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ON THE EVOLUTION GOVERNED BY THE INFINITY
LAPLACIAN

PETRI JUUTINEN AND BERND KAWOHL

Abstract. We investigate the basic properties of the degenerate and singular

evolution equation

ut =

„
D2u

Du

|Du|

«
·

Du

|Du|
,

which is a parabolic version of the increasingly popular infinity Laplace equa-
tion. We prove existence and uniqueness results for both Dirichlet and Cauchy

problems, establish interior and boundary Lipschitz estimates and a Harnack
inequality, and also provide numerous explicit solutions.

1. Introduction

In this paper, we consider the non-linear, singular and highly degenerate para-
bolic equation

(1.1) ut = ∆∞u,

where

(1.2) ∆∞u :=
(
D2u

Du

|Du|

)
· Du
|Du|

denotes the 1-homogeneous version of the very popular infinity Laplace operator.
Our goal is to establish basic results concerning existence, uniqueness and regu-
larity of the solutions, and convince the reader that the equation is of significant
mathematical interest.

The original motivation to study (1.1) stems from the usefulness of the infinity
Laplace operator in certain applications. Indeed, the geometric interpretation of the
viscosity solutions of the equation −∆∞u = 0 as absolutely minimizing Lipschitz
extensions, see [1], [3], has attracted considerable interest in image processing, the
main usage being in the reconstruction of damaged digital images. See e.g. [5], [29].
This so-called AMLE model has attractive properties of invariance, stability and
regularity, and also has the advantage that points have positive capacity. Another
related area in which (1.2) has been used is the study of shape metamorphism,
see [7] and in mass transfer problems, see [15]. For numerical purposes it has
been necessary to consider also the evolution equation corresponding to the infinity
Laplace operator; here the main focus has been in the asymptotic behavior of the
solutions of this parabolic problem with time-independent data, cf. [5], [32].

However, we claim that (1.1) also has a very interesting theory if viewed by itself
and not just as an auxiliary equation connected to the infinity Laplacian. First,
it is a parabolic equation with principal part in non-divergence form that, unlike
for example the mean curvature evolution equation, does not belong to the class
of ”geometric” equations (see [6] for the definition). Thus many of the techniques
used in [6], [16] are not directly applicable. Nevertheless it is used in such diverse
applications as evolutionary image processing, [7] and differential games [4]. To be
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precise (1.1) arises from the fast repeated averaging of the ”“forward and backwards”
Hamilton-Jacobi dynamics vt + |Dv| = 0 and wt − |Dw| = 0. Moreover, a time
dependent version of the tug-of-war game of Peres, Schramm, Sheffield and Wilson
[28] leads to the backward-in-time version of (1.1), see [4]. Secondly, in the case of a
one space variable, the equation (1.1) reduces to the one dimensional heat equation,
see Remark 2.2 below, and, rather surprisingly, there is a connection between these
two seemingly very different equations also in higher dimensions. Roughly speaking,
the fact that the infinity Laplacian (1.2) is non-degenerate only in the direction of
the gradient Du (and acts like the one dimensional Laplacian in that direction)
causes (1.1) to behave as the one dimensional heat equation on two dimensional
surfaces whose intersection with any fixed time level t = t0 is an integral curve of
the vector field generated by Du(·, t0). This heuristic idea comes up for example in
the computation of explicit solutions and in some of the proofs.

The results of this paper can be summarized as follows. We begin with a standard
comparison principle in bounded domains that implies uniqueness for the Dirichlet
problem. The existence of viscosity solutions with continuous boundary and initial
data is established with the aid of the approximating equations

ut = ε∆u+
1

|Du|2 + δ2
(
D2uDu

)
·Du

and uniform continuity estimates that are derived by using suitable barriers. The
Cauchy problem associated to (1.1) is also treated but only very briefly. As regards
regularity, we prove interior and boundary Lipschitz estimates and obtain a Harnack
inequality for the non-negative solutions of (1.1). Finally, following the work of
Crandall et al. [10], [11], we show that subsolutions can be characterized by means
of a comparison principle involving a two parameter family of explicit solutions of
(1.1).

Although some of the results described above appear to be known to the experts
of the field, see e.g. [5] and its references (without detailed proofs and with a
different definition of viscosity solution), we feel that it is worthwhile to write down
the proofs of our results in a self-contained and rather elaborate way. Moreover,
since the formation of the theory is still in its early stages, explicit examples are
important and we provide a good number of them. Note also that due to the
singularity of the equation, the very definition of a solution is a non-trivial issue
that needs to be discussed.

In addition to Caselles, Morel and Sbert [5], the infinity heat equation (1.1)
has been studied at least by Wu [32], who obtained a variety of interesting results
closely related to ours. Another parabolic version of the infinity Laplace equation

ut =
(
D2uDu

)
·Du

was investigated by Crandall and Wang in [10], but we prefer (1.1) over this one
because of the closer relationship with the ordinary heat equation and the more
favorable homogeneity. In fact, even Crandall and Wang find their version incon-
sistent with the “comparison by cones” property and take this as an indication [10,
p.654] that it might not be the “right” parabolic version of the infinity-Laplace
equation. Observe that the solution to our equation is amenable to comparison by
cones, and that the classes of time-independent solutions of both of these equations
coincide with the infinity harmonic functions, see Corollary 3.3 below.
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2. Definitions and examples

Due to the singularity, degeneracy and the non-divergence form of (1.1), we are
not able to use classical or distributional weak solutions as our notion of a solution.
However, there is a by now standard way to define viscosity solutions for singular
parabolic equations having a bounded discontinuity at the points where the gradient
vanishes. We recall this definition below, and refer the reader to [16], [6] and [17]
for its justification and the basic properties such as stability etc.

For a symmetric n × n-matrix A, we denote its largest and smallest eigenvalue
by Λ(A) and λ(A), respectively. That is,

Λ(A) = max
|η|=1

(Aη) · η

and
λ(A) = min

|η|=1
(Aη) · η.

Definition 2.1. Let Ω ⊂ Rn+1 be an open set. An upper semicontinuous function
u : Ω → R is a viscosity subsolution of (1.1) in Ω if, whenever (x̂, t̂) ∈ Ω and
ϕ ∈ C2(Ω) are such that

(1) u(x̂, t̂) = ϕ(x̂, t̂),
(2) u(x, t) < ϕ(x, t) for all (x, t) ∈ Ω, (x, t) 6= (x̂, t̂)

then

(2.1)

{
ϕt(x̂, t̂) ≤ ∆∞ϕ(x̂, t̂) if Dϕ(x̂, t̂) 6= 0,
ϕt(x̂, t̂) ≤ Λ(D2ϕ(x̂, t̂)) if Dϕ(x̂, t̂) = 0.

A lower semicontinuous function v : Ω → R is a viscosity supersolution of (1.1)
in Ω if −v is a viscosity subsolution, that is, whenever (x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω)
are such that

(1) v(x̂, t̂) = ϕ(x̂, t̂),
(2) v(x, t) > ϕ(x, t) for all (x, t) ∈ Ω, (x, t) 6= (x̂, t̂)

then

(2.2)

{
ϕt(x̂, t̂) ≥ ∆∞ϕ(x̂, t̂) if Dϕ(x̂, t̂) 6= 0,
ϕt(x̂, t̂) ≥ λ(D2ϕ(x̂, t̂)) if Dϕ(x̂, t̂) = 0.

Finally, a continuous function h : Ω → R is a viscosity solution of (1.1) in Ω
if it is both a viscosity subsolution and a viscosity supersolution. In points where
the spatial gradient of u vanishes, one can interpret the differential equation as the
differential inclusion ut ∈ [λ(D2u),Λ(D2u)], where λ and Λ are the minimal and
maximal eigenvalue of the Hessian D2u.
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There are many equivalent ways to define viscosity solutions for (1.1). One of
them is given in Lemma 3.2 below, and it implies, in particular, that in the case
Dϕ(x̂, t̂) = 0 we may assume that D2ϕ(x̂, t̂) = 0 as well. Such a relaxation is very
useful in some of the proofs of this paper. Another version of the definition takes
into account the heuristic principle of the parabolic equations that the future should
not have any influence on the past. Mathematically this means that one should be
able to determine the admissibility of a test-function ϕ, touching at (x̂, t̂), based on
what happens prior to the time t = t̂, see Lemma 3.4.

Remark 2.2. Let n = 1 and ϕ ∈ C2(Ω). Then, if ϕx(x, t) 6= 0,

∆∞ϕ(x, t) = ϕxx(x, t)
ϕx(x, t)2

|ϕx(x, t)|2
= ϕxx(x, t),

and always
Λ(ϕxx(x, t)) = λ(ϕxx(x, t)) = ϕxx(x, t).

