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Abstract

Given a bounded domain Ω we look at the minimal parameter Λ(Ω) for
which a Bernoulli free boundary value problem for the p-Laplacian has
a solution minimising an energy functional. We show that amongst
all domains of equal volume Λ(Ω) is minimal for the ball. Moreover,
we show that the inequality is sharp with essentially only the ball
minimising Λ(Ω). This resolves a problem related to a question asked
in [Flucher et al., J. Reine Angew. Math. 486 (1997), 165–204.].
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1 Motivation and Result

For given λ > 0 consider the following Bernoulli type free boundary problem

∆v = 0 in Ω \D,

v = 0 on ∂Ω,

v ≡ 1 on D,

|∇v| = λ on ∂D,

(1.1)

on a given bounded open set Ω ⊂ R
N , where D ⊂ Ω is an unknown closed

set. Such free boundary value problems originally arose from two dimensional

∗This research is part of the ESF program “Global and geometric aspects of nonlinear
partial differential equations (GLOBAL)”.
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flows (see [2, 7]), but also have applications to heat flows or electro-chemical
machining (see the references in [4]).

It was shown in [1, Section 1.3] that some solutions to (1.1) can be ob-
tained as non-trivial minimisers of the the functional

Jλ(u) :=

∫

Ω

|∇u(x)|2 dx+ λ2|{u < 1}| (1.2)

over all u ∈ H1
0 (Ω) (Replace u by 1 − u in [1]), where {u < 1} := {x ∈

Ω: u(x) < 1} and is |{u < 1}| its Lebesgue measure. One can interpret
the second term in Jλ as penalising the support of (1 − u)+. By reducing λ
we expect the support of (1 − u)+ to grow or D to shrink. When we look
at (1.1), we also expect |∇u| to decrease as D shrinks. Hence the minimal
λ for which a solution exists should occur when the distance between ∂D
and ∂Ω becomes maximal. Therefore we expect an optimal configuration to
maximise this distance, and a ball is very likely to do so. We set

Λ2(Ω) := inf{λ > 0: Jλ has a non-trivial minimiser}.

and prove that Λ2(Ω) ≥ Λ2(Ω
∗), where Ω∗ denotes the ball of same volume

as Ω. We also prove that equality holds if and only if Ω is a ball.
We will look at a more general problem. In [4] it is shown that for

1 < p < ∞ non-trivial minimisers of the functional

Jλ,p(u) :=

∫

Ω

|∇u|p dx+ (p− 1)λp|{u < 1}| (1.3)

on W 1,p
0 (Ω) solve the over-determined free boundary problem

∆pv = 0 in Ω \D,

v = 0 on ∂Ω,

v ≡ 1 on D,

|∇v| = λ on ∂D.

(1.4)

Similarly as before we set

Λp(Ω) := inf{λ > 0: Jλ,p has a non-trivial minimiser}. (1.5)

First we establish the following existence result.

Theorem 1.1. The functional Jλ,p has a non-trivial minimiser if and only

if λ ≥ Λp(Ω). Moreover, min Jλ,p = Jλ,p(0) if and only if λ ≤ Λp(Ω).
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As zero is the only minimiser of J0,p(u) = ‖∇u‖pp the above theorem
implies that Λp(Ω) > 0. Our main result is the following isoperimetric in-
equality. The proof of the sharpness of that inequality relies in an essential
way on the fact from Theorem 1.1 that zero and a nontrivial u ∈ W 1,p

0 (Ω)
both minimize JΛp(Ω),p.

Theorem 1.2. Let Ω be an arbitrary bounded domain in R
N and Ω∗ a ball

of same volume as Ω. Then

Λp(Ω) ≥ Λp(Ω
∗), (1.6)

with equality if and only if Ω is a ball up to a set of p-capacity zero. Moreover,

if Ω∗ has radius r then

Λp(Ω
∗) =

p

p− 1

( p

N

)(N−1)/(p−N) 1

r

if N 6= p and

ΛN(Ω
∗) =

N

N − 1
e(1−1/N) 1

r
.

if N = p.

