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Convexity and starshapedness of level sets for some
nonlinear parabolic problems

by
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Abstract. We consider some degenerate parabolic problems on a convex (or
starshaped) ring and investigate the convexity (and starshapedness) of level sets
of solutions. Our results imply in particular the convexity (or starshapedness) of
certain free boundaries in space and time. Other nonlinear parabolic problems are
also discussed. '

AMS Classification: 35K20, 35K55, 35R35, 35B99

§1. Introduction

In this paper we study some qualitative properties of the level sets of cer-
tain nonlinear parabolic problems. We show that some qualitative properties
of the initial data uo(z), namely convexity and starshapedness of the level sets
{z € Q|uo(z) > ¢} are preserved for all positive times. Both properties have been
extensively studied in the last years for elliptic equations, but for parabolic pro-
blems only few results of this type seem to be mentioned in the literature. We
shall comment on these at the end of this introduction.

Let § be a bounded, open, simply connected subset of IR™ with smooth boun-
dary 89Q, and let G C {1 be a compact, simply connected set with smooth boundary
AG. Consider the following nonlinear degenerate diffusion problem (P) in a ring
domain 2\ G.

u — Apu+ f(u) =0 in (0,00) x (82 \ G), (1.1)

p u=1 on (0,00) x G, (1.2)
(P) u=0 . on (0, c0) x 011, (1.3)
u(0, z) = uo(z) in 0, (1.4)

where
Ayu = div(|Vulf~2Vu) and p > 1.

Notice that problem (P) is really a boundary value problem on (0,00)x (€2
G) with constant boundary values on the interior boundary, and that for p =
2 the pseudo-Laplace operator A, becomes the Laplace operator. Problems of
this type are related to the study of non-Newtonian fluids (see Diaz and Herrero
[21]). Throughout the paper we shall assume that f is the sum of a monotone
nondecreasing (or maximal monotone) map, and a Lipschitz continuous map, and
that f(s) > 0 for s > 0. Moreover the initial condition (1.4) and boundary
condition (1.2) should be compatible in the sense that ug(z) =1 on G, and ug =0
on 0. '

The term f(u) describes absorption phenomena and is of particular interest in
the study of chemical catalysts. Aris [2] gives. f(u) = u? as a typical example for
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a reaction of order q. If ¢ < p — 1 the absorption dominates the diffusion and the -
solution u can be zero in a subset of {1\ G; this set is then called the dead core.
Existence, uniqueness and regularity results for problem (P) as well as for more
‘general problems have been provided by many authors. We refer for instance to
Alt-Luckhaus [1] and its references.

The main objective of this paper is to prove that for every fixed t > O the level
sets Qe(t) == {z € Q|u(t, z) > ¢} are convex, provided they are convex for £ = 0.

As a preliminary step we first establish the starshapedness of these level sets in
Section 2. Notice that the p-Laplacian operator is degenerate where |Vu| = 0 and
p # 2. We shall in fact prove under natural assumptions on uo and f that z-Vu < 0
n (0,T) x (@ \ G). For p = 2 the proof of this result is easy. For p # 2, however,
the arguments are quite involved and make use of suitable barrier functions which
were inspired by the work of Lewis [37]. Incidentally, starshapedness of level sets
implies Lipschitz continuity of their boundaries. In particular, if there are free
boundaries, they have to be Lipschitz continuous. One can also look at level sets
0, = {(t,z) € (0,00) X Q|u(t,z) > c} in space and time and investigate their
starshapedness. This is also done in Section 2, see Remark 1 and Proposition 1.

In Section 3 we study the convexity of level sets. A nonnegative continuous
function w on a convex set C has convex level sets {z € Clw(z) > ¢,c € IR} if
and only if

w((z + 22)/2) > min{w(z1),w(zz)} in C xC.

In this case w is called quasiconcave. Notice that concavity implies quasiconca- .
vity, but quasiconcavity does not imply concavity. In fact there are strictly convex
functions which are quasiconcave. There are two ways of defining the convex set C
in our context. Either we interpret (0, 00) x {2 as a convex set C and then attempt
to show that the quasiconcavity function

Q(t,t2,%1,T2) = u((t +12)/2,(z1 + r2)/2) — min{u(t;, 1), u(ta, z2)}

is nonnegative for any pair (t1,%1), (t2,z2) of points in (0, 00) x Q. This would
imply the convexity of the level sets {1, in space and time. Or we fix a positive
t and try to prove the convexity of level sets .(t) in space only. In this case
C = {t} x  and one would have to show that the quasiconcavity function

Qs (z1,72) = u(t, (21 + 2)/2) — min{u(t, z1), u(t, 72)}

is nonnegative for any fixed ¢ > 0 and any pair 7,79 of points in (1.

This approach has its origin in work of Gabriel [27] on the convexity of level
sets of harmonic functions. Some variants of it have been used in the stationary
setting by several authors: Lewis [37] considered p-harmonic functions on convex
rings, Caffarelli and Spruck [14] as well as Kawohl [30] treated the case p =2, f
and f’ nonnegative, and in [31] the case p # 2, f and f' nonnegative was discussed
under a nondegeneracy assumption. For parabolic problems on “convex rings” we
are aware only of the results of Borell [9]. He studied the specialcasep =2, f=0 .
and uo = 0 in 2\ G, and we shall generalize it to f and f' nonnegative. The case
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of nontrivial uo or p # 2 can also be handled under some technical assumptions
which seem to be hard to verify. We shall comment on those difficulties and on
the problems connected with proving that Q; is nonnegative.