It follows that an upper semicontinuous function u : Ω → R is a viscosity subsolution
of (1.1) in Ω ⊂ R2 if and only if u is a viscosity subsolution of the usual heat equation
vt = vxx. An analogous statement holds of course for the viscosity supersolutions
and solutions.

Explicit examples have often a fundamental role in the formation of a mathe-
matical theory. We present below a number of solutions that give insight to the
various features of the equation (1.1). In particular, some of these examples will
serve as building blocks of the general theory as we will see later in Theorem 7.1.

(a) Let h(x, t) = f(r)g(t), where r = |x|, and assume for a moment that x 6= 0.
Then ht = f(r)g′(t), Dh = f ′(r)g(t) x

|x| and

D2h = g(t)
(
f ′′(r)

x⊗ x

|x|2
+ f ′(r)

1
|x|
I − f ′(r)

x⊗ x

|x|3

)
.

Thus ht = ∆∞h if and only if f(r)g′(t) = g(t)f ′′(r), which leads us to the equations

f ′′(r) + λf(r) = 0 and g′(t) + λg(t) = 0.

We have g(t) = Ce−λt and

f(|x|) =


C1 cos(

√
λ|x|) + C2 sin(

√
λ|x|), if λ > 0,

C1|x|+ C2, if λ = 0,
C1 cosh(

√
−λ|x|) + C2 sinh(

√
−λ|x|), if λ < 0.

The functions
h(x, t) = Ce−λt cos(

√
λ|x|), λ > 0

and
h(x, t) = Ceµt cosh(

√
µ|x|), µ > 0

are twice differentiable everywhere and satisfy the equation (in the viscosity sense)
also at the points where the spatial gradient vanishes. On the contrary, the functions
Ce−λt sin(

√
λ|x|) and Ceµt sinh(

√
µ|x|) are only viscosity sub- or supersolutions,

depending on the sign of the constant in front of them. In fact, near x = 0, these
functions look like cones having vertex at the origin, and the conical shape prevents
testing from one side (hence automatically a sub/supersolution), but allows test-
functions with non-zero gradient and arbitrary Hessian from the other side.

One can also let

r =
( k∑

i=1

x2
i

)1/2

, k ∈ {1, 2, . . . n},
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and look again for a solution in the form h(x, t) = f(r)g(t). This leads to the same
equation f(r)g′(t) = g(t)f ′′(r) and hence to the same type of solutions as above.
The possible singular set r = 0 is now a (n − k) -dimensional subspace and we
obtain solutions depending on k spatial variables only.

(b) Let h(x, t) = f(r) + g(t), where again r = |x|. We must have

g′(t) = λ = f ′′(r),

and thus

h(x, t) = λ

(
1
2
|x− x0|2 + (t− t0) + C

)
.

In particular, h(x, t) = 1
2 |x|

2 + t is a solution.
(c) Next we use the scaling invariance of the equation and seek a solution in the

form

h(x, t) = g(t)f(ξ), ξ =
|x|2

t
.

Then

ht(x, t) = g′(t)f(ξ)− g(t)f ′(ξ)ξ
t

,

Dh(x, t) =
2g(t)f ′(ξ)x

t
,

D2h(x, t) =
2g(t)f ′(ξ)

t
I +

4g(t)f ′′(ξ)
t2

(x⊗ x).

Hence h is a solution to (1.1) if

g′(t)f(ξ)− g(t)f ′(ξ)ξ
t

=
2g(t)f ′(ξ)

t
+

4g(t)f ′′(ξ)ξ
t

,

which for t > 0 can also be written as

tg′(t)f(ξ)− 2g(t)f ′(ξ) = g(t)ξ
(
f ′(ξ) + 4f ′′(ξ)

)
.

The right hand side is zero if f(ξ) = e−ξ/4. Inserting this to the left hand side
leaves us with the equation

e−ξ/4
(
tg′(t) +

1
2
g(t)

)
= 0,

whose solution is g(t) = t−1/2. We conclude that

(2.3) h(x, t) =
1√
t
e−

|x|2
4t

is a solution to (1.1) in Rn × (0,∞). This solution should be compared with the
fundamental solution of the linear heat equation

H(x, t) =
1

(4πt)n/2
e−

|x|2
4t .

As in the first example, we may repeat the above derivation with

ξ =
1
t

k∑
i=1

x2
i =

r2

t
, k ∈ {1, 2, . . . n},

and obtain a solution to (1.1) in the form

h(x, t) =
1√
t
e−

r2
4t .

Moreover, for t < 0 the procedure gives

h(x, t) =
1√
−t
e−

|x|2
4t ,
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which is a solution to (1.1) in Rn × (−∞, 0).
(d) Next we seek a solution in the form

h(x, t) = F (ξ), ξ =
|x|2

t
, t > 0.

Then

ht(x, t) = −F
′(ξ)ξ
t

,

Dh(x, t) =
2F ′(ξ)x

t
,

D2h(x, t) =
2F ′(ξ)
t

I +
4F ′′(ξ)
t2

(x⊗ x)

and hence

ht −∆∞h = −F
′(ξ)ξ
t

− 2F ′(ξ)
t

− 4F ′′(ξ)ξ
t

= 0

if
d

dξ
logF ′(ξ) =

F ′′(ξ)
F ′(ξ)

= − 1
2ξ
− 1

4
.

Integrating this gives

F ′(ξ) =
C√
ξ
e−ξ/4,

i.e.,

h(x, t) = C

∫ |x|2/t 1√
s
e−s/4 ds = C

∫ |x|/2
√

t

e−s2
ds.

Notice that this function is not differentiable at the points (0, t), t > 0. It is a solu-
tion outside the hyperplane {(x, t) ∈ Rn × (0,∞) : x = 0} and a sub/supersolution
(depending on the sign of C) in Rn × (0,∞).

3. Comparison principle and the definition of a solution revisited

For a cylinder QT = U × (0, T ), where U ⊂ Rn is a bounded domain, we denote
the lateral boundary by

ST = ∂U × [0, T ]
and the parabolic boundary by

∂pQT = ST ∪ (U × {0}).
Notice that both ST and ∂pQT are compact sets.

The proof of the following comparison principle can be found in [6], but for
reader’s convenience and for later use we sketch the argument below.

Theorem 3.1. Suppose QT = U × (0, T ), where U ⊂ Rn is a bounded domain. Let
u and v be a supersolution and a subsolution of (1.1) in QT , respectively, such that

(3.1) lim sup
(x,t)→(z,s)

u(x, t) ≤ lim inf
(x,t)→(z,s)

v(x, t)

for all (z, s) ∈ ∂pQT and both sides are not simultaneously ∞ or −∞. Then

u(x, t) ≤ v(x, t) for all (x, t) ∈ QT .

Proof. By moving to a suitable subdomain, we may assume that ∂U is smooth,
u ≤ v+ ε on ∂pQT (u and v defined up to the boundary), u is bounded from above
and v from below. All this follows from (3.1) and the compactness of the parabolic
boundary ∂pQT , cf. [22].

Also, by replacing v with v(x, t) + ε
T−t for ε > 0, we may assume that v is a

strict supersolution and v(x, t) →∞ uniformly in x as t→ T .
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The proof is by contradiction. Suppose that

(3.2) sup
QT

(u(x, t)− v(x, t)) > 0

and let
wj(x, t, y, s) = u(x, t)− v(y, s)− j

4
|x− y|4 − j

2
(t− s)2.

Denote by (xj , tj , yj , sj) the maximum point of wj relative to U× [0, T ]×U× [0, T ].
It follows from (3.2) and the fact that u < v on ∂pQT that for j large enough
xj , yj ∈ U and tj , sj ∈ (0, T ), cf. [9], Prop. 3.7. From now on, we will consider
only such indexes j.

Case 1: If xj = yj , then v − φ, where

φ(y, s) = − j
4
|xj − y|4 − j

2
(tj − s)2,

has a local minimum at (yj , sj). Since v is a strict supersolution and Dφ(yj , sj) = 0,
we have

0 < φt(yj , sj)− λ(D2φ(yj , sj)) = j(tj − sj).
Similarly, u− ψ, where

ψ(x, t) =
j

4
|x− yj |4 +

j

2
(t− sj)2,

has a local maximum at (xj , tj), and thus

0 ≥ ψt(xj , tj)− Λ(D2ψ(xj , tj)) = j(tj − sj).

Subtracting the two inequalities gives

0 < j(tj − sj)− j(tj − sj) = 0,

a contradiction.
Case 2: If xj 6= yj , we use jets and the parabolic maximum principle for semi-

continuous functions. There exist symmetric n×n matrices Xj , Yj such that Yj−Xj

is positive semidefinite and

(j(tj − sj), j|xj − yj |2(xj − yj), Xj) ∈ P
2,+
u(xj , tj),

(j(tj − sj), j|xj − yj |2(xj − yj), Yj) ∈ P
2,−

v(yj , sj).

