)

$$J_{\lambda,p}(u) \le \liminf_{k \to \infty} J_{\lambda,p}(u_{n_k}) = \inf_{v \in W_0^{1,p}(\Omega)} J_{\mu,p}(v)$$

Thus, u is a minimiser. It is non-trivial since by assumption $J_{\lambda,p}(u) \leq J_{\lambda,p}(w) < J_{\lambda,p}(0)$.

(ii) Let $\varphi \in C_c^{\infty}(\Omega)$ such that $|\{\varphi \ge 1\}| > 0$. Then note that

$$J_{\lambda,p}(\varphi) - J_{\lambda,p}(\varphi)(0) = \|\nabla\varphi\|_p^p - (p-1)\lambda^p |\{\varphi \ge 1\}| < 0$$

for $\lambda > 0$ large enough. Now apply (i).

(iii) Clearly, if u is a non-trivial minimiser of $J_{\mu,p}$, then $J_{\lambda,p}(u) \leq J_{\lambda,p}(0)$. Also, $|\{u < 1\}| < |\Omega|$ since otherwise $J_{\lambda,p}(0) < J_{\lambda,p}(u)$ and u is not a minimiser. Hence from the definition of $J_{\mu,p}$ we have

$$J_{\lambda,p}(u) = \|\nabla u\|_{p}^{p} + (p-1)\lambda^{p}|\{u < 1\}|$$

= $J_{\mu,p}(u) + (p-1)(\lambda^{p} - \mu^{p})|\{u < 1\}|$
 $\leq (p-1)\mu^{p}|\Omega| + (p-1)(\lambda^{p} - \mu^{p})|\{u < 1\}|$
= $(p-1)\lambda^{p}|\Omega| - (p-1)(\lambda^{p} - \mu^{p})(|\Omega| - |\{u < 1\}|).$ (2.1)

Since $|\{u < 1\}| < |\Omega|$ we conclude that $J_{\lambda,p}(u) < (p-1)\lambda^p |\Omega| = J_{\lambda,p}(0)$ for all $\lambda > \mu$. By (i) $J_{\lambda,p}$ has a non-trivial minimiser for all $\lambda > \mu$.

(iv) If $\lambda < \Lambda_p(\Omega)$, then clearly $\min_{u \in W_0^{1,p}(\Omega)} J_{\lambda,p}(u) = J_{\lambda,p}(0)$, so assume that $\mu := \Lambda_p(\Omega)$. Assume that u is a minimiser of $J_{\mu,p}$ and suppose that strict inequality holds in (2.1). Then clearly $J_{\lambda,p}(u) < J_{\lambda,p}(0) = (p-1)\lambda^p |\Omega|$ if $\lambda < \mu$ is close enough to μ . However, this contradicts the definition of $\mu = \Lambda_p(\Omega)$ since otherwise (i) implies the existence of a minimiser for some $\lambda < \mu$.

To prove that $J_{\lambda,p}$ also has a non-trivial minimiser for $\lambda = \Lambda_p(\Omega)$ we need to compare $\|\nabla u\|_p$ with the measure of $\{u \ge 1\}$. In the following lemma we get such an estimate. It is motivated by the estimate of the measure of a set in terms of its capacity (see e.g. [6, page 5]), but does not rely on capacity.

Lemma 2.2. Let 1 . Then there exist <math>q > p and C > 0 only depending on N, p and $|\Omega|$ such that $|\{u \geq 1\}| \leq C ||\nabla u||_p^q$ for all $u \in W_0^{1,p}(\Omega)$.

Proof. If 1 , by the Sobolev inequality there exists a constant <math>C > 0 only depending on N and p such that

$$|\{u \ge 1\}| \le \int_{\Omega} |u|^{Np/(N-p)} \, dx \le C \|\nabla u\|_p^{Np/(N-p)}$$

for all $u \in W_0^{1,p}(\Omega)$. Hence we can set q := Np(N-p) > p. If p = N choose $p_0 \in (N/2, N)$ and apply the above inequality and Hölder's inequality to get

$$|\{u \ge 1\}| \le C \|\nabla u\|_{p_0}^{Np_0/(N-p_0)} \le C |\Omega|^{\theta} \|\nabla u\|_p^{Np_0/(N-p_0)}$$

for all $u \in W_0^{1,p}(\Omega)$, where θ is a constant depending only on p_0 and N. Hence we can set $q := Np_0/(N - p_0)$. Clearly q > N since $p_0 > N/2$.