Our methods of proof also apply to some other nonlinear parabolic problems.
" The results on starshapedness remain valid for interior obstacle problems or for
(1.1) replaced by

us — A($(u)) + flu) =0 - (1.5) -

with ¢ monotone nondecreasing. If in addition ¢ is concave, such as in fast diffusion
problems, we also prove convexity of level sets. In fact, since (1.5) includes equation
(1.1) for p = 2, our exposition in Section 3 will first exhibit the results for problem
(P4), i.e. Problem (P) with (1.5) instead of (1.1), and then for problem (P).

To conclude the introduction let us briefly make some bibliographical remarks.
Friedman and Kinderlehrer proved starshapedness of the free boundary for the
Stefan problem [25]. This is a special case of equation (1.5) with ¢(s) = k(s —a)™
and k and a positive. In [10] Brascamp and Lieb showed that the linear heat
equation under Dirichlet boundary conditions (on an interior convex domain Q)
preserves log-concavity of the initial data. Therefore v = —logu is a convex
function of z for any fixed £ > O ,provided fis is true for t = 0. It is easy to
see that log-concavity is stronger than quasiconcavity and weaker than concavity.
Using a Trotter-Kato product formula P.L. Lions [38] extended their results to
positive solutions of semilinear equations

us — Au+ f(u) =0 in (0,00) x

with f satisfying f"(s)s — f'(s)s + f(s) > 0 for s 2 0, and with convex (1 and
vanishing Dirichlet data. Korevaar gave a different and more general proof of this
result in [35] by introducing a concavity function. A slight extension of his result
on parabolic equations is remarked in [33].

The problems which were treated by Caffarell and Friedman [13], Kawohl [33]
and Friedman and Phillips [26] are interior problems and require totally different
methods than the ones presented here.

§2. Starshapedness of level sets

A set D C IR™ is called starshaped with respect to 2 e Diffforany z € D
the line segment {y = Az + (1 —A)z,0 < A <1} is contained in D. For brevity of
notation we call a set starshaped iff it is starshaped with respect to the origin.

Theorem 1. Let G CC Q and G and Q be starshaped. Let p > 1 and let f be
the sum of a continuous nondecreasing and a Lipschitz-continuous function and
suppose that f(s) >0 fors > 0. Let up € W1?(Q1\ G) be given and suppose

0<uy <1 in{l, w=l on G, (2.1)
the level sets of ug are starshaped , (2.2)
Apug — fuo) 20 in D'(QN\G). (2.3)
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If u € C((0, 00) : L®(0)) N L®((0, 00) : WhP(Q)) is the solution of problem (P),
then we have .
z-Vu(t,z) <0 forae.t>0 andzeQ. (2.4)

Moreover, if u € C((0,00) x 1), then the level sets {z € Qlu(t,z) > c} of u(t,") '7
are starshaped for every t > 0.

Proof.

The existence and uniqueness of a weak solution (in C((0,0): L*(2)) N
L>((0,00) : WHP(0)) is a well known result (see for instance Alt-Luckhaus [1]).
The continuity of u can be shown for increasing J and continuous uy by accreti-
- veness on the space X = C(Q2), see Diaz [19]. More general results on regularity
are given in Di Benedetto and Friedman [23] and Wiegner [43]. The maximum
principle holds for (P), since for instance, the realization on L'Y(Q\ G) of the ope-
rator Au = —Apu + f(u) is T-accretive [19], and so we conclude that 0 < u < 1
in (0,00) x Q. Without loss of generality we may assume the initial data to be
smooth. In that case u; > 0 a.e. in (0,00) x £, see [16]. Indeed other wise we
approach ug by a sequence uo,, satisfying (2.1)(2.2)(2.3). If each of the associated
solutions u, has starshaped level sets, then '

Su(t, z,8) = un(t, s2) —un(t,z) >0  fort > 0,5 €0, 1] and a.e. z € (.
Thus in the limit
S(t,z,8) = u(t,sz) — ult,z) > 0 fort>0,s€]0,1] and a.e. z € .

To derive (2.4) we define v(t, z) := u(t, sz) for a fixed s € [0,1], and (2 \ G), :=
{z € 0\ Glsz € 1\ G}. Notice that

v(0, z) > u(0, z) in (2\ G), (2.6)

and

v(t, z) > u(t, z) on (0,00) x (2 \ G), 2.7
hold. On the other hand we have

v —Bpu+ fv)=§ i D'((0,00) x (2 G),) (2.8)

with
9(t, ) = we(t, sz) — sPApu(t, sz) + f(u(t, sz)) (2.9)

and so § > 0 on (0, 0) X (Q\G),. Another application of the parabolic comparison
principle yields v(¢,z) > u(t, z) for any ¢ > 0 and a.e. z € Q, as desired.
Remark 1.

In the proof of Theorem 1 we have derived up > 0aswellasz-Vu < 0in
(0,T) x (2\ G). Thus the level sets {(¢,z) € (0, T) x Q|u(t, z) > c} are starshaped
with respect to the point (T,0) € IR x IR™ in space and time for any T > 0.
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Remark 2.
Problem (P) can give rise to free boundaries such as

F(t) = 0{z € Qu(t,z) > 0} N (2\ G).

" The occurrence of such a free boundary can be caused by the degeneracy of the
equation (for p > 2 and general f ) or by sufficiently strong absorption, e.g. f(s) =
|s|*"tsand (p-1)>¢>0. Results on the existence of such free boundaries have
been obtained by many different authors. We refer to the expository paper [18]
by Diaz and its references. .