See [9], [27] for the notation and relevant definitions. Using the facts that u is a
subsolution and v a strict supersolution, this implies

0 <j(tj − sj)−
(
Yj

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj |

− j(tj − sj) +
(
Xj

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj |

= −
(
(Yj −Xj)

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj |

≤ 0,

again a contradiction. �

The proof of the comparison principle shows that we may reduce the number
of test-functions in the definition of viscosity subsolutions. This fact will become
useful for example in the proof of Theorem 7.1 below.

Lemma 3.2. Suppose u : Ω → R is an upper semicontinuous function with the
property that for every (x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω) satisfying

(1) u(x̂, t̂) = ϕ(x̂, t̂),
(2) u(x, t) < ϕ(x, t) for all (x, t) ∈ Ω, (x, t) 6= (x̂, t̂),



8 PETRI JUUTINEN AND BERND KAWOHL

the following holds:

(3.3)

{
ϕt(x̂, t̂) ≤ ∆∞ϕ(x̂, t̂) if Dϕ(x̂, t̂) 6= 0,
ϕt(x̂, t̂) ≤ 0 if Dϕ(x̂, t̂) = 0 and D2ϕ(x̂, t̂) = 0.

Then u is a viscosity subsolution of (1.1).

The novelty in Lemma 3.2 is that nothing is required in the case Dϕ(x̂, t̂) = 0
and D2ϕ(x̂, t̂) 6= 0. This implies, in particular, that if u fails to be a viscosity
subsolution of (1.1), then there exist (x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω) such that (1) and
(2) above hold, and either

Dϕ(x̂, t̂) 6= 0 and ϕt(x̂, t̂) > ∆∞ϕ(x̂, t̂),

or
Dϕ(x̂, t̂) = 0, D2ϕ(x̂, t̂) = 0 and ϕt(x̂, t̂) > 0.

On the other hand, it is clear that one cannot further reduce the set of test-functions
to only those with non-zero spatial gradient at the point of touching. Indeed, with
such a definition, any smooth function u(x, t) = v(t) would be a solution of (1.1).

Proof. Suppose u is not a viscosity subsolution but satisfies the assumptions of the
lemma. Then there exist (x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω) such that (1) and (2) above
hold, Dϕ(x̂, t̂) = 0, D2ϕ(x̂, t̂) 6= 0, and

(3.4) ϕt(x̂, t̂) > Λ(D2ϕ(x̂, t̂)).

As in the proof of Theorem 3.1 above, we let

wj(x, t, y, s) = u(x, t)− ϕ(y, s)− j

4
|x− y|4 − j

2
(t− s)2,

and denote by (xj , tj , yj , sj) the maximum point of wj relative to Ω × Ω. By
[9], Prop. 3.7 and (1), (2), (xj , tj , yj , sj) → (x̂, t̂, x̂, t̂) as j → ∞. In particular,
(xj , tj) ∈ Ω and (yj , sj) ∈ Ω for all j large enough.

Again we have to consider two cases. If xj = yj , then ϕ− φ, where

φ(y, s) = − j
4
|xj − y|4 − j

2
(tj − s)2,

has a local minimum at (yj , sj). By (3.4) and the continuity of the mapping

(x, t) 7→ Λ(D2ϕ(x, t)),

we have
ϕt(x, t) > λ(D2ϕ(x, t))

in some neighborhood of (x̂, t̂). In particular, since ϕt(yj , sj) = φt(yj , sj) and
D2ϕ(yj , sj) ≥ D2φ(yj , sj) by calculus, we have

0 < φt(yj , sj)− λ(D2φ(yj , sj)) = j(tj − sj)

for j large enough. Similarly, u− ψ, where

ψ(x, t) =
j

4
|x− yj |4 +

j

2
(t− sj)2,

has a local maximum at (xj , tj), and thus

0 ≥ ψt(xj , tj) = j(tj − sj)

by the assumption on u; notice here that D2ψ(xj , tj) = 0 because xj = yj . Sub-
tracting the two inequalities gives

0 < j(tj − sj)− j(tj − sj) = 0,

a contradiction. The case xj 6= yj is easy and goes as in the proof of Theorem
3.1. �
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As a consequence of Lemma 3.2, we show that the time-independent solutions
of (1.1) are precisely the infinity harmonic functions.

Corollary 3.3. Let QT = U × (0, T ) and suppose that u : QT → R can be written
as u(x, t) = v(x) for some upper semicontinuous function v : U → R. Then u is
a viscosity subsolution of (1.1) if and only if −(D2v(x)Dv(x)) · Dv(x) ≤ 0 in the
viscosity sense.

Proof. Suppose first that u is a viscosity subsolution of (1.1), and let x̂ ∈ U and ψ ∈
C2(U) be such that v−ψ has a local maximum at x̂. Then ϕ(x, t) = ψ(x)+(t− t̂)4
is a good test-function for u at (x̂, t̂). Thus if Dψ(x̂) 6= 0, we have

0 = ϕt(x̂, t̂) ≤ ∆∞ϕ(x̂, t̂) = D2ψ(x̂)
Dψ(x̂)
|Dψ(x̂)|

· Dψ(x̂)
|Dψ(x̂)|

.

Hence D2ψ(x̂)Dψ(x̂) ·Dψ(x̂) ≥ 0, and since this is trivially true if Dψ(x̂) = 0, we
have shown that −(D2v(x)Dv(x)) ·Dv(x) ≤ 0 in the viscosity sense.

In order to prove the reverse implication let (x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω) be such
that u(x̂, t̂) = ϕ(x̂, t̂), and u(x, t) < ϕ(x, t) for all (x, t) ∈ Ω, (x, t) 6= (x̂, t̂). Then
ψ(x) = ϕ(x, t̂) touches v from above at x̂, and thus

0 ≤ D2ψ(x̂)Dψ(x̂) ·Dψ(x̂) = D2ϕ(x̂, t̂)Dϕ(x̂, t̂) ·Dϕ(x̂, t̂).

Moreover, since u is independent of t, ϕt(x̂, t̂) = 0. Hence

ϕt(x̂, t̂) = 0 ≤ D2ϕ(x̂, t̂)
Dϕ(x̂, t̂)
|Dϕ(x̂, t̂)|

· Dϕ(x̂, t̂)
|Dϕ(x̂, t̂)|

if Dϕ(x̂, t̂) 6= 0, and ϕt(x̂, t̂) ≤ 0 if Dϕ(x̂, t̂) = 0 and D2ϕ(x̂, t̂) = 0. By Lemma 3.2
this implies that u is a viscosity subsolution of (1.1). �

We showed in Lemma 3.2 that a set of test-functions that is strictly smaller than
the one in Definition 2.1 suffices for characterizing the viscosity subsolutions of
(1.1). The next lemma establishes that for a viscosity subsolution, the inequalities
(2.1) in fact hold for a set of test-functions that is strictly larger than the one in
Definition 2.1.

Lemma 3.4. Let u : Ω → R be a viscosity subsolution of (1.1) in Ω. Then if
(x̂, t̂) ∈ Ω and ϕ ∈ C2(Ω) are such that

(1) u(x̂, t̂) = ϕ(x̂, t̂),
(2) u(x, t) < ϕ(x, t) for all (x, t) ∈ Ω ∩ {t ≤ t̂}, (x, t) 6= (x̂, t̂),

we have

(3.5)

{
ϕt(x̂, t̂) ≤ ∆∞ϕ(x̂, t̂) if Dϕ(x̂, t̂) 6= 0,
ϕt(x̂, t̂) ≤ Λ(D2ϕ(x̂, t̂)) if Dϕ(x̂, t̂) = 0.

Proof. Once again we argue by contradiction, and assume that there exists (x̂, t̂) ∈
Ω and ϕ ∈ C2(Ω) such that (1) and (2) above hold, and either

ϕt(x̂, t̂) > ∆∞ϕ(x̂, t̂) and Dϕ(x̂, t̂) 6= 0,

or
ϕt(x̂, t̂) > Λ(D2ϕ(x̂, t̂)) and Dϕ(x̂, t̂) = 0.

Both alternatives imply that ϕ is a strict viscosity supersolution of (1.1) in Qε :=
Bε(x̂) × (t̂ − ε, t̂) for some small ε > 0 (see the proof of Lemma 3.2), and since
sup∂pQε

(ϕ − u) > 0, we have supQε
(ϕ − u) > 0 by the comparison principle. This

contradicts the fact that u(x̂, t̂) = ϕ(x̂, t̂), and we are done with the proof. �
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4. Existence

The main existence result we will prove is

Theorem 4.1. Let QT = U × (0, T ), where U ⊂ Rn is a bounded domain, and let
ψ ∈ C(Rn+1). Then there exists a unique h ∈ C(QT ∩ ∂pQT ) such that h = ψ on
∂pQT and

ht = ∆∞h in QT

in the viscosity sense.