Since by definition of $\Lambda_p(\Omega)$ the functional $J_{\lambda,p}$ has no non-trivial minimiser for $\lambda < \Lambda_p(\Omega)$ the following proposition will conclude the proof of Theorem 1.1. It is also the most original and new part of the proof. **Proposition 2.3.** If $\mu = \Lambda_p(\Omega)$, then $J_{\mu,p}$ has a non-trivial minimiser.

Proof. By definition of $\Lambda_p(\Omega)$ either there exists a non-trivial minimiser or there is a sequence (λ_n) such that $\lambda_n > \mu$ for all $n \in \mathbb{N}$, $\lambda_n \to \mu$ and $J_{\lambda_{n,p}}$ has a non-trivial minimiser $u_n \in W_0^{1,p}(\Omega)$ for every $n \in \mathbb{N}$. Then

$$J_{\lambda,p}(u_n) = \|\nabla u_n\|_p^p + (p-1)\lambda_n^p |\{u_n < 1\}| \le (p-1)\lambda_n^p |\Omega|$$

for all $n \in \mathbb{N}$. Since (λ_n) is a convergent sequence, (u_n) is bounded in $W_0^{1,p}(\Omega)$. It therefore has a convergent subsequence such that $u_{n_k} \rightharpoonup u$ weakly in $W_0^{1,p}(\Omega)$ and pointwise almost everywhere. Fix $v \in W_0^{1,p}(\Omega)$. As in the proof of Proposition 2.1(i)

$$J_{\mu,p}(u) \le \liminf_{k \to \infty} J_{\lambda_{n_k},p}(u_{n_k}) \le \liminf_{k \to \infty} J_{\lambda_{n_k},p}(v) = J_{\mu,p}(v)$$
(2.2)

where in the second inequality we use that u_{n_k} are minimisers for $J_{\lambda_{n_k},p}$. Hence $u \in W_0^{1,p}(\Omega)$ is a minimiser of $J_{\mu,p}$.

To conclude the proof we need to show that $u \neq 0$. If u = 0 and p > N, then $u_{n_k} \to 0$ uniformly as $k \to \infty$ since $W_0^{1,p}(\Omega)$ is compactly embedded into $C(\overline{\Omega})$. Therefore there exists $m \in \mathbb{N}$ such that $||u_m||_{\infty} < 1$ and so

$$J_{\lambda_m, p}(u_m) = \|\nabla u_m\|_p^p + (p-1)\lambda_m^p |\Omega| > (p-1)\lambda_m^p |\Omega| = J_{\lambda_m, p}(0)$$

since by assumption $u_m \neq 0$. As u_m was a non-trivial minimiser this is a contradiction, and so $u \neq 0$.

We next look at the case 1 . Again assume that <math>u = 0. Then by Rellich's theorem we have $u_{n_k} \to 0$ in $L_p(\Omega)$ and so

$$|\{u_{n_k} \ge 1\}| \le \int_{\{u_{n_k} \ge 1\}} |u_{n_k}|^p \, dx \le ||u_{n_k}||_p^p \to 0$$

Hence (2.2) with u = v = 0 implies that

$$\begin{aligned} \mu^p(p-1)|\Omega| &= J_{\mu,p}(0) \le \liminf_{k \to \infty} J_{\lambda_{n_k},p}(u_{n_k}) \\ &\le \liminf_{k \to \infty} J_{\lambda_{n_k},p}(0) = J_{\mu,p}(0) = \mu^p(p-1)|\Omega|, \end{aligned}$$

and therefore $\|\nabla u_{n_k}\|_p \to 0$. As $J_{\lambda_n,p}(0) = (p-1)\lambda_n^p |\Omega|$, Lemma 2.2 implies the existence of constants C > 0 and q > p such that

$$J_{\lambda_{n},p}(u_{n}) = J_{\lambda_{n},p}(0) + \|\nabla u_{n}\|_{p}^{p} - (p-1)\lambda_{n}^{p}|\{u_{n} \ge 1\}|$$

$$\geq J_{\lambda_{n},p}(0) + \|\nabla u_{n}\|_{p}^{p} - C(p-1)\lambda_{n}^{p}\|\nabla u_{n}\|_{p}^{q}$$

$$= J_{\lambda_{n},p}(0) + \|\nabla u_{n}\|_{p}^{p} \Big(1 - C(p-1)\lambda_{n}^{p}\|\nabla u_{n}\|_{p}^{q-p}\Big) \quad (2.3)$$

for all $n \in \mathbb{N}$. Since $\|\nabla u_{n_k}\|_p \to 0$, $\lambda_n \to \mu$ and q > p there exists $m \in \mathbb{N}$ with

$$1 - C(p-1)\lambda_m^p \|\nabla u_m\|_p^{q-p} > 0$$

and hence by (2.3) we get $J_{\lambda_m,p}(u_m) > J_{\lambda_m,p}(0)$. This is a contradiction since u_m was assumed to be a minimiser for $J_{\lambda_m,p}$, and so $u \neq 0$ as claimed. \square

