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REMARKS ON A FINSLER-LAPLACIAN

VINCENZO FERONE AND BERND KAWOHL

(Communicated by Walter Craig)

Abstract. We investigate elementary properties of a Finsler-Laplacian oper-
ator Q that is associated with functionals containing (H(∇u))2. Here H is
convex and homogeneous of degree 1, and its polar Ho represents a Finsler
metric on R

n. In particular we study the Dirichlet problem −Qu = 2n on a
ball Ko = {x ∈ R

n : Ho(x) < 1} and present a fundamental solution for Q,
suitable maximum and comparison principles, and a mean value property for

solutions of Qu = 0.

1. Preliminaries

Throughout this paper let H : R
n �→ R be a nonnegative convex function of class

C2(Rn\{0}) which is even and positively homogeneous of degree 1, so that

(1.1) H(tξ) = |t|H(ξ) for any t ∈ R, ξ ∈ R
n.

A typical example is H(ξ) = (
∑

i |ξi|q)1/q for q ∈ [1,∞).
We shall investigate Euler equations which involve functionals containing the

expression

(1.2)
∫

Ω

(H(∇u))2 dx .

The differential equations contain operators of the form

(1.3) Qu :=
n∑

i=1

∂

∂xi
((H(∇u))Hξi

(∇u)) .

Note that these operators are not linear unless H is the Euclidean norm. In par-
ticular, for H(ξ) = (

∑
k |ξk|q)1/q the operator Q becomes

(1.4) Qu :=
n∑

i=1

∂

∂xi

⎛
⎝(

n∑
k=1

∣∣∣∣ ∂u

∂xk

∣∣∣∣
q
)(2−q)/q ∣∣∣∣ ∂u

∂xi

∣∣∣∣
q−2

∂u

∂xi

⎞
⎠ .

We set
K := {x ∈ R

n : H(x) < 1}.
and ωn = |K|. Sometimes we will say that H is the gauge of K. If one defines the
support function of K as

Ho(x) := sup
ξ∈K

< x, ξ >,

Received by the editors January 15, 2008.
2000 Mathematics Subject Classification. Primary 35J60, 53C60, 49Q20.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

247



248 VINCENZO FERONE AND BERND KAWOHL

it is easy to verify that Ho : R
n → [0, +∞) is a convex, homogeneous function and

that H, Ho are polar to each other in the sense that

(1.5) Ho(x) = sup
ξ �=0

< x, ξ >

H(ξ)

and

(1.6) H(x) = sup
ξ �=0

< x, ξ >

Ho(ξ)
.

For example, it follows that

| < x, ξ > | ≤ H(x)Ho(ξ).

Clearly Ho(x) itself is the gauge of the set

Ko := {x ∈ R
n : Ho(x) ≤ 1}.

We say that K and Ko are polar to each other. Finally we observe that

(1.7) H(∇Ho(x)) = 1

and, as a consequence of (1.1), that

(1.8)
n∑

i=1

Hξi
(ξ) ξi = H(ξ).

2. Constant datum

The simplest case of the function H(ξ) is given by H(ξ) = |ξ|, with Ho(ξ) = |ξ|.
Obviously we have Qu = ∆u, and it is not difficult to show that the function
u(x) = 1 − |x|2 solves the problem

(2.1)

{
−Qu = 2n in B = {x : |x| < 1},
u = 0 on ∂B.

We want to understand if a similar result holds true for a general operator Qu.

Example. Suppose that

H(ξ) =

(∑
k

|ξk|q
)1/q

, q > 1.

Then it is easy to see that

Ho(ξ) =

(∑
k

|ξk|q
′

)1/q′

, q′ =
q

q − 1

and
∂

∂xi

(
(Ho(x))2

)
= 2Ho(x)

∂

∂xi
(Ho(x)) = 2(Ho(x))2−q′

xi|xi|q
′−2.

If v(x) = (Ho(x))2, then because of (1.7), we have for our example

Qv =
n∑

i=1

∂

∂xi

(
(H(∇(Ho(x))2))Hξi

(∇(Ho(x))2)
)

= 2
n∑

i=1

∂

∂xi

(
Ho(x)

xi

Ho(x)

)
= 2n.(2.2)
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The calculation that we just did for the special H in the example leads one to
believe that the same result must hold for general H. We can in fact prove the
following result in two very different ways.

Theorem 2.1. Consider the problem

(2.3)

{
−Qu = 2n in K0,

u = 0 on ∂K0.

The solution to problem (2.3) is given by

u(x) = 1 − (Ho(x))2.

First proof. Follow the calculations leading up to (2.2) and observe that
a) H(∇Ho(x)) = 1, b) Hξi

(∇(Ho(x))2) = Hξi
(∇Ho(x)), and finally c) x =

Ho(x)Hξ(∇Ho(x)). The last identity can be found in Lemma 2.2 of [4]. �

Second proof. The solution to problem (2.3) can be found by minimizing the func-
tional

(2.4) J(u) =
∫

K0
((H(∇v))2 − 4nv) dx .