Notice that solutions of problem (P) can (for p > 2) have the property that
- they are constant and nonzero on sets of positive measure. The boundaries of
such sets can be again considered as free boundaries. For an elliptic version of this
phenomenon see Diaz {19, p.41].

. In any case it is of interest to study the regularity of the free boundary. Accor-
ding to the above theorem those free boundaries are starshaped with respect to
the origin. From this property we may deduce that F(t) is Lipschitz continuous
in space and that 7 = |J F(t) is locally Lipschitz continuous in space and time.

t>0
Corollary 1.
Assume the hypotheses of Theorem 1 as well as condition (2.10):

and G are starshaped with respect to an open (2.10) .

The interior of G contains the origin, and {1 }
‘neighborhood of the origin.

Then for each t > O the free boundary F(t) is Lipschitz continuous in z, and
7= 7(t) is locally Lipschitz continuous in (¢, z). '

. >0 :

Proof.

By Theorem 1 any ray originating in (t,z°) with z° € B5(0) C IR" and 0 < 6
intersects F(t) at most once, provided § is sufficiently small. If one varies 20 in
Bs(0) one finds that F(t) cannot lie inside certain cones with vertex in 7(t), and
hence 7(t) is Lipschitz continuous. To prove the analogous result for 7 one has
" to recall Remark 1 and apply the cone type argument in (0,T) x IR™ with T
sufficiently large.® '

~ Tn the next section on convexity we shall require that the spatial gradient of u
is nonzero in (0,00) X{(€\ G). This is not difficult to show for p = 2, and a simple
proof is included in Proposition 1 below. For general p > 1 we shall now derive
the strict inequality z - Vu(t, z) < 0 under suitable assumptions. We shall use the
following barrier function v(z) defined by

fafz— e 1B, dpEn, |
v(z) .-{ aloglz — 2|+ B, oo “ (2.11)

forz € Bg(z) \ B5/2(z), v(z) := 1 on Bs2(2), v(z) == 0on IR™ \ B{;(Z), '
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where z will be chosen Jater, and

. (2(m-p)/(p -1y 1)—].6(71.——1')/(;;———1)’ i p # n
o = _ —1 - . _'
(log2)~*, . fp=mn.

a.lid

Py—

[1—2W-P)E=0]1 ifptn.
log 6 /log2, fp=n.

It is a simple exercise to check that ~Apv = 0 in Bs(z) \ Bs/2(2), that v is
continuous and v € W'P(IR™). Moreover :

Vou(z)|Vu(z)|™ — (2 — zo)|z — zo|™! (2.12)

as £ — o # z in Bs(z), and

JR———

|[Vou(z)] > ¢c> 0 for z € Bs(2) \ 35/2(2) | (2.13)

Theorem 2. » A

Let u be the solution to problem (P) and in addition to the assumptions of
Theorem 1 suppose that the interior of G is not empty, and that G and Q) are
convex and satisfy the following uniform sphere condition.

There exists a 6 > 0 such that for any zo €
3G U 0N there is a z with 1o € Bs(z) and (2.14)
Bs(z) C \G. S

Moreover, we assume

feci(o,1), f'=0, f0)=r'(0)=0, (2.15) -
uo € CH{I\G) and z-Vup(z) <0 in Q\G, (2.16)
~and
uo(z) > ev(z) for some € >0 and for d(z, o0)<é (2.17)

Then the solution u € C((0,00) x ) of problem (P) satisfies the nondegeneracy -
condition S
z-Vu(t,z) <0 in (0,00) x (Q\G).

Proof.

We shall adopt some ideas from Lewis [37], who considered the stationary pro-
blem with vanishing f. First we obtain some estimates on the growth of u(t,sz)
with respect to s, when z € 00 U dG. Then we shall estimate from above the
function u(t, sz) — u(t, ) when s decreases to one. This will give us the result.

Without loss of of generality we can restrict the proof to any finite time t < T,
say.



Let K = {z € Q\G|d(z,8QUG > §/2}. Because of the choice of ug (0<up <1
on {1\ G) and f, there is a constant A >0 such that '

min{1 — u(t, z),u(t,z)} > A forz € K,t€[0,T]. (2.18)

Moreover, from the continuity of u, A decreases to zero as § goes to zero. Given
o € 000U G we choose z according to (2.14) and consider v(z).
From the convexity of {2 and G and (2.13) we see that

I(z — zo) - Zo| > 7|2 ~ zol|Zo],

where 7 > 0 is independent of zo and 2. Then, if zo € dG we have that szo E
B(z,6)\ B(z,8/2) for 1 < s < so and suitable so, and

v(szo) > 27 (s — 1)e|zo] > pfs — 1) (2.19) |
Similarly, if zo € 89, then s”'zq € B(2,8) \ B(2,6/2) and |
o(z0/s) > pls — 1] for 1 < s < so. (2.20)

Notice that so and g can be chosen independent of zo € N uUaG.
If , € 3G, it is clear from (2.18) that

u(t,z) < 1— Av(z), for z € d(B(z,6)\ B(z,6/2)),t € (0, T]l,

while —Apu = —uy — f(u) <0in @7 :=(0,T) x (Q\ G). Then by the comparison
principle we have

u(t,z) < 1— Av(z) for z € B(2,6)\ B(2,6/2) andte (0, T} (2.21)
If o, € 00 we consider the test function u(t,z) = Av(z) — Cit with C; >0to
‘be chosen later. On 8(B(z,6) \ B(z,6/2)) % (0,T) we have u > v. On the other