Note that Λp(Ω
∗) is a continuous function of p ∈ (1,∞). Also, if p > N ,

then points have positive p-capacity. Hence, if Λp(Ω) = Λp(Ω
∗) and p > N ,

then Ω is a ball.

Remark 1.3. If the integral
∫

Ω
|∇u|pdx in Jλ,p(u) is replaced by

∫

Ω
G(|∇u|)dx,

with suitable assumptions on G, including convexity of G, one can consider
a more general quasi-linear equation for functions in the appropriate Orlicz
space. Details of this can be found in [12].

A conjecture related to the above theorem appears in Flucher and Rumpf
[5, page 202]. The difference is that we only look at solutions of (1.4) which
minimise the energy functional Jλ,p, whereas [5] look at all solutions, that is,

λp(Ω) := inf{λ > 0: (1.4) has a non-trivial solution}.

A comparison of the optimal constants on the ball as computed in Section 4
reveals that λp(B) < Λp(B) if Ω = B is a ball. The new result in Theorem 1.1
is that there exists a non-trivial minimiser for λ = Λp(Ω). A similar result
is proved in [9, Theorem 3.1] for λ = λp(Ω) and for convex Ω, but with
completely different techniques to the ones we use. Also, [11] claim to prove
the conjecture by Flucher and Rumpf.

Since the energy minimising solutions have attracted quite some interest
with the work in [1] in case p = 2 and [4] for general p ∈ (1,∞), our result
should still be of interest. We give a proof of (1.6) in Section 3 and compute
the optimal values in Section 4. Theorem 1.1 is proved in Section 2.
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2 Existence of minimisers

In this section we establish the existence results for minimisers stated in
Theorem 1.1. We throughout assume that Ω ⊂ R

N is a bounded open set.

Proposition 2.1. Let Jλ,p and Λp(Ω) be defined as in the previous section.

(i) If there exists w ∈ W 1,p
0 (Ω) such that Jλ,p(w) < Jλ,p(0) = (p− 1)λp|Ω|,

then Jλ,p has a non-trivial minimiser.

(ii) For λ > 0 large enough Jλ,p has a non-trivial minimiser.

(iii) Suppose µ > 0 is such that Jµ,p has a nontrivial minimiser u ∈ W 1,p
0 (Ω).

Then Jλ,p has a non-trivial minimiser for all λ > µ.

(iv) We have min Jλ,p = Jλ,p(0) if and only if λ ≤ Λp(Ω).

Proof. (i) Since Jλ,p(u) ≥ 0 for all u ∈ W 1,p
0 (Ω) we can choose a minimising

sequence un ∈ W 1,p
0 (Ω) with Jλ,p(un) → infu∈W 1,p

0
(Ω) Jλ,p(u). By definition of

Jλ,p the sequence (un) is bounded inW 1,p
0 (Ω) and therefore has a subsequence

(unk
) converging weakly in W 1,p

0 (Ω) and pointwise almost everywhere in Ω
to some function u. Hence

‖∇u‖pp ≤ lim inf
k→∞

‖∇unk
‖pp

and by Fatou’s Lemma

∫

Ω

χ{u<1} dx ≤ lim inf
k→∞

∫

Ω

χ{unk
<1} dx,

where χA is the indicator function of a set A ⊆ R
N given by χA(x) = 1 if

x ∈ A and zero otherwise. By definition of Jλ,p and the choice of (un)

Jλ,p(u) ≤ lim inf
k→∞

Jλ,p(unk
) = inf

v∈W 1,p
0

(Ω)
Jµ,p(v).

Thus, u is a minimiser. It is non-trivial since by assumption Jλ,p(u) ≤
Jλ,p(w) < Jλ,p(0).