The uniqueness follows from the comparison principle, Theorem 3.1. Regarding
the existence, we consider the approximating equations

(4.1) ut = ∆ε,δ
∞ u,

where

∆ε,δ
∞ u = ε∆u+

1
|Du|2 + δ2

(
D2uDu

)
·Du =

n∑
i,j=1

aε,δ
ij (Du)uij

with
aε,δ

ij (ξ) = εδij +
ξiξj

|ξ|2 + δ2
, 0 < ε ≤ 1, 0 < δ ≤ 1.

For this equation with smooth initial and boundary data ψ(x, t), the existence of a
smooth solution hε,δ is guaranteed by classical results in [25]. Our goal is to obtain
a solution of (1.1) as a limit of these functions as ε→ 0 and δ → 0. This amounts
to proving estimates for hε,δ that are independent of 0 < ε < 1 and 0 < δ < 1.

4.1. Boundary regularity at t = 0.

Proposition 4.2. Let QT = U × (0, T ), where U ⊂ Rn is a bounded domain, and
suppose that h = hε,δ is a smooth function satisfying{

ht = ∆ε,δ
∞ h in QT ,

h(x, t) = ψ(x, t) on ∂pQT .

If ψ ∈ C2(Rn+1), then there exists C ≥ 0 depending on ‖D2ψ‖∞ and ‖ψt‖∞ but
independent of 0 < ε ≤ 1 and 0 < δ ≤ 1 such that

|h(x, t)− ψ(x, 0)| ≤ Ct

for all x ∈ U and 0 < t < T . Moreover, if ψ is only continuous in x (and possibly
discontinuous in t), then the modulus of continuity of h on U×{0} can be estimated
in terms of ‖ψ‖∞ and the modulus of continuity of ψ in x.

Proof. Suppose first that ψ ∈ C2(Rn+1), and let w(x, t) = ψ(x, 0)+λt, where λ > 0
is to be determined. We have

wt −∆ε,δ
∞ w = λ− ε∆ψ(x, 0)−

(
D2ψ

Dψ

|Dψ|2 + δ2

)
· Dψ

|Dψ|2 + δ2

≥ λ− (1 + εn)‖D2ψ(x, 0)‖∞ ≥ 0

if λ is large enough. Clearly w(x, 0) ≥ h(x, 0) for all x ∈ U . Moreover,

w(x, t) = ψ(x, 0) + λt ≥ ψ(x, 0) + ‖ψt‖∞t ≥ ψ(x, t)

for all x ∈ ∂U and 0 < t < T if λ ≥ ‖ψt‖∞. Thus, by the comparison principle,

h(x, t) ≤ w(x, t) = ψ(x, 0) + λt

for all x ∈ U and 0 < t < T . By considering also the lower barrier (x, t) 7→
ψ(x, 0)− λt, we obtain the Lipschitz estimate

(4.2) |h(x, t)− ψ(x, 0)| ≤ Ct,



ON THE EVOLUTION GOVERNED BY THE INFINITY LAPLACIAN 11

where C = max{(1 + εn)‖D2ψ(x, 0)‖∞, ‖ψt‖∞}.
Suppose now that ψ is only continuous, and fix x0 ∈ U . For a given µ > 0, choose

0 < τ < dist(x0, ∂U) such that |ψ(x, 0)− ψ(x0, 0)| < µ whenever |x− x0| < τ , and
consider the smooth functions

ψ±(x, t) = ψ(x0, 0)± µ± 2‖ψ‖∞
τ2

|x− x0|2.

It is easy to check that ψ− ≤ ψ ≤ ψ+ on the parabolic boundary of QT . Thus
if h± are the unique solutions to (4.1) with boundary and initial data ψ± of class
C2(Rn+1), respectively, we have h− ≤ h ≤ h+ in QT by the comparison principle.
Applying the estimate (4.2) for h± yields

|h±(x0, t)− ψ±(x0, 0)| ≤ tmax{‖(ψ±)t‖∞, (1 + εn)‖D2ψ±‖∞}

= t(1 + εn)
4‖ψ‖∞
τ2

,

which implies

|h(x0, t)− ψ(x0, 0)| ≤ µ+ (1 + εn)
4‖ψ‖∞
τ2

t.

The proposition is proved. �

Corollary 4.3. Let QT = U × (0, T ) and h = hε,δ be as in Proposition 4.2. If
ψ ∈ C2(Rn+1), then there exists C ≥ 0 depending on ‖D2ψ‖∞ and ‖ψt‖∞ but
independent of 0 < ε ≤ 1 and 0 < δ ≤ 1 such that

|h(x, t)− h(x, s)| ≤ C|t− s| for all x ∈ U and t, s ∈ (0, T ).

Moreover, if ψ is only continuous, then the modulus of continuity of h in t on
U × (0, T ) can be estimated in terms of ‖ψ‖∞ and the modulus of continuity of ψ
in x and t.

Proof. Let v(x, t) = h(x, t+ τ), τ > 0. Then both h and v are solutions to (4.1) in
Qτ := U × (0, T − τ), and hence if ψ ∈ C2(Rn+1), we have

sup
Qτ

|h− v| = sup
∂pQτ

|h− v|

≤ max{‖h(·, τ)− ψ(·, 0)‖∞,U , sup
x∈∂U

(
‖h(x, ·)− h(x, ·+ τ)‖∞,(0,T )

)
}

≤ max{Cτ, ‖ψt‖∞τ} = Cτ

by the comparison principle and Proposition 4.2. This implies the Lipschitz estimate
asserted above, and the proof for case where ψ is only continuous is analogous. �

4.2. Regularity at the lateral boundary ST = ∂U × [0, T ].

Proposition 4.4. Let QT = U × (0, T ), where U ⊂ Rn is a bounded domain, and
suppose that h = hε,δ is a smooth function satisfying{

ht = ∆ε,δ
∞ h in QT ,

h(x, t) = ψ(x, t) on ∂pQT ,

where ψ ∈ C2(Rn+1). Then for each 0 < α < 1, there exists a constant C ≥ 1
depending on α, ‖ψ‖∞, ‖Dψ‖∞ and ‖ψt‖∞ but independent of ε and δ such that

|h(x, t0)− ψ(x0, t0)| ≤ C|x− x0|α

for all (x0, t0) ∈ ∂U×(0, T ), x ∈ U∩B1(x0) and ε > 0 sufficiently small (depending
on α).
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Proof. Let
w(x, t) = h(x0, t0) + C|x− x0|α −M(t− t0),

where (x0, t0) ∈ ∂U × (0, T ), t0 > 0 and 0 < α < 1. Then a straightforward
computation gives

wt −∆ε,δ
∞ w =−M − Cεα(n+ α− 2)|x− x0|α−2 − C3α3(α− 1)|x− x0|3α−4

C2α2|x− x0|2α−2 + δ2

=−M − Cα|x− x0|α−2

ε(n+ α− 2) +
α− 1

1 +
(

δ
Cα|x−x0|α−1

)2

 .

If |x− x0| ≤ 1 and C ≥ 1, we have

1− α

1 +
(

δ
Cα|x−x0|α−1

)2 − ε(n+ α− 2) ≥ 1
10

(1− α)

for δ < 2α and for 0 < ε ≤ 1−α
10(n+α−2) if n > 1 and for any ε > 0 if n = 1. Thus

wt −∆ε,δ
∞ w ≥ −M + Cα|x− x0|α−2 1− α

10
≥ −M + Cα

1− α

10
≥ 0

provided that ε is in the range specified above and

C ≥ max{1, 10M
α(1−α)}.