" hand, due to (2.17) we may suppose without loss of generality that uo(z) > Av(z)
on B(z,6)\ B(z,6/2). Finally

v, — Apu + f(v) = —C1 + f(Av — Cit) < Cy + f(4) <0,
if we choose now C; = f(A). Then again by the comparison principle
Av(z) — f(A) < ult, a:) for z € B(z,6)\ B(z,6/2) | and t € (0,T] (2.22)
Now we may conclude from (2.21) and (2.19) that, if zo € 9G
1 —u(t,szo) > Ap(s —1) for 1 <s < s (2.23) ‘»
and analogously, if zo € 8%, from (2.22) and (2.20) |
u(t, 30/5) > Av(z0/s) — FA) > Au(s — 1) — F(A) (224)
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Sinee f1(0) 0 we nay asmime Ao be small énuugh go that f(A)/A < ul(s-1)/2T
and then (2.24) leads to :

A . .
u(t, zo/s) > —2~p(s —1) for1< s< so. ' (2.25)

Next fix 1 < s < 50 and let O, = {y € ley € Q} Set w(t, z) := u(t, sz). Then

wy — Ayw + f(w) =0 in (0,T) x (92, \ G),
w <1 on (0,T) X G,
w =0 on (0,T) x 91,
w(0, z) =uo(sz)on (.
We want to estimate u(t,sz) — u(t,z) from above, i.e. we want to show that
there is a positive function ¢ depending on ¢ (and s) such that w(t, z) = w(t, z) +
P(t) < ult,z) on (0,T) x (s \ G). The following considerations are aimed at the

construction of 4. On (0,T) x 8G and (0,T) x 3(l, we may use (2.23) and (2.25)
to conclude that w < u on (0,T) x 8(€2, \ G), provided

Y(t) < %p(s —1) foranytel0,T]. (2.26)

Since- w < u should hold on the parabolic boundary of (0,T) x (s \ G) we
set w = min{|zVuo(z)| |z € 2\ G}, then uo(sz) — uo(z) < w(s—1) and w(0,z) <
uo(z) in Q, \ G is implied by the condition '

$(0) < w(s — 1). (2.27)
This is how v depends on s. Finally
w, — Dpw + f(w) = f(w) + flw+ () +¥'(t) <0,
if 9 satisfies
W(t) < —Hy(t), with H =maz{f'(§)I¢ € [0,1] (2.28)

In fact — H4(t) < min{f(w) — flw + (t))|w € [0,1]}, and condition (2.28) holds
by taking 9(t) = cexp{—H¢t} for any ¢ > 0. Conditions (2.26) and (2.27) are
satisfied by choosing ¢ = (s — 1) min{£u,w}. Then, by the comparison principles

" we conclude that w < uw on (0,T) x (€ \ G), i.e. that

u(t, sz) — u(t,z) < —(s — 1)e H? min{%u,w} <v(s—1)
fort € (0,T),z €, \ G, and consequently
z - Vu(t,z) < ll_x;rll(u(t, sz) — u(t, z))(s — 1)~ <y
as desired. This completes the proof of Theorem 2.

9



Remark 3.
Several generalizations are possible:
For instance we can replace the interior boundary condition (1.2) by

u(t,z) = w(t) on (0,00) X G,

with w € W“(O,oo); w>0,w >0,0<u <w(0)inQ, and up = we(0) on G.~ .

loc
Then the conclusions of Theorems 1 and 2 remain true.

Or we can let G shrink to a point {0} and obtain starshapedness of level sets
for solutions which are singular at the origin.

In the remainder of this section we shall derive starshapedness results for two
other nonlinear parabolic problems. The first one describes another kind of non--
linear diffusion phenomena.

Let (2 and G be as in Problem (P) and let ¢ be a continuous nondecreasing
~(or even maximal monotone) mapping with ¢(0) = 0. Let f be the sum of a
" monotone nondecreasing or maximal monotone map and a Lipschitz-continuous
map, and suppose that f(s) > 0 for every s > 0. Consider the problem (Pg)

in (0,00) X (2\ G) (1.5),
on (0,00) x G (2.29),

n (0,00) x Q2 (2.30),
on . (1.4).

It is tacitly understood that ug is compatible with the boundary conditions; i.e.
#(ug) = 1 on &, ¢(ug) = 0 on 011.

An important special case of problem (Pg) is f = 0 and ¢(s) = |s|™'s with
m > 0. The case m > 1 appears in the modelling of porous media flow, m =1
corresponds to the linear heat equation and 0 < m < 1 is related to some problems.
of fast diffusion in plasma physics. Another special case is ¢(s) = k(s — a)* for
some positive numbers k and a. It models the one-phase Stefan problem. As for
the problems of existence, uniqueness and regularity we refer to (1, 8,6, 24] and to
their bibliographies.

