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1. Introduction and motivation

Consider the initial boundary value problem

ut − div(a(|∇u|2)∇u) = 0 in Ω × (0, T), (1.1)

a(|∇u|2)
∂u
∂ν

= 0 on∂Ω × (0, T), (1.2)

u(x, 0) = u0(x) on Ω, (1.3)

whereΩ ⊂ Rn is a bounded domain with boundary of classC1 and ν is the
exterior normal to∂Ω. The structural assumptions ona are

a ∈ C1([0, ∞)), a(s) > 0,

the ellipticity function b(s) := a(s) + 2 s a′(s)

is positive fors near 0 and changes sign exactly once ats2
0 > 0.

(1.4)

Moreover, since we considerC1 solutions, we implicitly assume the compatibility
condition

∂u0

∂ν
= 0 on∂Ω. (1.5)

Typical examples of such diffusion functionsa area(s) = e−s or a(s) = (1+s)−1.
They are used in image enhancement processes, see [24]. The functionu0(x)
represents the brightness of a picture which one wants to denoise. Numerical
computations have shown that equation (1.1) can produce the desired effect that
u(x, T) provides a sharper image thanu(x, 0). Let us first understand why this
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is the case. For convenience let us assume for a moment thatΩ is a plane
domain, thatu is continuously differentiable and that|∇u|2 = u2

x1
+ u2

x2
6= 0 a.e.

in Ω × (0, T). Then we can rewrite partial derivatives in terms of directional
derivativesν = −∇u/|∇u| (in direction of steepest descent ofu), and τ in
direction tangent to∇u. Under such a change of coordinates one knows that
∆u = uνν + uττ . If we rewrite equation (1.1), it reads

ut − a(s)∆u − 2a′(s)suνν = 0

or
ut − b(|∇u|2)uνν − a(|∇u|2)uττ = 0. (1.6)

For n dimensional domainsΩ the termuττ has to be replaced by the (n − 1)-
dimensional Laplace–operator on the plane tangent to the level surface ofu.

Notice that the diffusion coefficient in directionτ differs from the one in direction
ν. That is why we speak ofanisotropic diffusion. As a matter of fact,b switches
sign according to (1.4), whilea remains positive. So the diffusion in directionν
can be thought of as a backward diffusion for large values of|∇u|2, while the
diffusion in directionτ is always smoothing.

The backward heat equation violates even the mildest form of regularization
in the sense that small solutions (inL∞(Ω)) can increase in time. Therefore
according to [1] “no uniqueness of the solution and no stability of the process
can be expected”, see also [2]. Uniqueness is usually obtained via comparison or
maximum principles; and we shall derive such principles as well as a uniqueness
result below. These comparison and uniqueness results are delicate, because they
need special assumptions. We refer to Sects. 3 and 4. In any case we shall show in
Sect. 2 that theL∞(Ω)–norm of solutions is preserved forward in time. One can
imagine that the forward diffusion along level surfaces is responsible for this. At
the same time the backward nature of diffusion steepens variations in brightness
once they have exceeded a certain threshholds0. This leads to a sharpening of the
image. So we have the interesting effect that theL∞(Ω)–norm ofu is preserved
but theW1,∞(Ω)–norm increases. In short: the gradient ofu blows up, butu
does not.

How can we classify equation (1.1) or (1.6)?

• For small values of|∇u| it is a regular parabolic diffusion equation.
• If the first term were missing equation (1.6) would resemble the classical

Tricomi problem.
• If the middle term were missing equation (1.6) were a regular diffusion prob-

lem.
• If the last term is missing, it looks like a forward-backward diffusion equation.

For small values of|∇u| the contours of a brightness distribution are just
diffused. That is desirable to fade out flat noise, but it misses the interesting
situation that large brightness variations are enhanced. So studying equation (1.6)
under the convenient technical assumption that|∇u| < s0 would be dishonest.
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We cannot neglect the first or second term in the equation either. But we can force
the last term to disappear by assuming thatn = 1. This simplifies the treatment of
(1.6) considerably, because now diffusion takes place only in one spatial direction
ν. This is in fact what we shall do in Sects. 3 to 6. Before proceeding let us
remark, that due to the backward nature of the equation, solutions can only exist
if the initial data are smooth, even analytic, in those points where the equation is
backward in time. This has been observed by many people and put into writing
by Kichenassamy [16].