Next we will show that M and C can be chosen so that w ≥ h on the parabolic
boundary of QT ∩ (B1(x0) × (t0 − 1, t0)). Let us suppose first that t0 > 1, and
consider a point (x, t) such that x ∈ (∂U)∩B1(x0) and t0−1 < t ≤ t0. Then, since
|x− x0| < 1 (and h = ψ on the boundary ∂U),

h(x, t) ≤h(x0, t0) + ‖Dψ‖∞|x− x0|+ ‖ψt‖∞(t0 − t)

≤h(x0, t0) + C|x− x0|α +M(t0 − t) = w(x, t)

if C ≥ ‖Dψ‖∞ and M ≥ ‖ψt‖∞. On the other hand, if x ∈ U ∩ (∂B1(x0)) and
t0 − 1 < t ≤ t0, we have

w(x, t) = h(x0, t0) + C +M(t0 − t) ≥ ‖ψ‖∞ ≥ h(x, t)

if C ≥ 2‖ψ‖∞. Finally, we consider the bottom of the cylinder. Suppose t = t0 − 1
and x ∈ U ∩B1(x0). Then

w(x, t) = h(x0, t0) + C|x− x0|α +M ≥ ‖ψ‖∞ ≥ h(x, t)

if M ≥ 2‖ψ‖∞.
In conclusion, we have now shown that if we choose M ≥ max{‖ψt‖∞, 2‖ψ‖∞}

and C ≥ max{‖Dψ‖∞, 2‖ψ‖∞, 10M
α(1−α)}, then w ≥ h in QT ∩ (B1(x0)× (t0 − 1, t0))

by the comparison principle. In particular,

h(x, t0) ≤ w(x, t0) = ψ(x0, t0) + C|x− x0|α

for x ∈ U ∩ B1(x0). The other half of the estimate claimed follows by considering
the lower barrier (x, t) 7→ h(x0, t0)− C|x− x0|α +M(t− t0).

In the case when t0 < 1, we consider the cylinder QT ∩ (B1(x0)× (0, t0)), and
notice that since h = ψ on the bottom of this cylinder,

h(x, 0) = ψ(x, 0) ≤ ‖Dψ‖∞|x− x0|+ ‖ψt‖∞t0 + h(x0, t0)

≤ C|x− x0|α +Mt0 + h(x0, t0) = w(x, 0)

for x ∈ U ∩ B1(x0) if C ≥ ‖Dψ‖∞ and M ≥ ‖ψt‖∞. The rest of the argument is
analogous to the previous case. �
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Notice that the function w(x, t) = C|x − x0|α − M(t − t0) is not a viscosity
supersolution of (1.1) if α = 1. Therefore, in order to obtain Lipschitz estimates,
we have to consider barriers of different type and, rather surprisingly, remove the
Laplacian term from the equation.

Proposition 4.5. Let QT = U × (0, T ), where U ⊂ Rn is a bounded domain, and
suppose that h = hδ satisfies{

ht = ∆0,δ
∞ h in viscosity sense in QT ,

h(x, t) = ψ(x, t) on ∂pQT .

If ψ ∈ C2(Rn+1), then there exists a constant C ≥ 1 depending on ‖ψ‖∞, ‖Dψ‖∞
and ‖ψt‖∞ but independent of 0 < δ ≤ 1 such that

|h(x, t0)− ψ(x0, t0)| ≤ C|x− x0|
for all (x0, t0) ∈ ∂U × (0, T ), x ∈ U ∩ B1(x0). Moreover, if ψ is only continuous,
then the modulus of continuity of h on ∂U × (0, T ) can be estimated in terms of
‖ψ‖∞ and the modulus of continuity of ψ.

Proof. Suppose first that ψ ∈ C2(Rn+1). We will use a barrier of the form

w(x, t) = ψ(x0, t0) +M(t0 − t) + C|x− x0| −K|x− x0|2,
where M,C,K > 0. Then

wt −∆0,δ
∞ w = −M −

(
C

|x−x0| − 2K
)3

|x− x0|2 − C
(

C
|x−x0| − 2K

)2

|x− x0|(
C

|x−x0| − 2K
)2

|x− x0|2 + δ2

= −M +
2K

1 +
(

δ
C−2K|x−x0|

)2

≥ −M +
2K

1 +
(

δ
C−2K

)2 ≥ 0

if x ∈ U ∩B1(x0), δ ≤ 1, 2K > M and C ≥ 2K +
√

M
2K−M .

Next we will check that w ≥ h on the parabolic boundary of QT ∩ (B1(x0) ×
(t0 − 1, t0)); we suppose for a moment that t0 > 1. Let us first consider a point
(x, t) such that x ∈ (∂U) ∩B1(x0) and t0 − 1 < t ≤ t0. Then

h(x, t) = ψ(x, t) ≤ ψ(x0, t0) + ‖Dψ‖∞|x− x0|+ ‖ψt‖∞(t0 − t)

≤ ψ(x0, t0) + (C −K)|x− x0|+M(t0 − t) ≤ w(x, t)

if M ≥ ‖ψt‖∞ and C ≥ K + ‖Dψ‖∞. If x ∈ U ∩ (∂B1(x0)) and t0 − 1 < t ≤ t0, we
have

w(x, t) = M(t0 − t) + C −K + ψ(x0, t0) ≥ ‖ψ‖∞ ≥ h(x, t)
if C ≥ K + 2‖ψ‖∞. Finally, if x ∈ U ∩B1(x0) and t = t0 − 1,

w(x, t) ≥M + ψ(x0, t0) ≥ ‖ψ‖∞ ≥ h(x, t)

if M ≥ 2‖ψ‖∞. We conclude that if M ≥ max{2‖ψ‖∞, ‖ψt‖∞}, K > M/2, and

C ≥ max{2K +
√

M
2K−M ,K + ‖Dψ‖∞,K + 2‖ψ‖∞},

the function w defined above is a viscosity supersolution of (4.1) with ε = 0 and
w ≥ h on the parabolic boundary ofQT∩(B1(x0)×(t0−1, t0)). Thus the comparison
principle implies

h(x, t0) ≤ ψ(x0, t0) + C|x− x0|
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for x ∈ U ∩ B1(x0). As before, we obtain the full estimate by considering also the
lower barrier (x, t) 7→ ψ(x0, t0)−M(t0− t)−C|x− x0|+K|x− x0|2 with the same
choice for the constants M , C and K.

The case t0 ≤ 1 can be treated as in the proof of Proposition 4.4, by considering
QT ∩ (B1(x0)× (0, t0)) as the comparison domain. Note that on the bottom of this
cylinder we have

h(x, 0) = ψ(x, 0) ≤ ψ(x0, t0) + ‖Dψ‖∞|x− x0|+ ‖ψt‖∞t0
≤ ψ(x0, t0) + (C −K)|x− x0|+Mt0 ≤ w(x, 0)

provided that M ≥ ‖ψt‖∞ and C ≥ K + ‖Dψ‖∞.
Suppose now that ψ is only continuous, and fix (x0, t0) ∈ ∂U × (0, T ). For

a given µ > 0, choose 0 < τ < t0 such that |ψ(x, t) − ψ(x0, t0)| < µ whenever
|x− x0|+ |t− t0| < τ , and consider the smooth functions

ψ±(x, t) = ψ(x0, 0)± µ± 4‖ψ‖∞
τ2

|x− x0|2 ±
4‖ψ‖∞
τ

|t− t0|.

Since
ψ−(x, t) ≤ ψ(x0, t0)− µ < ψ(x, t) < ψ(x0, t0)− µ ≤ ψ+(x, t)

if |x− x0|+ |t− t0| < τ and

ψ−(x, t) ≤ −‖ψ‖∞ ≤ ψ(x, t) ≤ ‖ψ‖∞ ≤ ψ+(x, t)

otherwise, we have ψ− ≤ ψ ≤ ψ+ on the parabolic boundary of QT . Thus if h±
are the unique solutions to the equation vt = ∆0,δ

∞ v with boundary and initial
data ψ± of class C2(Rn+1), respectively, we have h− ≤ h ≤ h+ in QT by the
comparison principle. Applying the estimate obtained above, with the choice K =
M = 4‖ψ‖∞/σ for h± yields

|h±(x, t0)− ψ±(x0, t0)| ≤ max{16‖ψ‖∞
σ2

, 1}|x− x0|.

Thus we obtain

|h(x, t0)− ψ(x0, t0)| ≤ µ+ max{16‖ψ‖∞
σ2

, 1}|x− x0|.

The proposition is proved. �

The boundary regularity obtained above is inherited to the interior of the domain,
cf. [23]:

Corollary 4.6. Let QT = U × (0, T ) and h = hδ be as in Proposition 4.5. If
ψ ∈ C2(Rn+1), then there exists C ≥ 1 depending on ‖ψ‖∞, ‖Dψ‖∞ and ‖ψt‖∞
but independent of 0 < ε ≤ 1 and 0 < δ ≤ 1 such that

|h(x, t)− h(y, t)| ≤ C|x− y| for all x, y ∈ U and t ∈ (0, T ).

Moreover, if ψ is only continuous, then the modulus of continuity of h in x on
U × (0, T ) can be estimated in terms of ‖ψ‖∞ and the modulus of continuity of ψ
in x and t.