Theorem 3.
Let G CC Q, and let G and Q be starshaped. Let uy € L*(§2) be given with
~ ¢(uo) € HY(2\ G) and suppose

0< ¢(ug) <1 aein(, (2.31)
the level sets of ug are starshaped , (2.32)
Ad(uo) - flio) 20 in D'(Q\G) (2.33)

If u € C((0,00) : L*(£2)) is the solution of problem (Pg),then
u(t,sz) > u(t,z) foranyt>0 anda.e. z€(l
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Moreover, if u ¢ C((0,00) » Q), then the level sets {z € Qlu(z, t) > ¢} are
starshaped for every t > 0. '
. Proof. v ,

The existence and uniqueness of a weak solution follows e.g. from abstract
semigroup theory as in Benilan [6] or by easy modifications of well-known results
such as the ones of Alt and Luckhaus [1]. Under suitable assumptions on fy @
and u, one knows that u € C((0,00) x (), see e.g. Di Benedetto [22]. By the -
maximum principle we know that

0 < ¢(u(t,z)) <1 in (0,00) x Q.
As a consequence of (2.33) we have
ug >0 in D'((0,00) x Q).

This can be shown after approximating the data and applying the maximum prin-
ciple to the approximate solutions, or by abstract monotonicity arguments, see
e.g. Damlamian [16]. To complete the proof, we define v(t, z) := u(t,sz) for a

fixed s € [0,1] and (2\ G), := {z € Q\G|sz € Q\ G}. Now we observe that (2.6)
and (2.7) hold, and that '

v — A(v) + f(v) = §(t,3) in D'((0,00) x (R\ G)s),
with
G(t, ) = ue(t, sz) — s Ad(ult, sz)) + f(u(t, sz)) a.e. in (0,00) x (2\ G)s),

The remainder of the proof is identical to the one of Theorem 1. Notice, however,
that one has to justify the applicability of the comparison principle via a regula-
rization. Since this is more or less standard, we omit the details and refer to Diaz

(17, Lemma 1].8

In order to derive convexity of level sets for problem (Pg) we shall need the
following stronger result on radial derivatives of smooth solutions.

Proposition 1.

Let u be the solution to Problem (Py), and in addition to the assumptions of
Theorem 3 suppose that ug and ¢ are of class C? and f is of class C !, Furthermore
suppose that ¢’ is bounded below by a positive constant. Then for any T >0

2 V(ult,z)) <0 i (0,T) x (2\G). (2.342)
If in addition u,(z) = 0 in @\ G, then
t-(d(ult, ) +z- Vo(u(z,t)) <0 in (0,T) x (@ \ G). (2.34b)
Proof.
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As in the proof of Theorem 3 we know that uy > 0. Let v = ¢(u). Then

Y'(v)oe — Av+ f($(v)) =0
where ¥ = ¢—!. Next we consider w(t,z) = = - Vu(t, z) and calculate

Aw =z V(Av) + 2Av
C =(z- V) (v) + (- V)[BT (W) + S ()Y )]+
+ 29" (v)ve + 2f($(v)) '
>a(t, t)w + b(t, 7)w,

where @ and b are in L®(0,T) x (2 \ G) and a is bounded below by a positive
constant. Since z- Vv < 0 on the parabolic boundary of (0,T) x (€2 \ G), the
conclusion (2.34a) follows from the strong maximum principle. To prove (2.34b) we
note that (tve)e = v + tse, and, using the notation z(t, ) = tu (¢, z) + z- Vou(t, z),
we obtain a similar differential inequality for 2 as for w.li )

Remark 4.

It is well known that the solution u of (P,) can have a free boundary which is
defined by 7(t) = 8{z € QJu(t, z) > 0} N (2 \ G). Again the occurrence of such a
free boundary can be caused by the degeneracy of the equation, i.e. if ¢'(0) =0

and if ¢ satisfies
1
!
/ #(s) ds < oo,
0

S

or by sufficiently strong absorption such as f(s) = |s|9~ s for ¢(s) = |s|™!s with
m > q > 0. We refer to [17,20] for details. .

Corollary 1 as well as Remarks 2 and 3 remain valid for Problem (P4). Thus we
recover the result of Friedman and Kinderlehrer [25] on the Stefan problem. Recent
results for the porous medium equation (¢(u) = »™ with m > 1) on (0,T) x IR™
are due to Caffarelli, Vazquez and Wolanski{15] and to Bardi [5]. They prove the
starshapedness of the support of u(t,-) as a preliminary step to other qualitative
results. Notice that our theorems do not apply to their Cauchy problems.

Problems (P) and (Pg) can be interpreted as interior obstacle problems in {}
with the following obstacle.

if G
(=) = xo(7) = {; i pea

The coincidence set {z € Q|u(z,t) = ¥(z)} always contains G, but can also contain
regions near 0€1. Such is the case when a dead core occurs.

Therefore it seems natural to extend our results to more general obstacles ¢(z). |
To simplify our exposition we shall restrict ourselves to a linear (but inhomoge-
neous) differential equation. ‘

12



Jor the remainder of this section let {1 be a bounded open set of IR™ with
smooth boundary 9. Let ¥ € H'() be a ”stationary obstacle® with ¥ < 0 on
8Q). Consider the so-called obstacle problem (Py):

w — Au > g(t, z),u >¢, (v — Au—g)(u —9) =0 ae. in (0,T) x (,
(Py) u =0 on (0,T) x 842,
| u(0, z) =uo(z) ‘ in Q.

Here ug(z) and g(t, z) are given functions and u is unknown. Different notions of
weak solutions to this problem can be introduced, all of them being in fact regular
solutions under additional assumptions on the data 9, g and u (see e.g. Brezis [11]
and Friedman [24]).