Section 3 adresses the nonexistence of globalC1 solutions, Sect. 4 provides
comparison results under special assumptions on the initial data. These results are
optimal in the sense that counterexamples show the necessity of our assumptions.
In Sect. 5 we prove uniqueness ofC1 solutions. This is in contrast to a result
of Höllig [12], who proved nonuniqueness, however for Lipschitz solutions of
equations with piecewise linear diffusion coefficient, which lead to an equation
that was forward in time for large values of|∇u| and backward for small values.
Finally, Sect. 6 adresses local existence questions.

Let us close the introduction with some bibliographical remarks on papers
which are not directly related to ours. The more relevant ones are quoted in
context in the subsequent sections. The study of forward-backward equations
was apparently initiated by Kepinsky and Gevrey [15, 10, 11] in the beginning
of this century and had a revival more than 50 years later in the papers [4, 5, 22,
23, 18, 26, 27, 9]. In contrast to their analytical approach, [13, 29, 6, 19] and
[20] contain numerical results.

2. L∞ estimates

Theorem 2.1. Maximum principle
Suppose that u is a Lipschitz continuous (weak) solution to(1.1) (1.2) (1.3).Then
for every p∈ [2, ∞] the following inequality holds

||u(x, t)||Lp(Ω) ≤ ||u0(x)||Lp(Ω).

Proof. For p < ∞ multiply (1) with |u|p−2u and integrate overΩ. Integration
by parts and boundary condition (2) give

d
dt

∫
Ω

|u(x, t)|p dx = p
∫

Ω

|u|p−2 u ut dx = p
∫

Ω

|u|p−2 u div(a(|∇u|2)∇u) dx

= −p(p − 1)
∫

Ω

|u|p−2 a(|∇u|2) |∇u|2 dx ≤ 0,

from which Theorem 2.1 follows forp < ∞. Sendp → ∞.

Theorem 2.1 was also found by Weickert [28] independently from us.
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3. Nonexistence of globalC1 solutions

From now on we shall restrict ourselves to one space dimension. Then Problem
(1.1)(1.2)(1.3) is rewritten as

ut − (a(u2
x ) ux)x = 0 in Q := (−1, 1) × R+, (3.1)

ux(±1, t) = 0 for t ∈ R+, (3.2)

u(x, 0) = u0(x) on (−1, 1) andu′
0(±1) = 0. (3.3)

We expect solutions to develop a larger and larger gradient; and we shall try to
analyze this behaviour locally by assuming that the initial data have their slope
above the thresholds0 in precisely one compact subinterval of (−1, 1), i.e.

u′
0(x) > s0 in (x0, y0) ⊂⊂ (−1, 1) , |u′

0(x)| < s0 in (−1, x0) ∪ (y0, 1)
andu0 is strictly convex (resp. concave) (3.4)
in a small symmetric punctured neighbourhood ofx0 (resp.y0).

Remark 3.1.Having a single subinterval on which|u′
0(x)| > s0 is not essential.

With cumbersome notation one can extend our analysis to the case of finitely
many subintervals of this type. We spare the reader from this generalization,
because it will not require any new ideas.

Remark 3.2.Sufficient for the convexity nearx0 is the analyticity ofu0. In fact if
u0(x) is analytic and increasing nearx0 we may assume that it is strictly convex in
a small neighborhood (x∗, x0). Otherwiseu′′

0 would have infinitely many zeroes
in (x∗, x0), and those zeroes would have an accumulation point. Consequently
u′′

0 ≡ 0 andu0 would be linear, a contradiction to the first part of (3.4).

To simplify matters even further, let us assume for the moment thatu′
0 ≥ 0

and that u0 is an odd function and thatu0(x) is strictly concave forx ∈
(0, 1). Then u′

0(x) = s0 + ε in exactly two points±x1 ∈ (−1, 1) where
ε > 0 is suitably small. Then we can expect the central difference quo-
tient (u(x1, t) − u(−x1, t))/2x1 to increase in time. Consequently theL∞(Ω)-
norm of ux should increase (in contrast to theL∞(Ω)-norm of u). In fact
due to the choice ofx1 we have ut (x1, t) = b(u2

x (x1, t))uxx(x1, t) > 0 and
ut (−x1, t) = b(u2

x (−x1, t))uxx(−x1, t) < 0, at least as long as the solution is
smooth andt not too large. This heuristic argument proves the increase of the
symmetric difference quotient forux in the origin.

One can give another reason why the solutions of (3.1) (3.2) (3.3) should not
be globally of classC1. To this end we introducev = ux as new function and
consider the transformed problem

vt − (b(v2)vx)x = 0 in Q := (−1, 1) × R+,
v(±1, t) = 0 for t ∈ R+

v(x, 0) = u0
′(x) on (−1, 1) .