3 Proof of the isoperimetric inequality

This whole section is devoted to the proof of the first part of Theorem 1.2. We let $\Omega \subset \mathbb{R}^N$ be a bounded open set and let $\Omega^* \subset \mathbb{R}^N$ be an open ball with the same volume as Ω . For $v \in W_0^{1,p}(\Omega^*)$ set

$$J_{\lambda,p}^{*}(v) = \int_{\Omega^{*}} \left(|\nabla v|^{p} \, dx + (p-1)\lambda^{p} | \{v < 1\} |$$

and recall that minimisers are solutions of (1.4) with Ω replaced by Ω^* . Let $\lambda \geq \Lambda_p(\Omega)$. By Theorem 1.1 $J_{\lambda,p}$ has a non-trivial minimiser $u \in W_0^{1,p}(\Omega)$. Consider its Schwarz symmetrisation u^* (see [10] for a definition and properties). By well known properties of Schwarz symmetrisation $u^* \in W_0^{1,p}(\Omega^*)$, $\|\nabla u^*\|_p \leq \|\nabla u\|_p$ and $|\{u^* < 1\}| = |\{u < 1\}|$. Also u^* is non-zero and

$$J_{\lambda,p}^{*}(u^{*}) = \|\nabla u^{*}\|_{p}^{p} + (p-1)\lambda^{p}|\{u^{*} < 1\}|$$

$$\leq \|\nabla u\|_{p}^{p} + (p-1)\lambda^{p}|\{u < 1\}| = J_{\lambda,p}(u). \quad (3.1)$$

In particular $J_{\lambda,p}^*(u^*) \leq J_{\lambda,p}(u) \leq J_{\lambda,p}(0) = J_{\lambda,p}^*(0)$. If $J_{\lambda,p}^*(u^*) < J_{\lambda,p}^*(0)$, then by Proposition 2.1(i) $J_{\lambda,p}^*$ has a non-trivial minimiser. If $J_{\lambda,p}^*(u^*) = J_{\lambda,p}^*(0)$, then either u^* is a non-trivial minimiser, or $\inf J_{\lambda,p}^* < (p-1)\lambda^p |\Omega^*|$ and Proposition 2.1(i) implies the existence of a non-trivial minimiser. In any case, if $J_{\lambda,p}$ has a non-trivial minimiser, so does $J_{\lambda,p}^*$. Hence by definition of $\Lambda_p(\Omega)$ and $\Lambda_p(\Omega^*)$ the inequality (1.6) follows.

It remains to prove the sharpness of (1.6). We assume that $\Lambda_p(\Omega) = \Lambda_p(\Omega^*)$. The aim is to show that Ω is a ball up to a set of capacity zero. To simplify notation we denote the common value of $\Lambda_p(\Omega)$ and $\Lambda_p(\Omega^*)$ by Λ and let r be the radius of the ball Ω^* . By Theorem 1.1 zero is a minimiser for the problem on Ω and also on Ω^* . Hence, using (3.1)

$$(p-1)\Lambda^p|\Omega| = J^*_{\Lambda,p}(0) \le J^*_{\Lambda,p}(u^*) \le J_{\Lambda,p}(u) = J_{\Lambda,p}(0) = (p-1)\Lambda^p|\Omega|.$$

We conclude that $J^*_{\Lambda,p}(u^*) = J_{\Lambda,p}(u)$. In particular, u^* is a minimiser of $J^*_{\Lambda,p}$. Since there is a unique radially symmetric minimiser on Ω^* (see the argument at the start of Section 4) we conclude that u^* coincides with (4.1)