Theorem 4.
Let ¢ € H'(Q) have the properties ¢ < 0 on 81}, Yt (z) := max{¥(z),0} £ 0
in Q and (2.35).
For every ¢ > 0 the set {z € Q|y(z) > c}-is starshaped (2.35)
Let uo € H*(Q) be given and satisfy

t(z) =~ ae infl, (2.36)
0 a.e. in Q. (2.37)

Y
<.

uo(z)

z - Vug(z)

A

Let g € WH1((0,T) : L?(€)) be given and satisfy

z-Vg(t, z)+2g(t,z) <0  in D'(Qr), (2.38)
g >0 a.e. in Qr, (2.39)
Aug +g(0,z) >0 in D'(€1). (2.40)

Ifu e C([0,T) : L2(Q))NL*((0, T) : H () is the solution of the obstacle problem,
then for every t € [0,T] we have z - Vu(t,z) < 0 ae. z € (. Moreover, if
w € C([0,T] x Q), then the level sets {z € Q|u(z,t) > c} are starshaped for every
te[o,T].

Proof. .

The existence and uniqueness of a solution v € C([0,T] : L*(Q)) can be esta-
blished by applying the results of Brezis [11], and its continuity is guaranteed if
v e Cchi(Q), g€ C*([0,T] x 1), and up € C*(f), see Friedman [24].

In fact without loss of generality it suffices to prove the theorem under additional
regularity assumptions on the data:

peCH Q) NEXQ), geC(0,T]x 2y nWh([o,T]: L*(Q)),

) _ (2.41)
and up € W2(0Q) nC*() N HL(Q).

13



Otherwise we approximate 3, g and uo' by regular functions ¥n, gn and %o, Which
satisfy the assumptions of Theorem 4 and argue as in Theorem 1 when it comes
_to passing to the limit. Under the given regularity assumptions we note that
u € CP(0,T) x ) and that us,, uss, and u; belong to Liy ((0,T) x (). We
claim

>0 ae in(0,T)x0. (2.42)

To prove (2.42) we apply the parabolic maximum principle to the function v = u;
on the noncoincidence set N = {(¢,z) € Qr|u(t,z) > ¢(z)}. By our assumptions
(essentially (2. 40)) we have v(t,z) > 0 on the parabolic boundary of N and v —
Av = g, > 0 in N. Therefore, using (2.39) and the maximum principle (2.42)
follows. Let us remark that (2.42) and (2.36) imply the nonnegativity of (2, z) in
0, T) x Q.

Now we consider the function w(t, :n) = z - Vu(t, z) and want to show

w(t,z) =z - Vu(t,z) <0  in Qr, . (2.43)
which implies the conclusion of Theorem 4. A simple computation shows
—Aw=-2u; +29+z-Vg<0 in N.

Here we have used (2.38) and (2.42). Moreover w < 0 on the parabolic boundary
of N because of (2.35), (2.37) and the fact that » > 0 in (0, T) x Q while u = 0 on
(0,T) x 8Q. Consequently w < 0 in N by the strong maximum principle. Thus
w < 0on (0,T) x 2 and the proof is complete. B

Notice that we have in fact shown a stronger result for regular data g,up and
(/M
Corollary 2.

Let 1, uq and g satisfy (2.35)-(2.41). Then for any t € (0, T) we have

z- V@(t, z) <0 a.e. in {z € Q|u(t,z) > Y(z)}.

Remark 5.

Sakaguchi has recently studied the shape of the coincidence set in the stationary
obstacle problem. For special obstacles 1(z), which are homogeneous polynomials,
he has been able to prove starshapedness of the coincidence set [40, 41]. In general,
however, one cannot expect to get such a result even for an arbitrary concave
obstacle.

§3. Convexity of level sets

Now we shall prove the convexity of level sets for problern (Pg) in convex rings.

u —Ad(u) + f(u) =0 in(0,00) x (2\G) (1.5),

p dlu) =1 on (0,00) X G (2.29),
(Fe) Hu)=0  on(0,00)x 30 (2.30),
u(0,z) = uo(z) on (1.4).

14



Let ns recall that we have to show that
Oy by, zg,m2) 0 uw((by 1 Ee)/2, (200 z2)/2) ~min{u(ty, zy), u(ly, 72)}
or cquivalently, that

Qt1,t2, 1, 72) = $(u((tr +12)/2, (71 + 2)/2)) — min{@(u(ts, 71)); ¢(U(t2,zz))}

is nonnegative for any pair (¢1,21), (t2,22) of points in (0, oo) x 1.

Theorem 5.
Let Q and G be convex with smooth boundaries. Let f be continuous and

nondecreasing with f(0) > 0. Let ¢ be increasing and concave and suppose
d(upg)=0in Q\ G, ¢(u)=1on G (3.1)

Then, if u € C((0,00) x Q) is the solution of Problem (Pg), it is quasiconcave in
z and ¢. :

Proof. .

Without loss of generality we may assume that ¢ and f are sufficiently regular
and ¢’ and f' are positive. If this is not the case we can approximate ¢ and f
by regular functions ¢, and f, which also satisfy the assumptions of Theorem 6.
If fa(s) — f(s) and ¢n(s) \. #(s) uniformly on compact sets, we conclude as in
Damlamian [16, Theorem 2.3], that u, — u weakly in W*2([0,T], H7YOQ\G))
and ép(un(t,-)) — ¢(u(t,-)) weakly in HY(Q\G). So we can choose a subsequence,
still denoted by un, such that ¢n(un(t,-)) — é(u(t,)) in L?(}) and pointwise for
ae. o in @ and every ¢t € [0,T], where T is arbitrarily large. Once we manage
to prove the theorem for regular data, we are done, because the quasiconcavity
functions

Qn(thtz,zl,zz) =

bl (am (b1 +12)/2, (31 + 72)/2)) = min (B (v (11, 20)) (02, 72)))

are all nonnegative and converge pointwise for every (t1,%2) € (0,T] x (0, T] and
a.e.(zy,72) € X 0 to the quasiconcavity function Q of ¢(u). Finally we can pass
with T to oo.