(ii) Let ϕ ∈ C∞
c (Ω) such that |{ϕ ≥ 1}| > 0. Then note that

Jλ,p(ϕ)− Jλ,p(ϕ)(0) = ‖∇ϕ‖pp − (p− 1)λp|{ϕ ≥ 1}| < 0

for λ > 0 large enough. Now apply (i).
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(iii) Clearly, if u is a non-trivial minimiser of Jµ,p, then Jλ,p(u) ≤ Jλ,p(0).
Also, |{u < 1}| < |Ω| since otherwise Jλ,p(0) < Jλ,p(u) and u is not a
minimiser. Hence from the definition of Jµ,p we have

Jλ,p(u) = ‖∇u‖pp + (p− 1)λp|{u < 1}|

= Jµ,p(u) + (p− 1)(λp − µp)|{u < 1}|

≤ (p− 1)µp|Ω|+ (p− 1)(λp − µp)|{u < 1}|

= (p− 1)λp|Ω| − (p− 1)(λp − µp)
(

|Ω| − |{u < 1}|
)

.

(2.1)

Since |{u < 1}| < |Ω| we conclude that Jλ,p(u) < (p− 1)λp|Ω| = Jλ,p(0) for
all λ > µ. By (i) Jλ,p has a non-trivial minimiser for all λ > µ.

(iv) If λ < Λp(Ω), then clearly minu∈W 1,p
0

(Ω) Jλ,p(u) = Jλ,p(0), so assume

that µ := Λp(Ω). Assume that u is a minimiser of Jµ,p and suppose that
strict inequality holds in (2.1). Then clearly Jλ,p(u) < Jλ,p(0) = (p− 1)λp|Ω|
if λ < µ is close enough to µ. However, this contradicts the definition of
µ = Λp(Ω) since otherwise (i) implies the existence of a minimiser for some
λ < µ.

To prove that Jλ,p also has a non-trivial minimiser for λ = Λp(Ω) we need
to compare ‖∇u‖p with the measure of {u ≥ 1}. In the following lemma we
get such an estimate. It is motivated by the estimate of the measure of a set
in terms of its capacity (see e.g. [6, page 5]), but does not rely on capacity.

Lemma 2.2. Let 1 < p ≤ N . Then there exist q > p and C > 0 only de-

pending on N, p and |Ω| such that |{u ≥ 1}| ≤ C‖∇u‖qp for all u ∈ W 1,p
0 (Ω).

Proof. If 1 < p < N , by the Sobolev inequality there exists a constant C > 0
only depending on N and p such that

|{u ≥ 1}| ≤

∫

Ω

|u|Np/(N−p) dx ≤ C‖∇u‖Np/(N−p)
p

for all u ∈ W 1,p
0 (Ω). Hence we can set q := Np(N − p) > p. If p = N choose

p0 ∈ (N/2, N) and apply the above inequality and Hölder’s inequality to get

|{u ≥ 1}| ≤ C‖∇u‖Np0/(N−p0)
p0

≤ C|Ω|θ‖∇u‖Np0/(N−p0)
p

for all u ∈ W 1,p
0 (Ω), where θ is a constant depending only on p0 and N .

Hence we can set q := Np0/(N − p0). Clearly q > N since p0 > N/2.

Since by definition of Λp(Ω) the functional Jλ,p has no non-trivial min-
imiser for λ < Λp(Ω) the following proposition will conclude the proof of
Theorem 1.1. It is also the most original and new part of the proof.
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Proposition 2.3. If µ = Λp(Ω), then Jµ,p has a non-trivial minimiser.

Proof. By definition of Λp(Ω) either there exists a non-trivial minimiser or
there is a sequence (λn) such that λn > µ for all n ∈ N, λn → µ and Jλn,p

has a non-trivial minimiser un ∈ W 1,p
0 (Ω) for every n ∈ N. Then

Jλ,p(un) = ‖∇un‖
p
p + (p− 1)λp

n|{un < 1}| ≤ (p− 1)λp
n|Ω|

for all n ∈ N. Since (λn) is a convergent sequence, (un) is bounded in
W 1,p

0 (Ω). It therefore has a convergent subsequence such that unk
⇀ u

weakly in W 1,p
0 (Ω) and pointwise almost everywhere. Fix v ∈ W 1,p

0 (Ω). As
in the proof of Proposition 2.1(i)

Jµ,p(u) ≤ lim inf
k→∞

Jλnk
,p(unk

) ≤ lim inf
k→∞

Jλnk
,p(v) = Jµ,p(v) (2.2)

where in the second inequality we use that unk
are minimisers for Jλnk

,p.