if $p \neq N$ and (4.2) if p = N with ρ given by (4.6) and (4.8), respectively. In particular, $\nabla u^*(x) = \nabla u_{\rho}(x) \neq 0$ whenever $0 < u_{\rho}(x) < 1 = \max u_{\rho}$. Therefore, [3, Theorem 1.1] applies and so, up to translation, $u = u^* = u_{\rho}$ almost everywhere. Extending u, u^* by zero outside Ω and Ω^* , respectively we can assume that $u, u^* \in W^{1,p}(\mathbb{R}^N)$. We can then replace u and u^* by a quasi-continuous representative as defined in [8, Theorem 4.5]. Since u_{ρ} is continuous and $u^* = u_{\rho}$ almost everywhere, u_{ρ} is the quasi-continuous representative of u^* . Hence $u_{\rho} = u$ quasi everywhere, that is, except possibly on a set of p-capacity zero. Also, as $u \in W_0^{1,p}(\Omega)$ we know from [8, Theorem 4.5] that u = 0 quasi everywhere on Ω^c . Combining the two facts we get $u = u_{\rho} = 0$ quasi-everywhere on $C := \Omega^* \setminus \Omega$. Since $u_{\rho} > 0$ on Ω^* we conclude that C must have p-capacity zero. Hence $\Omega = \Omega^*$ is a ball except possibly for a set of p-capacity zero.

4 The optimal constants

In this section we look at (1.4) in case $\Omega = B_r$ is a ball of radius r > 0centred at the origin. We want to compute the value of $\Lambda_p(B_r)$. To do so we assume that $\lambda \ge \Lambda_p(B_r)$ and that $u \in W_0^{1,p}(B_r)$ is a minimiser of $J_{\lambda,p}$. Let $u^* \in W_0^{1,p}(B_r)$ be its Schwarz symmetrisation. According to (3.1) we have $J_{\lambda,p}(u^*) \le J_{\lambda,p}(u)$. Hence there is a radially symmetric minimiser u_ρ and we can assume without loss of generality that $u_\rho = u_\rho^*$. Let $\rho > 0$ be the radius of the ball $\{u \ge 1\}$. By [4, Theorem 2.1] (or [1, Lemma 2.4] in case p = 2) the minimiser is *p*-harmonic on $B_r \setminus \bar{B}_\rho$ with u = 0 on ∂B_r and u = 1 on ∂B_ρ . As there is precisely one such *p*-harmonic function (see [8, Lemma 8.5])

$$u_{\rho}(x) = \begin{cases} \frac{|x|^{(p-N)/(p-1)} - r^{(p-N)/(p-1)}}{\rho^{(p-N)/(p-1)} - r^{(p-N)/(p-1)}} & \text{if } \rho \le |x| \le r \\ 1 & \text{if } 0 \le |x| \le \rho \end{cases}$$
(4.1)

if $p \neq N$ and

$$u_{\rho}(x) = \begin{cases} \frac{\log|x| - \log r}{\log \rho - \log r} & \text{if } \rho \le |x| \le r\\ 1 & \text{if } 0 \le |x| \le \rho \end{cases}$$
(4.2)

if p = N (see [5, 9]). Given $\rho \in (0, r)$ one can compute $\lambda = |\nabla u_{\rho}|$ for $|x| = \rho$, and then minimise λ . This yields the smallest possible value of λ such that (1.4) has a non-trivial solution. These optimal values have been calculated in [5] for p = 2 and in [9] for general $p \in (1, \infty)$. They are

$$\lambda_p(B_r) = \frac{\left|\frac{p-N}{p-1}\right|}{r\left|\left(\frac{p-1}{N-1}\right)^{(N-1)/(N-p)} - \left(\frac{p-1}{N-1}\right)^{(p-1)/(N-p)}\right|}$$

if $p \neq N$ and

$$\lambda_p(B_r) = \frac{e}{r}$$

if p = N. Unfortunately, the corresponding solution does *not* minimise $J_{\lambda_p,p}$. In case p = 2 this is pointed out in [5, Section 5.3], but also follows from the calculations below. To obtain $\Lambda_p(B_r)$ we start by computing $J_{\lambda,p}(u_p)$. We first consider the case $p \neq N$. An elementary calculation yields

$$|\nabla u_{\rho}(x)| = \left|\frac{p-N}{p-1}\right| \frac{|x|^{(1-N)/(p-1)}}{|\rho^{(p-N)/(p-1)} - r^{(p-N)/(p-1)}|}$$

for $\rho \leq |x| \leq r$ and zero elsewhere. Because

$$\int_{\rho}^{r} s^{p(1-N)/(p-1)} s^{N-1} ds = \int_{\rho}^{r} s^{(p-N)/(p-1)-1} ds$$
$$= \frac{p-1}{p-N} \left(r^{(p-N)/(p-1)} - \rho^{(p-N)/(p-1)} \right)$$

we get

$$\int_{B_r} |\nabla u_\rho(x)|^p \, dx = \left| \frac{p-N}{p-1} \right|^{p-1} \frac{\omega_N}{|\rho^{(p-N)/(p-1)} - r^{(p-N)/(p-1)}|^{p-1}}, \tag{4.3}$$

where ω_N is the surface area of the unit sphere in \mathbb{R}^N . According to Theorem 1.1 we have to find the smallest possible $\lambda > 0$ such that

$$J_{\lambda,p}(u_{\rho}) = J_{\lambda,p}(0) = (p-1)\lambda^p |B_r| = (p-1)\frac{\omega_N}{N}r^N\lambda^p.$$