Thus it remains to prove Theorem 5 for regular data and under strict monoto-
nicity assumptions. But now the solution of problem (Pg) is classical again, see
[36]. ‘

Suppose that the quasiconcavity function Q of ¢(u) is not nonnegative. Then
Q approaches a global infimum in a pair of points z; = (t1,71) and 2o = (t2, T2)
with t;,f, nonnegative and finite and with 2,22 € Q. Otherwise, if £; — oo, then
(t; +t2)/2 — oo and, under abuse of notation, since u; > 0,

Q(t1,t2,%1,52) =
¢(u(co, (7 + £2)/2) — min{¢(u(oo, z1), ¢(u(tz,z2)} > Q(o0, 00, 71, T2).
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The last expression, though, is nonnegative, because u tends asymptotically to
the solution of the stationary problem [36a] and the latter one is quasiconcave, see
[32].  Therefore we may assume that there is a 7' > 0 such that Q approaches its
“global infimum in (¢;, %), (2, 22) and 0 < ¢,t3 < T. The following considerations
will show that |

ty, >0 and i >0. (3.2) .

In fact if ¢; and ¢ are zero, then Q cannot be negative because of (3.1). If {5 is
positive and ¢; = 0 and if z; € '\ G, then Q is again nonnegative.' Finally if
t, = 0 and z; € G we can use (2.34b) to conclude that inf Q> o0.

Next I will show that

T1,z2  and (31 +122)/2 € (Q\G) (3.3)

and
U(Zl) = U(Zg). (34)

Property (3.3) follows from the starshapedness of level sets. To prove (3.4) suppose
that u(z;) < u(z2). Then locally near 2,22 the quasiconcavity function @ of
v = ¢(u) would have the representation

Q(é1, &) = v((&1 + €2)/2) — v(é1),

and the spatial gradients of Q would have to vanish at the points z; and 23, i.e.
LVu((t; +12)/2,(z1 + £2)/2) = 0 = Vu(t1,21). This would contradict (2.34a).

We can now vary the points (z;,22) in time and space and deduce some useful
relations between derivatives of v = ¢(u) in z;,22 and (2; + 22)/2. Using the
notation Dv = (v, V) for the gradient in IR'*™ and A = |Dv((z1 + 22)/2)], B =
|Dv(z,)|, C = |Dv(2;)| one can derive the following lemma.

Lemma 1.
Under the above assumptions Dv(z,), Dv(z2) and Dv((z; + 22)/2) are all par-.
allel and point in the same direction. Moreover

Lt .
and
. . 1-p ]
yE A( ((t1 +12)/2), (21 + 22)/2)) 2 'B—QA(u(tl,Zl) gz Alultz; 22)), (3.6)

where p = C/(B + C) € (0,1).

The proof of this Lemma is fairly lengthy. It uses the implicit function theorem |
in IR'*™ and can be found in this form in papers of Gabriel [27], Lewis [37] and
Kawohl {30, 32]. 4
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Now we proceed with the proof of Theorem 5. We use v((z1 +22)/2) < v(zl) = - |
v(22), the monotonicity of ¢ and f and (3.5) as well as the differential equation

ug — Av+ f(u) =0

to arrive at ) L : v
Xz-ut((zl +Zz)/2) > —ggut(zl) -+ _C_Eliut(zz)' ' (37)

Because u; > 0 and because of (3.5) we have

L L (38)
vz + 22)/2)  2u(z1)  2u(z2) |
If ¢' is monotone decreasing, (i.e. ¢ is concave), then (3.8) implies
1 1 1
(3.9)

> + .
u((zy +22)/2) = 2u(z1)  2ue(22)
Now (3.7),(3.9) and the definition of give

0 i —
> B 'U,t(Zl) + C2 ut(ZZ) AQ(Zut(Zl) T 2u,t(zz))

1 1 [ 1 1 1 .1 1
- A(Zut(zl) +2ut(22)) [(Eggut(zl) + %Eut(zg))( 2us(21) * Zut(zz)) B —Xg} I

To complete the proof of Theorem 5 we have to show that [...] > 0, but

,(__Lut(zl) + —]—zut(ZQ))(ZUttZI) + 2ut1(22)) .

2B3 2C
> (%B—z/z + %0—3/2)2 > (A—s/z)z — A™3,

which is the desired contradiction. B -

Remark 6.

Theorem 5 applies to fast diffusion problems with ¢(s) = ™, 0 < m < 1.
Problems of this nature were introduced in Gurtin and MacCamy [29] to model
spatial spread of some biological populations. Notice that Theorem 5 does not
apply to the porous medium equation with ¢(s) =s™, m > 1.

Remark 7. .
In Theorem 5 the function f does not have to be continuous. If for instance or
¢(s) = s and if f is the maximal monotone mapping defined by

_ 0 if s <0,
f(s) =< (—o0,1] if s=0,

{1} if s >0,
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then we can approximate f by continuous monotone functions and show that
the corresponding solution is quasiconcave. Problems of this type arise in the
modelling of galvanization processes (see [42] for the slationary casc), and one
can show (sce [4,20]), that for sufficiently large {1 the solution will have compact
support in §2. We have in fact shown that the support is convex in space and time.