The minimizer u of the functional J on H1
0 (K0) is unique, and, because of the

Pólya-Szegö inequality, it has to be such that

(2.5) u(x) = u(Ho(x)).

Indeed, if u# denotes the convex symmetrization of u, then the following holds:

J(u) ≥ J(u#).

So we need only consider functions of the form

(2.6) v(x) = v(Ho(x)).

Taking into account (2.5) and (1.7) we have:

(2.7) J(u) =
∫ 1

0

nωn((v′(r))2 − 4nv(r))rn−1dr.

The corresponding Euler equation of the one-dimensional problem is

−(v′(r)rn−1)′ − 2nrn−1 = 0.

We immediately have
u(r) = 1 − r2,

and then
u(x) = 1 − (Ho(x))2. �

Remark 2.2. If v(x) = (Ho(x))2, then a straightforward calculation gives

Qv = 2

⎛
⎝1 + Ho(x)

∑
i,j

Hξiξj
(∇Ho(x))Ho

xixj
(x)

⎞
⎠ .

On the other hand, Theorem 2.1 implies Qv = 2n. Thus we have shown that

(2.8) Ho(x)
∑
i,j

Hξiξj
(∇Ho(x))Ho

xixj
(x) = n − 1,

an identity which does not seem to be known.
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Remark 2.3. The case of nonconstant right-hand side −Qu = f(u) was treated
in [6], in particular the eigenvalue problem f(u) = −λu. For n = 2 and positive
solutions we were able to show that all level sets of u are homothetic to Ko, as in
Theorem 2.1. Notice that Theorem 2.1 applies to general n in the present paper.
The desire to gain a deeper understanding of the behaviour of Q for general n was
the motivation for our present study.

3. Fundamental solution for the operator Q

Our aim is to prove that when the datum of the Poisson equation involving the
operator Q is a Dirac delta, then as in Theorem 2.1 the solution can be written in
terms of Ho(x).

Theorem 3.1. The function

(3.1) u(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
αn

(Ho(x))−(n−2)

n − 2
if n > 2,

− 1
α2

log(Ho(x)) if n = 2

solves, in the sense of distribution, the equation

(3.2) −Qu = δ0,

where αn denotes the perimeter of the unit ball with respect to Ho and δ0 denotes
the Dirac measure at the origin.

Proof. By Theorem 2.1, a direct computation shows that

(3.3) −Qu(x) = 0 for x �= 0.

For the benefit of the reader let us give the details of this calculation in dimension
n > 2. If we set v(x) = (Ho(x))2 and w = 2

n−2v−(n−2)/2, we see that ∇w =
−v−n/2∇v, so H(∇w) = −v−n/2H(∇v). Since Hξ is homogeneous of degree zero,
Hξ(∇w) = H − ξ(∇v). Thus, using Theorem 2.1,

− Qw =
∂

∂xi

(
v−n/2H(∇v)Hξi

(∇v)
)

= v−n/22n − n

2
v−(n+2)/2H(∇v)Hξi

(∇v)

= 2nv−(n+2)/2

(
v − 1

4
H2(∇v)

)
.

However, H(∇v) = H(2Ho(x)∇Ho(x)) = 2Ho(x), so that (3.3) holds.
In view of (3.3), in order to prove the theorem, it is sufficient to show that

(3.4) lim
ε→0

∫
∂K0

ε

H(∇u)Hξi
(∇u)νiϕ dσ = ϕ(0), ∀ϕ ∈ C∞

0 (Rn),

where K0
ε = {x ∈ R

n : Ho(x) ≤ ε} and ν is the external normal to ∂K0
ε . In our

situation ν = −∇u/H(∇u).



REMARKS ON A FINSLER-LAPLACIAN 251

First of all we observe that ∂K0
ε is a level set for u given in (3.1). Taking into

account the homogeneity of the function H, we see this implies that∫
∂K0

ε

H(∇u)Hξi
(∇u)νi ϕ dσ = −

∫
∂K0

ε

H(∇u)Hξi
(∇u)

uxi

H(∇u)
ϕ dσ

= −
∫

∂K0
ε

H(∇u) ϕ dσ.(3.5)

Now we observe that

(3.6) ∇u = − 1
αn

∇Ho(x)
(Ho(x))n−1

,

and, using again the homogeneity of H and (1.7), we have

(3.7) H(∇u) = − 1
αn

Ho(x)1−n = −(αnεn−1)−1,

which proves the assertion for n > 2. The proof for n = 2 is left as an exercise for
the reader. �

Remark 3.2. It is worth noting that the fundamental solution does not in general
give rise to a Poisson representation formula, because Q is in general nonlinear. For
the same reason we cannot construct Green’s functions for Dirichlet problems on
bounded domains.