Hence u ∈ W 1,p
0 (Ω) is a minimiser of Jµ,p.

To conclude the proof we need to show that u 6= 0. If u = 0 and p > N ,
then unk

→ 0 uniformly as k → ∞ since W 1,p
0 (Ω) is compactly embedded

into C(Ω̄). Therefore there exists m ∈ N such that ‖um‖∞ < 1 and so

Jλm,p(um) = ‖∇um‖
p
p + (p− 1)λp

m|Ω| > (p− 1)λp
m|Ω| = Jλm,p(0)

since by assumption um 6= 0. As um was a non-trivial minimiser this is a
contradiction, and so u 6= 0.

We next look at the case 1 < p ≤ N . Again assume that u = 0. Then by
Rellich’s theorem we have unk

→ 0 in Lp(Ω) and so

|{unk
≥ 1}| ≤

∫

{unk
≥1}

|unk
|p dx ≤ ‖unk

‖pp → 0

Hence (2.2) with u = v = 0 implies that

µp(p− 1)|Ω| = Jµ,p(0) ≤ lim inf
k→∞

Jλnk
,p(unk

)

≤ lim inf
k→∞

Jλnk
,p(0) = Jµ,p(0) = µp(p− 1)|Ω|,

and therefore ‖∇unk
‖p → 0. As Jλn,p(0) = (p− 1)λp

n|Ω|, Lemma 2.2 implies
the existence of constants C > 0 and q > p such that

Jλn,p(un) = Jλn,p(0) + ‖∇un‖
p
p − (p− 1)λp

n|{un ≥ 1}|

≥ Jλn,p(0) + ‖∇un‖
p
p − C(p− 1)λp

n‖∇un‖
q
p

= Jλn,p(0) + ‖∇un‖
p
p

(

1− C(p− 1)λp
n‖∇un‖

q−p
p

)

(2.3)
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for all n ∈ N. Since ‖∇unk
‖p → 0, λn → µ and q > p there exists m ∈ N

with
1− C(p− 1)λp

m‖∇um‖
q−p
p > 0

and hence by (2.3) we get Jλm,p(um) > Jλm,p(0). This is a contradiction since
um was assumed to be a minimiser for Jλm,p, and so u 6= 0 as claimed.

3 Proof of the isoperimetric inequality

This whole section is devoted to the proof of the first part of Theorem 1.2.
We let Ω ⊂ R

N be a bounded open set and let Ω∗ ⊂ R
N be an open ball

with the same volume as Ω. For v ∈ W 1,p
0 (Ω∗) set

J∗
λ,p(v) =

∫

Ω∗

(

|∇v|p dx+ (p− 1)λp|{v < 1}|

and recall that minimisers are solutions of (1.4) with Ω replaced by Ω∗. Let
λ ≥ Λp(Ω). By Theorem 1.1 Jλ,p has a non-trivial minimiser u ∈ W 1,p

0 (Ω).
Consider its Schwarz symmetrisation u∗ (see [10] for a definition and prop-
erties). By well known properties of Schwarz symmetrisation u∗ ∈ W 1,p

0 (Ω∗),
‖∇u∗‖p ≤ ‖∇u‖p and |{u∗ < 1}| = |{u < 1}|. Also u∗ is non-zero and

J∗
λ,p(u

∗) = ‖∇u∗‖pp + (p− 1)λp|{u∗ < 1}|

≤ ‖∇u‖pp + (p− 1)λp|{u < 1}| = Jλ,p(u). (3.1)