Using the definition of $J_{\lambda,p}$ and u_{ρ} we therefore require that

$$\left|\frac{p-N}{p-1}\right|^{p-1} \frac{\omega_N}{|\rho^{(p-N)/(p-1)} - r^{(p-N)/(p-1)}|^{p-1}} + (p-1)\lambda^p \frac{\omega_N}{N} (r^N - \rho^N) = (p-1)\frac{\omega_N}{N} r^N \lambda^p \quad (4.4)$$

or equivalently

$$N \left| \frac{p - N}{p - 1} \right|^{p-1} = (p - 1)\lambda^p \rho^N \left| \rho^{(p - N)/(p-1)} - r^{(p - N)/(p-1)} \right|^{p-1}.$$
 (4.5)

Clearly we get the smallest value of λ if we pick $\rho \in (0, r)$ such that

$$\rho^{N} \left| \rho^{(p-N)/(p-1)} - r^{(p-N)/(p-1)} \right|^{p-1}$$

is maximal, and then compute the corresponding value of λ from (4.5). An elementary calculation shows that this is the case for

$$\rho = \left(\frac{N}{p}\right)^{(p-1)/(p-N)} r, \tag{4.6}$$

and hence, if we substitute that value of ρ into (4.5), then

$$\Lambda_p(B_r) = \frac{p}{p-1} \left(\frac{p}{N}\right)^{(N-1)/(p-N)} \frac{1}{r}.$$
(4.7)

We could confirm the above by computing $|\nabla u_{\rho}|$ for the above value of ρ . If p = N we proceed in exactly the same way to get

$$\rho = e^{-(1-1/N)}r \tag{4.8}$$

and

$$\Lambda_N(B_r) = \frac{N}{N-1} e^{(1-1/N)} \frac{1}{r}.$$
(4.9)

It is also evident that

$$\left(\frac{p}{N}\right)^{(N-1)/(p-N)} = \left(1 + \frac{\frac{1}{N}}{\frac{1}{p-N}}\right)^{(N-1)/(p-N)} \to e^{(N-1)/N}$$

as $p \to N$, so $\Lambda_p(B_r) \to \lambda_N(B_r)$ as $p \to N$. Also note that $\lambda_p(B_r) < \Lambda_p(B_r)$ for all $p \in (1, \infty)$. In particular, this proves the second part of Theorem 1.2.

Acknowledgement B.K. thanks Henrik Shahgholian for pointing out this problem during the open problem session of the ESF-sponsored conference "FBP 2008" in Stockholm. D.D. thanks for a very pleasant visit to the University of Cologne.

References

- H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144.
- [2] A. Beurling, On free-boundary value problems for the Laplace equation, Seminars on analytic functions (Princeton 1957), vol. I, Institute for Advanced Study, Princeton, 1958, pp. 248–263.
- [3] J. E. Brothers and W. P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179.

- [4] D. Danielli and A. Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential Equations 23 (2005), 97–124.
- [5] M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math. 486 (1997), 165–204.
- [6] J. Frehse, Capacity methods in the theory of partial differential equations, Jahresber. Deutsch. Math.-Verein. 84 (1982), 1–44.
- [7] K. Friedrichs, Uber ein Minimumproblem für Potentialströmungen mit freiem Rande, Math. Ann. 109 (1934), 60–82.
- [8] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Clarendon Press, New York, 1993.
- [9] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator. II. The interior convex case, Indiana Univ. Math. J. 49 (2000), 311–323.
- [10] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985.
- [11] I. Ly and D. Seck, Isoperimetric inequality for an interior free boundary problem with p-Laplacian operator, Electron. J. Differential Equations 2004 (2004) no. 109, 1–12.
- [12] S. Martínez and N. Wolanski, A minimum problem with free boundary in Orlicz spaces, Adv. Math. 218 (2008), 1914–1971.

Author's addresses:

Daniel Daners School of of Mathematics and Statistics The University of Sydney, NSW 2006, Australia daniel.daners@sydney.edu.au and Bernd Kawohl Mathematisches Institut Universität zu Köln D-50923 Köln, Germany kawohl@mi.uni-koeln.de