Remark 4.7. In the event that the boundary data ψ is independent of the time
variable t, the Lipschitz estimate is much easier to prove. Indeed, one can simply
compare h with the functions (x, t) 7→ ψ(x0)±C|x− x0| where C = ‖Dψ‖∞,∂U to
obtain

|h(x, t)− ψ(x0)| ≤ C|x− x0| for all x0 ∈ ∂U and x ∈ U ,
which in turn yields the interior estimate

|h(x, t)− h(y, t)| ≤ C|x− y| for all x, y ∈ U and t ∈ (0, T ).
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4.3. Existence of a solution to the Dirichlet problem. Theorem 4.1 follows
now easily from Corollaries 4.3 and 4.6 and the stability properties of viscosity
solutions. Indeed, if ψ ∈ C2(Rn+1) and hε,δ is the unique smooth solution to{

vt = ∆ε,δ
∞ v in QT ,

v(x, t) = ψ(x, t) on ∂pQT ,

then Corollary 4.3, Proposition 4.4 and the comparison principle imply that the
family (hε,δ) is equicontinuous and uniformly bounded. Hence, up to a subsequence,
hε,δ → hδ as ε→ 0 and hδ is the unique solution to{

vt = ∆0,δ
∞ v in the viscosity sense in QT ,

v(x, t) = ψ(x, t) on ∂pQT ,

by the stability properties of viscosity solutions. Next we apply Corollaries 4.3 and
4.6 and conclude as above that hδ → h uniformly as δ → 0 and h is a viscosity
solution to (1.1) with boundary and initial data ψ. The existence for a general
continuous data ψ follows by approximating the data by smooth functions and
using Corollaries 4.3 and 4.6.

4.4. On the Cauchy problem. Let us next very briefly discuss the Cauchy prob-
lem associated to (1.1).

Theorem 4.8. Let ψ : Rn → R be a bounded and uniformly continuous function.
Then there exists a unique bounded solution h : Rn × [0, T ) → R to the Cauchy
problem

(4.3)

{
ht = ∆∞h in the viscosity sense in Rn × (0, T ),
h(x, 0) = ψ(x) for all x ∈ Rn.

Moreover, the modulus of continuity of h in Rn × (0, T ) can be estimated in terms
of the modulus of continuity of ψ in Rn and supRn |ψ|.

The solution to (4.3) can be constructed as a limit of functions hr that satisfy{
(hr)t = ∆∞hr in the viscosity sense in Br(0)× (0, T ),
hr(x, t) = ψ(x) for all (x, t) ∈ ∂p(Br(0)× (0, T )).

Due to the boundedness and uniform continuity of ψ, we have uniform continuity
estimates for hr in x and t and thus is follows from Ascoli-Arzela and the stability of
viscosity solutions that the sequence (hr) converges to a bounded solution of (4.3)
as r →∞. Regarding uniqueness, we state a comparison principle that follows from
the result proved in [18]:

Theorem 4.9. Let u and v be a viscosity subsolution and a viscosity supersolution,
respectively, of (1.1) in Rn × (0, T ) such that there exists K > 0 and a modulus of
continuity ω so that

(A1) u(x, t) ≤ K(|x|+ 1) and v(x, t) ≥ −K(|x|+ 1) for all (x, t) ∈ Rn × (0, T );
(A2) u(x, 0)− v(y, 0) ≤ ω(|x− y|) for all x, y ∈ Rn;
(A3) u(x, 0)− v(y, 0) ≤ K(|x− y|+ 1) for all x, y ∈ Rn.

Then u ≤ v in Rn × (0, T ).

Indeed, in order to apply Theorem 2.1 of [18], it is enough to notice that by
Lemma 3.4 the functions u and v are a viscosity sub- and supersolution of (1.1) in
Rn × (0, T ′] (which is not an open set) for every 0 < T ′ < T .
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Remark 4.10. The uniqueness part of Theorem 4.8 can only hold if we impose
some conditions on the growth of the solution h(x, t) as |x| → ∞. Indeed, since for
n = 1 the equation (1.1) is nothing but the classical heat equation, the well-known
counterexample of Tihonov [31], [13] shows that there exists a non-vanishing solu-
tion to (4.3) with ψ ≡ 0. By adding dummy variables, we obtain a counterexample
to the uniqueness also in higher dimensions. It would be interesting to know if the
optimal growth rate that guarantees uniqueness for (4.3) is O(ea|x|2) as in the case
of the heat equation.

5. An interior Lipschitz estimate

In this section, we establish an interior Lipschitz estimate for the solutions of
(1.1) using Bernstein’s method. Such an estimate was first obtained by Wu [32] for
smooth solutions (see also [14]). We follow his ideas and show a similar estimate
for the solutions of the approximating equation (4.1) with constants independent
of ε and δ, and thereby extend Wu’s result to all solutions of (1.1).

Proposition 5.1. Let QT = U×(0, T ), where U ⊂ Rn is a bounded domain. There
exists a constant C > 0, independent of 0 < ε ≤ 1 and 0 < δ ≤ 1/2, such that if
h = hε,δ ∈ C1(QT ) is a bounded, smooth solution of the approximating equation
(4.1) in QT , then

|Dh(x, t)| ≤ C

(
1 +

‖h‖∞
dist((x, t), ∂pQT )2

)
for all (x, t) ∈ QT .

Proof. Let us denote

v =
(
|Dh|2 + δ2

)1/2

and consider the function

w(x, t) = ζ(x, t)v(x, t) + λh(x, t)2,

where λ ≥ 0 and ζ is a smooth, positive function that vanishes on the parabolic
boundary of QT . Let (x0, t0) be a point where w takes its maximum in QT , and
let us first suppose that this point is not on the parabolic boundary ∂pQT . Then
at that point, since the matrix (aε,δ

ij (Dh))ij is positive definite, we have

0 ≤ wt −
∑

aε,δ
ij (Dh)wij = ζ

(
vt −

∑
aε,δ

ij (Dh)vij

)
+ v

(
ζt −

∑
aε,δ

ij (Dh)ζij
)

+ 2λh
(
ht −

∑
aε,δ

ij (Dh)hij

)
− 2

∑
aε,δ

ij (Dh)ζjvi

− 2λ
∑

aε,δ
ij (Dh)hihj .

(5.1)

Notice that that the third term on the right hand side is zero because h is a solu-
tion to (4.1). In order to estimate the first term, we need to derive a differential
inequality for v. To this end, note first that differentiating (4.1) with respect to xk

leads to the equation

htk = ε∆hk +
1
v2

∑
i,j

hihjhijk +
2
v2

∑
i,j

hihjkhij −
2
v4

∑
i,j

(hihjhij)
∑

l

(hlhlk) .

Multiplying this with hk

v and adding from 1 to n yields

vt =
ε

v

∑
hkhiik +

1
v3

∑
hihjhkhijk +

2
v3

∑
hihijhkhjk −

2
v5

(∑
hihjhij

)2

.
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Since
vij =

1
v

∑
k

hikhjk +
1
v

∑
k

hkhijk −
1
v3

∑
k

(hkhik)
∑

l

(hlhjl) ,

we thus have that

vt −
n∑

i,j=1

aε,δ
ij (Dh)vij =

1
v3

∑
j

( ∑
i

hihij

)2

− 1
v5

( ∑
i,k

hihkhik

)2

− ε

v

∑
i,j

h2
ij +

ε

v3

∑
k

( ∑
i

hihik

)2

≤ (1 + ε)
|Dv|2

v
.

(5.2)

Using (5.2) and the fact the h is a solution to the approximating equation in (5.1)
then gives

0 ≤ ζ(1 + ε)
|Dv|2

v
+ v

(
ζt −

∑
aε,δ

ij (Dh)ζij
)
− 2

∑
aε,δ

ij (Dh)ζjvi

− 2λ|Dh|2
(
ε+

|Dh|2

|Dh|2 + δ2

)
.

(5.3)

In order to estimate the various terms above, we notice that since 0 = wi = ζiv +
ζvi + 2λhhi at (x0, t0), we have

ζvi = −ζiv − 2λhhi.

Hence

ζ
|Dv|2

v
=

∑
(ζvi)2

ζv
=
v|Dζ|2

ζ
+ 4λ

h

ζ
Dζ ·Dh+ 4λ2 h

2

ζv
|Dh|2

≤ v

ζ

(
|Dζ|2 + 4λ|h||Dζ|+ 4(λh)2

)
≤ 6v

ζ

(
|Dζ|2 + (λh)2

)
and

−2
∑

aε,δ
ij (Dh)ζjvi =

2v
ζ

(
ε|Dζ|2 +

(Dh ·Dζ)2

v2

)
+ 4λ

h(Dh ·Dζ)
ζ

(
ε+

|Dh|2

v2

)
≤ 2v

ζ
(1 + ε)|Dζ|2 + 4(1 + ε)

(λh)v|Dζ|
ζ

≤ 4(1 + ε)v
ζ

(
|Dζ|2 + (λh)2

)
.