In particular J∗
λ,p(u

∗) ≤ Jλ,p(u) ≤ Jλ,p(0) = J∗
λ,p(0). If J∗

λ,p(u
∗) < J∗

λ,p(0),
then by Proposition 2.1(i) J∗

λ,p has a non-trivial minimiser. If J∗
λ,p(u

∗) =
J∗
λ,p(0), then either u∗ is a non-trivial minimiser, or inf J∗

λ,p < (p − 1)λp|Ω∗|
and Proposition 2.1(i) implies the existence of a non-trivial minimiser. In
any case, if Jλ,p has a non-trivial minimiser, so does J∗

λ,p. Hence by definition
of Λp(Ω) and Λp(Ω

∗) the inequality (1.6) follows.
It remains to prove the sharpness of (1.6). We assume that Λp(Ω) =

Λp(Ω
∗). The aim is to show that Ω is a ball up to a set of capacity zero. To

simplify notation we denote the common value of Λp(Ω) and Λp(Ω
∗) by Λ

and let r be the radius of the ball Ω∗. By Theorem 1.1 zero is a minimiser
for the problem on Ω and also on Ω∗. Hence, using (3.1)

(p− 1)Λp|Ω| = J∗
Λ,p(0) ≤ J∗

Λ,p(u
∗) ≤ JΛ,p(u) = JΛ,p(0) = (p− 1)Λp|Ω|.

We conclude that J∗
Λ,p(u

∗) = JΛ,p(u). In particular, u∗ is a minimiser of
J∗
Λ,p. Since there is a unique radially symmetric minimiser on Ω∗ (see the

argument at the start of Section 4) we conclude that u∗ coincides with (4.1)
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if p 6= N and (4.2) if p = N with ρ given by (4.6) and (4.8), respectively.
In particular, ∇u∗(x) = ∇uρ(x) 6= 0 whenever 0 < uρ(x) < 1 = maxuρ.
Therefore, [3, Theorem 1.1] applies and so, up to translation, u = u∗ = uρ

almost everywhere. Extending u, u∗ by zero outside Ω and Ω∗, respectively
we can assume that u, u∗ ∈ W 1,p(RN). We can then replace u and u∗ by a
quasi-continuous representative as defined in [8, Theorem 4.5]. Since uρ is
continuous and u∗ = uρ almost everywhere, uρ is the quasi-continuous rep-
resentative of u∗. Hence uρ = u quasi everywhere, that is, except possibly
on a set of p-capacity zero. Also, as u ∈ W 1,p

0 (Ω) we know from [8, Theo-
rem 4.5] that u = 0 quasi everywhere on Ωc. Combining the two facts we
get u = uρ = 0 quasi-everywhere on C := Ω∗ \ Ω. Since uρ > 0 on Ω∗ we
conclude that C must have p-capacity zero. Hence Ω = Ω∗ is a ball except
possibly for a set of p-capacity zero.

4 The optimal constants

In this section we look at (1.4) in case Ω = Br is a ball of radius r > 0
centred at the origin. We want to compute the value of Λp(Br). To do so we
assume that λ ≥ Λp(Br) and that u ∈ W 1,p

0 (Br) is a minimiser of Jλ,p. Let
u∗ ∈ W 1,p

0 (Br) be its Schwarz symmetrisation. According to (3.1) we have
Jλ,p(u

∗) ≤ Jλ,p(u). Hence there is a radially symmetric minimiser uρ and we
can assume without loss of generality that uρ = u∗

ρ. Let ρ > 0 be the radius
of the ball {u ≥ 1}. By [4, Theorem 2.1] (or [1, Lemma 2.4] in case p = 2)
the minimiser is p-harmonic on Br \ B̄ρ with u = 0 on ∂Br and u = 1 on
∂Bρ. As there is precisely one such p-harmonic function (see [8, Lemma 8.5])

uρ(x) =







|x|(p−N)/(p−1) − r(p−N)/(p−1)