4. Maximum and comparison principles for Q-harmonic functions

We can easily prove the following weak maximum principle for Q-subharmonic
functions.

Theorem 4.1. If −Qu ≤ 0 in Ω and u = g ≤ M on ∂Ω, then u attains its
maximum on the boundary; that is, u(x) ≤ M a.e. in Ω.

Proof. We set M = maxx∈∂Ω g(x) and Ω+ := {x ∈ Ω : u(x) > M}. Then we
multiply −Qu ≤ 0 by (u − M)+ and integrate over Ω+ to obtain

0 ≥
∫

Ω+

H(∇u)Hξi
(∇u)uxi

dx +
∫

∂Ω+
H(∇u)(u − M)+Hξi

(∇u)νi dσ(x)

=
∫

Ω+

(H(∇u))2 dx.(4.1)

Therefore Ω+ has measure zero and u(x) ≤ M a.e. in Ω. �

In a similarly elegant way one can prove a comparison principle.

Theorem 4.2. Suppose −Qu ≤ −Qv in Ω and u ≤ v on ∂Ω. Then u ≤ v a.e. in
Ω.

Proof. We assume that the set Ω+ := {u(x) > v(x)} has positive measure and
multiply the differential inequalities by (u − v)+. Then∫

Ω+
[H(∇u)Hξ(∇u) − H(∇v)Hξ(∇v)] (∇u −∇v) dx ≤ 0,

so that by the strict convexity of H2 we have ∇u = ∇v a.e. in Ω+. Since u = v on
∂Ω+ we find that Ω+ has measure zero. �
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5. Mean value property for Q-harmonic functions

Suppose u satisfies Qu = 0 in some domain Ω and 0 ∈ Ω. Then for sufficiently
small ρ the ball Ko

ρ = {x ∈ R
n : Ho(x) < ρ} is contained in Ω. Harmonic

functions are known to satisfy mean value properties. For Q-harmonic functions
we can prove this only under the following assumption.

(5.1) < Hξ(a), Ho
ξ (b) >=

< a, b >

H(a)Ho(b)
for all a, b ∈ R

n.

This assumption is satisfied for

H(ξ) =

(∑
i

(β2
i ξ2

i )

)1/2

with Ho(η) =

(∑
i

(η2
i /β2

i )

)1/2

,

but violated if H(ξ) = ||ξ||p and p �= 2.

Theorem 5.1. Suppose that H and Ho satisfy (5.1). If Qu = 0 in Ω and Ko
ρ ⊂ Ω,

then for every ball of radius r ∈ (0, ρ) the function u satisfies the mean value
property on spheres (where αn denotes |∂Ko

1 |),

(5.2) u(0) =
1

αnrn−1

∫
∂Ko

r

u(x) dσ,

as well as the corresponding mean value property on balls (where kn denotes |Ko
1 |),

(5.3) u(0) =
1

knrn

∫
Ko

r

u(x) dx.

Proof. We set

Φ(r) :=
1

αnrn−1

∫
∂Ko

r

u(x) dσ(x) =
1

αn

∫
∂Ko

1

u(rz) dσ(z)

and show that Φ is in fact constant. Indeed,

Φ′(r) =
1

αn

∫
∂Ko

1

< ∇u(rz), z > dσ(z) =
1

αnrn−1

∫
∂Ko

r

< ∇u(x),
x

r
> dσ(x),

and by (5.1) we have < ∇u, x >= H(∇u) < Hξ(∇u), Ho
ξ (x) > Ho(x). Therefore,

since Ho(x) = r and ν = Ho
ξ (x) on ∂Ko

r , an integration by parts yields

Φ′(r) =
∫

∂Ko
r

n∑
i=1

H(∇u)Hξi
(∇u) νi dσ(z) =

∫
Ko

r

Qu dσ(x) = 0.

This proves the mean value property on spheres. The one for balls follows upon
integration with respect to r. �

Remark 5.2. Assumption (5.1) is not only sufficient but also necessary for the
mean value property. Since Q is translation-invariant, a counterexample can be
constructed from the fundamental solution if one considers for instance H(ξ) = ||ξ||p
for p close to 1, x0 = (2, 0) ∈ R

2, and compares u(x0) to its mean value over the
sphere ∂K1(x0) of radius 1 centered at x0.

Remark 5.3. Our notion of Q-harmonic function should not be confused with the
“mean value Laplacian” from [7], [8] or the “Laplacian in Minkowski space” from
[11]. Contrary to our definition, Centore’s and Thompson and Thompson’s is linear
in u. This discrepancy is a common phenomenon in Finsler geometry, where certain
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notions like volume, which have equivalent definitions in Euclidean space, provide
different objects depending on the definition. Our implicit definitions of volume
and perimeter follow the concept in [5].
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