Moreover, using Young’s inequality,

v
(
ζt −

∑
aε,δ

ij (Dh)ζij
)
≤ v

(
|ζt|+ (1 + nε)|D2ζ|

)
≤ 1

5
λv2 +

5
4λ

(
|ζt|+ (1 + nε)|D2ζ|

)2
.

Thus (5.3) implies

2λ|Dh|2
(
ε+

|Dh|2

|Dh|2 + δ2

)
≤ 10(1 + ε)v

ζ

(
|Dζ|2 + (λh)2

)
+

1
5
λv2

+
5
4λ

(
|ζt|+ (1 + nε)|D2ζ|

)2

≤ 500
λζ2

(
|Dζ|2 + (λh)2

)2
+

2
5
λv2

+
5
4λ

(
|ζt|+ (1 + n)|D2ζ|

)2
.

(5.4)
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If |Dh(x0, t0)| ≥ 1 and 0 < δ ≤ 1/2, then

2λ|Dh|2
(
ε+

|Dh|2

|Dh|2 + δ2

)
=2λv2 |Dh|2

|Dh|2 + δ2

(
ε+

|Dh|2

|Dh|2 + δ2

)
≥ 2λv2 1

1 + δ2

(
ε+

1
1 + δ2

)
≥ 2λv2

(
4
5

)2

.

Thus in (5.4) we can move the term 2
5λv

2 to the left-hand side, then divide by λ

and multiply by ζ2 to obtain

22
25
ζ2v2 ≤ 500

λ2

(
|Dζ|2 + (λh)2

)2
+

5ζ2

4λ2

(
|ζt|+ (1 + n)|D2ζ|

)2
,

that is, (
ζv

)2 ≤ C

λ2

((
|Dζ|2 + (λh)2

)2
+ ζ2

(
|ζt|+ (1 + n)|D2ζ|

)2
)

at the point (x0, t0). Now let λ = ‖h‖−1
∞ , fix (x, t) ∈ QT and choose ζ so that

ζ(x, t) = 1 and

max{‖Dζ‖∞, ‖ζt‖∞} ≤
1

dist((x, t), ∂pQT )
.

Then
|Dh(x, t)| ≤ w(x, t) ≤w(x0, t0) = ζ(x0, t0)v(x0, t0) + λh(x0, t0)2

≤ C

λ

(
‖Dζ‖2∞ + λ2‖h‖2∞ + ‖D2ζ‖∞ + ‖ζt‖∞

)
+ λ‖h‖2∞

≤C‖h‖∞
(

1 +
1

dist((x, t), ∂pQT )2

)
with a constant C ≥ 1 depending only on n. On the other hand, if |Dh(x0, t0)| < 1,
then

|Dh(x, t)| ≤ v(x, t) ≤ w(x, t) ≤ w(x0, t0) = ζ(x0, t0)v(x0, t0) + λh(x0, t0)2

≤‖ζ‖∞
√

1 + δ2 + ‖h‖∞.
Finally, if it happens that the maximum point (x0, t0) of w is on the parabolic

boundary of QT , then

|Dh(x, t)| ≤ v(x, t) ≤ w(x, t) ≤ w(x0, t0) = λh(x0, t0)2 ≤ ‖h‖∞,
because ζ vanishes on ∂pQT . �

Corollary 5.2. Let QT = U × (0, T ), where U ⊂ Rn is a bounded domain. There
exists a constant C > 0 such that if h ∈ C(QT ) is a viscosity solution of (1.1) in
QT , then

|Dh(x, t)| ≤ C

(
1 +

‖h‖∞
dist((x, t), ∂pQT )2

)
for almost every (x, t) ∈ QT .

Proof. Let V ′ ⊂⊂ V ⊂⊂ U be open, σ′ > σ > 0 and Q1 = V × (σ, T − σ),
Q2 = V ′ × (σ′, T − σ′). Let also hε,δ satisfy{

(hε,δ)t = ∆ε,δ
∞ hε,δ, in Q1,

hε,δ(x, t) = h(x, t), on ∂pQ1.

By Proposition 5.1 and the maximum principle,

|Dhε,δ(x, t)| ≤ C

(
1 +

‖h‖∞
dist((x, t), ∂pQ2)2

)
for any (x, t) ∈ Q2 with a constant C ≥ 1 independent of ε and δ. Using Ascoli-
Arzela, we conclude that the functions hε,δ converge locally uniformly as ε→ 0 and
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δ → 0 to a locally Lipschitz continuous function h̃ that by the stability properties
of the viscosity solutions satisfies{

h̃t = ∆∞h̃, in the viscosity sense in Q1,

h̃(x, t) = h(x, t), on ∂pQ1.

The comparison principle implies that h̃ = h in Q1, and hence we have

|Dh(x, t)| ≤ C

(
1 +

‖h‖∞
dist((x, t), ∂pQ2)2

)
for a.e. (x, t) ∈ Q2. Since the constant C can be taken to be independent of the
subdomains used in the argument, the asserted estimate follows. �

Remark 5.3. We do not know whether solutions of (1.1) are differentiable in x or
not. This question is still largely open also in elliptic case, although Savin [30] has
recently shown the C1 regularity for infinity harmonic functions in two dimensions.
The “worst” example known to us is the time-independent solution

h(x, t) =
n∑

i=1

ai|xi|4/3, a3
1 + · · ·+ a3

n = 0,

which is in C1,1/3. This solution belongs to a family of quasi-radial solutions of the
infinity Laplacian constructed by Aronsson [2]. It would be interesting to know if
such a family of solutions exists for (1.1) as well.

6. The Harnack inequality

In this section, we prove the Harnack inequality for nonnegative viscosity so-
lutions of (1.1). The proof is based on the ideas of Krylov and Safonov [24] and
DiBenedetto [12], [13]. In fact, the argument below follows closely the proof of the
Harnack inequality for the solutions of the heat equation given in [13].

Theorem 6.1. Let h be a nonnegative viscosity solution of the infinity heat equation
(1.1) in Ω ⊂ Rn+1. Then there exists a constant c > 0 such that whenever (x0, t0) ∈
Ω is such that B4r(x0)× (t0 − (4r)2, t0 + (4r)2) ⊂ Ω, we have

inf
x∈Br(x0)

h(x, t0 + r2) ≥ ch(x0, t0).

Proof. Using the change of variables

x→ x− x0

r
, t→ t− t0

r2
,

and replacing h by h/h(0, 0), we may assume that (x0, t0) = (0, 0), r = 1 and
h(0, 0) = 1. For s ∈ (0, 1), let Qs = Bs(0)× (−s2, 0) and

Ms = sup
x∈Qs

h(x), Ns =
1

(1− s)β
,

where β > 1 is chosen later. Since h is continuous in Q1, the equation Ms = Ns

has a well-defined largest root s0 ∈ [0, 1), and there exists (x̂, t̂) ∈ Qs0
such that

h(x̂, t̂) = (1− s0)−β .
Next let ρ = (1− s0)/2 > 0, and notice that since

Qρ(x̂, t̂) := Bρ(x̂)× (t̂− ρ2, t̂) ⊂ Q 1+s0
2
,

we have

sup
Qρ(x̂,t̂)

h ≤ sup
Q 1+s0

2

h ≤ N 1+s0
2

=
2β

(1− s0)β
.



20 PETRI JUUTINEN AND BERND KAWOHL

We now apply the interior Lipschitz estimate of Corollary 5.2 and conclude that
there exists C ≥ 1 such that for a.e. (x, t) ∈ Qρ/4(x̂, t̂)

|Dh(x, t)| ≤C
(

1 +
supQρ(x̂,t̂) h

dist((x, t), ∂pQρ(x̂, t̂))

)
≤ C

(
1 +

2β(1− s0)−β

( 3
4ρ)

2

)
≤ 9 · 2βC

(1− s0)β+2
.

Hence

h(x, t̂) ≥h(x̂, t̂)− sup
Q ρ

4
(x̂,t̂)

|Dh(x, t)||x− x̂| ≥ 1
(1− s0)β

− 9 · 2βC

(1− s0)β+2
|x− x̂|

≥ 1
2(1− s0)β

=
1
2
h(x̂, t̂)

for all x ∈ Bρ/4(x̂) such that |x− x̂| < (1−s0)
2

18·2βC
.

In the last step of the proof, we expand the set of positivity by using a comparison
function

Ψ(x, t) =
MR4

((t− t̂) +R2)2

(
4− |x− x̂|2

(t− t̂) +R2

)2

+

,

where M = 1
2(1−s0)β and R = (1−s0)

2

36·2βC
. A straightforward computation as in [13],

Lemma 13.1 shows that Ψ is a viscosity subsolution of (1.1) in Rn × (t̂,∞); here
Lemma 3.2 can be used to take care of the critical points. Moreover,

h(x, t̂) ≥M ≥ 1
16

Ψ(x, t̂) in B2R(x̂),

and

h(x, t) ≥ 0 = Ψ(x, t) if |x− x̂| ≥ 2
√
R2 + (t− t̂).