Let us now turn to problem (P) with the pseudo-Laplace operator. Here we
encounter various technical difficulties. Recall that for the proof of Theorem 5 we
needed various inequalities. In the present case they will be assumptions.

u >0 (3.10)
z-Vu <0 | (3.11)
Q cannot approach its infimum at {; =0 oriy =0 (3.12)

Recall that we can verify (3.10), and under suitable assumptions on ug we can
also show (3.11), see Theorem 2. But if ug = 0in {1 \ G, which was useful for
proving (3.12), then we do not have (3.11) available. Nevertheless it is instructive
to see that the structure of the differential equation (1.1) is still sufficiently good
to carry our argument over to this case. |

Theorem 6.

Let O and G be convex with smooth boundaries. Let ug satify the assumptions
of Theorem 1 and suppose that (3.11) and (3.12) hold. Let f € C([0, 1]) be
nondecreasing and f(0) > 0. |

Then if u € C((0,00) x Q) is the solution of problem (P), u is quasiconcave in
z and t.

Proof.

We proceed as before along the lines of the proof of Theorem 5 and suppose
that the quasiconcavity function Q of u is not nonnegative. Then with obvious
modifications one can show that @ attains a negative minimum in a pair (t1,21) =
z1,(t2,22) = 2 of points such that (3.2)(3.3) and (3.4) hold. For the following
Lemma we recall the notation A = |Du((z; + 22)/2)| etc. and introduce a =
Vu((z + 22)/2)], b = [Va(z)], e = [Va(z): |

Lemma 2. . :
Under the above assumptions Vu(z;), Vu(z2) and Vu((z, + 22)/2) are all par-
allel and point in the same direction. Moreover
_1_' 1,1 1

=5z +3) (3.13)

2 c .

and

ElgA,',(u((tl +15)/2), (71 +22)/2)) >

T=

Ap(ults, 22)) + Tt Ap(ultz, 22)), (3:14)
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where - cf(b 4 ¢) € (0,1).

For the proof of Lemma 2 we notice that (3.13) follows from Lemma 1. If we

_bserve that
a b ¢

A B C

we can derive (3.14) as it was done in the work of Lewis [37] and Kawohl [31].

To complete the proof of Theorem 6 we mimic the computations which follow
(3.7) and obtain

7
po (21) +

Eue(z). (3.15)

1

;;ut((zl + 22)/2) > op
This is left as an exercise to the reader. One merely has to replace A,B,C‘ by
a,b,c and the exponents 2 and 3 by p and p+1 to reach a contradiction. B

Remark 8.

Does the approach that leads to Theorems 5 and 6 apply as well to the obstacle
problem (Py)? This seems to be an open problem even in the stationary setting,
cf. [32,p.111]. The main difficulty lies in proving that all three extremal points
21,22 and (21 + 22)/2 are contained in the noncoincidence set {u > ¥}

Remark 9.
As mentioned in the introduction one could also study the quasiconcavity of u
in space (for fixed ¢) and investigate the sign of ~

Qu(zy,%2) = ult, (=1 + 22)/2) — min{_u(t,zl), u(t, z2)},

‘hoping that Q¢ > 0 implies Q¢ >0fort>0.

If the space dimension n is equal to 1, this is in fact true and follows from our
results on starshapedness. Starshaped level sets in IR are intervals, and intervals
are convex. For higher dimensions, _howe\}er, the situation is more complicated. In
fact, if Q¢ is not nonnegative, then there exists a finite T > 0, a time £y € (0, T
and a pair of points (y;,y2) € € such that Q; attains its minimum over [0,T] x 0
for t = t, and in y;, y2. It is easy to prove analogues of Lemma 2, but in order to
get the parabolic differential equation into play, one needs a relation between the
time derivatives of u. Unfortunately the information that

Qt, (y1,¥2) < min{Qr(z1,z2)|t € (0,T); 71,72 €1},
only leads to
ue(to, (y1 + ¥2)/2) < min{u(to, y1), u(to, y2)}- (3.16)
But (1.1)(3.18)(3.13) and (3.14) do not contradict each other.
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Nevertheless it is desirable to show that @ > 0 implies @; > Ofort > 0, because
this result could be applied to some elliptic problems as well. In fact if u(t,z)
approaches an equilibrium solution as ¢ — co, then this solution is quasiconcave
in space. This way we can recover and sometimes improve the results of Kawohl
(30,31] and Vogel [42] for the obstacle problem and of Lewis [37], Caffarelli and
Spruck [14] and Kawohl {30, 31] for the exterior problem.

- Remark 10.
We want to point out a simple looking related open problem: Suppose that
{1 C IR™ is hounded and convex and v(t, z) is a solution of the linear heat equation

v — Av =0 in (0,T)x Q
v =0 on (0,T) x 80 (3.17)
v(0, z) =vp(z) in Q

" with nonnegative and quasiconcave initial data v,.
A natural conjecture would be:

v(t,z) is quasiconcave in z for every . | (3.18)

In fact for n = 1 we already know (3.17) = (3.18) from a result of Matano [39],
see also [39a,39b,41a]. For n > 2 one can prove such a result if {2 and u has
additional symmetry properties by methods due to Gidas, Ni and Nirenberg [28],
but for general convex {1 and quasiconcave uo the problem if (3.17) = (3.18)
appears to be open.
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