ρ(p−N)/(p−1) − r(p−N)/(p−1)
if ρ ≤ |x| ≤ r

1 if 0 ≤ |x| ≤ ρ
(4.1)

if p 6= N and

uρ(x) =







log |x| − log r

log ρ− log r
if ρ ≤ |x| ≤ r

1 if 0 ≤ |x| ≤ ρ
(4.2)

if p = N (see [5, 9]). Given ρ ∈ (0, r) one can compute λ = |∇uρ| for |x| = ρ,
and then minimise λ. This yields the smallest possible value of λ such that
(1.4) has a non-trivial solution. These optimal values have been calculated
in [5] for p = 2 and in [9] for general p ∈ (1,∞). They are

λp(Br) =

∣

∣

p−N
p−1

∣

∣

r
∣

∣( p−1
N−1

)(N−1)/(N−p) − ( p−1
N−1

)(p−1)/(N−p)
∣

∣
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if p 6= N and

λp(Br) =
e

r

if p = N . Unfortunately, the corresponding solution does not minimise Jλp,p.
In case p = 2 this is pointed out in [5, Section 5.3], but also follows from the
calculations below. To obtain Λp(Br) we start by computing Jλ,p(uρ). We
first consider the case p 6= N . An elementary calculation yields

|∇uρ(x)| =
∣

∣

∣

p−N

p− 1

∣

∣

∣

|x|(1−N)/(p−1)

|ρ(p−N)/(p−1) − r(p−N)/(p−1)|

for ρ ≤ |x| ≤ r and zero elsewhere. Because

∫ r

ρ

sp(1−N)/(p−1)sN−1 ds =

∫ r

ρ

s(p−N)/(p−1)−1 ds

=
p− 1

p−N

(

r(p−N)/(p−1) − ρ(p−N)/(p−1)
)

we get

∫

Br

|∇uρ(x)|
p dx =

∣

∣

∣

p−N

p− 1

∣

∣

∣

p−1 ωN

|ρ(p−N)/(p−1) − r(p−N)/(p−1)|p−1
, (4.3)

where ωN is the surface area of the unit sphere in R
N . According to Theo-

rem 1.1 we have to find the smallest possible λ > 0 such that

Jλ,p(uρ) = Jλ,p(0) = (p− 1)λp|Br| = (p− 1)
ωN

N
rNλp.

Using the definition of Jλ,p and uρ we therefore require that

∣

∣

∣

p−N

p− 1

∣

∣

∣

p−1 ωN

|ρ(p−N)/(p−1) − r(p−N)/(p−1)|p−1

+ (p− 1)λpωN

N
(rN − ρN ) = (p− 1)

ωN

N
rNλp (4.4)

or equivalently

N
∣

∣

∣

p−N

p− 1

∣

∣

∣

p−1

= (p− 1)λpρN
∣

∣

∣
ρ(p−N)/(p−1) − r(p−N)/(p−1)

∣

∣

∣

p−1

. (4.5)

Clearly we get the smallest value of λ if we pick ρ ∈ (0, r) such that

ρN
∣

∣

∣
ρ(p−N)/(p−1) − r(p−N)/(p−1)

∣

∣

∣

p−1
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is maximal, and then compute the corresponding value of λ from (4.5). An
elementary calculation shows that this is the case for

ρ =
(N

p

)(p−1)/(p−N)

r, (4.6)

and hence, if we substitute that value of ρ into (4.5), then

Λp(Br) =
p

p− 1

( p

N

)(N−1)/(p−N) 1

r
. (4.7)

We could confirm the above by computing |∇uρ| for the above value of ρ. If
p = N we proceed in exactly the same way to get

ρ = e−(1−1/N)r (4.8)

and

ΛN(Br) =
N

N − 1
e(1−1/N) 1

r
. (4.9)

It is also evident that

( p

N

)(N−1)/(p−N)

=

(

1 +
1
N
1

p−N

)(N−1)/(p−N)

→ e(N−1)/N

as p → N , so Λp(Br) → λN(Br) as p → N . Also note that λp(Br) < Λp(Br)
for all p ∈ (1,∞). In particular, this proves the second part of Theorem 1.2.
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