Therefore the comparison principle implies that h ≥ 1
16Ψ in B4(0) × (t̂, 4). In

particular, in order to complete the proof, it suffices to show that Ψ(x, 1) ≥ c > 0
for all x ∈ B1(0). To this end, we first note that since for such x

|x− x̂|2 ≤ (1 + s0)2 = (2− (1− s0))2,

and 1 ≤ (1− t̂) ≤ 2, R ≤ 1, we have

4− |x− x̂|2

(1− t̂) +R2
≥ 4 + 4γ2(1− s0)4 − (2− (1− s0))2

(1− t̂) +R2
≥ 1− s0,

where we have denoted γ = (36 · 2βC)−1. Consequently,

Ψ(x, 1) ≥ 1
2(1− s0)β

γ4(1− s0)8

((1− t̂) +R2)2
(1− s0)2 ≥

γ4

18
(1− s0)10−β ,

and hence, by choosing β = 10, we obtain

Ψ(x, 1) ≥ 1
18 · (36 · 210C)4

> 0,

where C ≥ 1 is the constant from Corollary 5.2. �

Remark 6.2. We do not know whether the estimate obtained in Theorem 6.1
remains valid for continuous nonnegative viscosity supersolutions of (1.1). The
only place where we used the fact that h is a solution was when we applied the
interior Lipschitz estimate of Corollary 5.2. In the elliptic case, i.e. for the equation
−∆∞u = 0, it is known that a Harnack inequality holds also for nonnegative
supersolutions, see e.g. [3].
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7. Characterization of subsolutions á la Crandall

In the case of the stationary version of (1.1), a large number of estimates for the
sub- and supersolutions can be derived from the fact that these sets of functions are
characterized via a comparison property that involves a special class of solutions,
cone functions, see [8], [3]. This kind of a characterization of subsolutions is known
also for the Laplace equation [11] and the ordinary heat equation [10], [26], and
in these cases the set of comparison functions is formed by using the fundamental
solutions of these equations.

In this section, we prove an analogous result for the subsolutions of (1.1). To
this end, let us denote

Γ(x, t) =
1√
t
e−

|x|2
4t , t > 0,

and recall that Γ is a viscosity solution to (1.1) in Rn × (0,∞). We say that a
function u satisfies the parabolic comparison principle with respect to the functions

W (x, t) = Wx0,t0(x, t) = −Γ(x− x0, t− t0), (x0, t0) ∈ Rn+1,

in Ω ⊂ Rn+1 if it holds that whenever Q = Br(x̂)× (t̂−r2, t̂) ⊂⊂ Ω and t0 < t̂−r2,
we have

sup
Q

(u−Wx0,t0) = sup
∂pQ

(u−Wx0,t0).

Note that this is equivalent to the condition

u ≤Wx0,t0 + c on ∂pQ implies u ≤Wx0,t0 + c in Q,

where c ∈ R is a constant.

Theorem 7.1. An upper semicontinuous function u : Ω → R is a viscosity subso-
lution of (1.1) in Ω if and only if u satisfies the parabolic comparison principle with
respect to the functions

W (x, t) = Wx0,t0(x, t) = −Γ(x− x0, t− t0),

where t > t0 and x0 ∈ Rn.

Proof. Since Wx0,t0 is a solution of (1.1) in Rn × (t0,∞), the necessity of the com-
parison condition follows from Theorem 3.1.

For the converse, suppose that u satisfies the parabolic comparison principle with
respect to all the functionsWx0,t0 , but u is not a viscosity subsolution of (1.1). Then
we may assume, using Lemma 3.2 and the translation invariance of the equation,
that there exists ϕ ∈ C2(Rn+1) such that u− ϕ has a local maximum at (0, 0),

a = ϕt(0, 0), q = Dϕ(0, 0), X = D2ϕ(0, 0),

and

(7.1)

{
a > (Xq̂) · q̂, if q 6= 0,
a > 0 and X = 0, if q = 0,

where q̂ = q/|q|. We want show that there exist t0 < 0 and x0 ∈ Rn such that

∂

∂t
Wx0,t0(0, 0) < a, DWx0,t0(0, 0) = q and

D2Wx0,t0(0, 0) > X.
(7.2)

Indeed, if we can find x0, t0 such that (7.2) holds, then by Taylor’s theorem it follows
that the origin is the unique maximum point of u−Wx0,t0 over Bδ(0)× (−δ2, 0] for
δ > 0 small enough. Thus u fails to satisfy the parabolic comparison principle with
respect to the family Wx0,t0 , and we obtain a contradiction.
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By computing the derivatives of Wx0,t0 we see that (7.2) amounts to finding
x0, t0 such that

(I) a >

(
1
2

+
|x0|2

4t0

)
(−t0)−3/2e

|x0|
2

4t0 ,

(II) q = −x0

2
(−t0)−3/2e

|x0|
2

4t0 ,

(III) X <

(
1
2
I +

1
4t0

x0 ⊗ x0

)
(−t0)−3/2e

|x0|
2

4t0 .

(7.3)

We consider separately the cases q = 0 and q 6= 0.
Case 1: q = 0. In this case, condition (II) is clearly satisfied if we choose x0 = 0,

and then the two remaining conditions can be written as

(7.4) 0 <
1
2
(−t0)3/2 < a;

recall that by Lemma 3.2, we were able to assume that X = 0. Because a > 0 by
(7.1), there exists t0 < 0 so that (7.4) holds.

Case 2: q 6= 0. Note that (II) implies x0 = rq for some r < 0. Let us denote

τ =
1
2
(−t0)−3/2e

|x0|
2

4t0 , σ = −|x0|2

2t0
.

Then τ > 0, σ > 0, and (I)-(III) can be rewritten as

(I) a > τ(1− σ),

(II) q = −τx0,

(III) X < τ

(
I +

1
2t0

x0 ⊗ x0

)
= τ (I − σx̂0 ⊗ x̂0) ,

where x̂0 = x0/|x0|. We simplify things further by noting that r = − 1
τ . Then the

conditions above reduce to
(I) σ > ra+ 1,

(II) x0 = rq,

(III) I + rX > σq̂ ⊗ q̂.

In order to investigate (III), we write a vector p ∈ Rn in the form p = αq̂ + q⊥,
where α ∈ R and q̂ · q⊥ = 0. Then, for any 0 < ε < 1,

(I + rX)p · p− σ(q̂ ⊗ q̂)p · p = α2 (1 + rXq̂ · q̂ − σ) + |q⊥|2

+ r
(
2αXq̂ · q⊥ +Xq⊥ · q⊥

)
≥ α2

(
1 + rXq̂ · q̂ − σ + εr‖X‖2

)
+

(
1 + r‖X‖+

1
ε
r

)
|q⊥|2.

(7.5)

We choose first ε > 0 so small that

Xq̂ · q̂ + ε‖X‖2 < a;

here we used (7.1). Next we choose r < 0 so that

1 + r‖X‖+
1
ε
r > 0 and Xq̂ · q̂ + ε‖X‖2 < −1

r

and then σ > 0 so that

Xq̂ · q̂ + ε‖X‖2 < σ − 1
r

< a;
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note that since Xq̂ · q̂+ε‖X‖2 < − 1
r , we can take σ to be positive. By these choices

we have {
1 + rXq̂ · q̂ − σ + εr‖X‖2 > 0,
1 + r‖X‖+ 1

εr > 0,

and hence I + rX > σq̂ ⊗ q̂ by (7.5), i.e., (III) holds. Also, by the choice of σ, we
have σ > 1 + ra, i.e., (I) holds.

Finally, we notice that by choosing r and σ we actually chose x0 and t0 as well.
First recall that x0 = rq, and thus x0 is determined by r and the function ϕ. Also,
since σ and x0 are now known and σ = − |x0|2

2t0
, the point t0 < 0 has been determined

as well. �

Remark 7.2. The main difference between Theorem 7.1 and the corresponding
results for the heat equation is that above the comparison functions are single
translates of the ”fundamental solution”Γ, whereas in the case of the heat equation
one has to take linear combinations of at least n copies of the heat kernel with
different poles (see [10], [26] for details). The same is true also for the elliptic
counterparts of these equations, see [11]. Note that if n = 1, then our result
slightly improves the one obtained in [10].

The proof of Theorem 7.1 is to a great extent an adaptation of the arguments
in [11] and [10] to our situation. In [10], the authors obtained a similar type of
characterization for the subsolutions of the equation

vt(x, t) =
(
D2v(x, t)Dv(x, t)

)
·Dv(x, t),

which is another parabolic version of the infinity Laplace equation.
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