(3.5)
(3.6)
(3.7)

We recall thatb changes sign ifv exceeds the thresholds0. Therefore, oncev
becomes large it satisfies a backward equation and we might expect problems
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with regularity from analogy to similar problems in the literature. We do not
know if the porous medium community has studied (3.5) with sign-changingb
yet, but there is a statement of nonexistence of globalC2-solutions in [21] for a
related problem. Novikov studied

wt − (a(w2
x)wx)x = 0 in (0, 1) × R+ ,

wx(0, t) = 0 for t > 0 ,
wx(1, t) = (|ν0|/3ν2)1/2 for t > 0 ,

wherea(s) = ν0 + ν2s, ν2 > 0, ν0 < 0. The functionU = wx satisfies

Ut − (b(U 2)Ux)x = 0 in (0, 1) × R+ ,
U (0, t) = 0 for t > 0 ,

b(U 2(1, t))Ux(1, t) = 0 for t > 0 .

In contrast to our problem, Novikov’s equation forU is backward for small
values ofU and forward for large values ofU .

Conjecture 3.1.
In view of Theorem 3.2 below we believe that sign changing solutions of (3.5)
(3.6) (3.7) will develop discontinuities along their nodal sets, ifb is of porous
medium type, e.g. ifb(v2) = v2.

Before stating the result on nonexistence of globalC1-solutions let us state an
important qualitative property of solutions. Assuming that a globalC1–solution
exists we denote withQ+ := {(x, t) ∈ Q with |ux(x, t)| < s0} the forward
(subsonic) set of equation (3.1), withQ− := {(x, t) ∈ Q with |ux(x, t)| > s0} the
backward (supersonic) regime and withQ0 := {(x, t) ∈ Q with |ux(x, t)| = s0}
the (sonic) set where (3.1) degenerates to a first order equation. This notion is
borrowed from the theory of transonic flow for an ideal gas, which is modelled
by an elliptic-hyperbolic operator of divergence type, see [8]. Sinceu satisfies
(3.1) in a weak sense, it follows from classical regularity results [17, Ch. V,
Theorems 5.2 and 5.3] thatu is infinitely differentiable inQ+ ∪ Q−, provideda
is of classC∞. In the following Theorem 3.1 we show that a supersonic regime
persists in time and that the level sets ofux are time-like curves.

Theorem 3.1.
Suppose u(x, t) is a weak C1 solution of(3.1)(3.2)(3.3)and that(1.4) (3.4)hold.
Then the level linesΓ (t , z) := { x ∈ Q | ux(x, t) = u′

0(z) } emanating from z
(with z 6= x0, y0) in some small neighborhood of x0 and y0 are well-defined and
smooth for every t> 0 for which the solution exists.

The proof will proceed in two steps. First we show that the supersonic regimeQ−

does not disappear in time. Otherwise there is a bounded componentG ⊂ Q−

starting at time zero withux = s0 on its parabolic (backward) boundary. InG
the functionv = ux(t , x) satisfies (3.5). Thus by the classical maximum principle
v ≡ s0 in G ∩ {t = 0}, a contradiction to assumption (3.4). To be precise,
one has to consider (3.5) in the slightly smaller domainGε := {(x, t) ∈ G |
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ux(x, t) > s0 + ε}, where (3.5) is uniformly parabolic. Later on we shall use this
approximation without mentioning it explicitly.

Now suppose thatu0 is strictly convex in (x∗, x0) and that (x1, x2) ⊂ (x∗, x0)
is chosen so thatu′

0(x1) = s1 < u′
0(x2) = s2 andu′

0(x) < s1 for x ∈ [−1, x1). Let us
denote withG1 := { (x, t) ∈ Q+ | ux(x, t) < s1 } the connected component ofQ+

which contains the segment [−1, x1) and withG2 := { (x, t) ∈ Q+ | ux(x, t) < s2 }
the component containing [−1, x2). If Γ1 andΓ2 are those parts of the boundaries
of G1 andG2 whereux = s1 andux = s2 thenΓ1 andΓ2 are time like curves.

In fact, they cannot have points of self-intersection because then by the clas-
sical maximum principleux would have to be constant inside the loops, a con-
tradiction. Notice thatv = ux satisfies (3.5) inQ and that such a loop would lie
in Q+. Moreover,Γi have no return segments as depicted in Fig. 3.1, since in
this case there exist rectanglesK , K̃ such thatv = ux satisfies (3.5) inK , K̃ , and
v has an extremum at the top ofK or K̃ . Due to the choice ofs1 ands2 and the
first step of this proof, the curvesΓi cannot return to the lower base ofQ, while
due to the boundary condition (3.2) they cannot touch the lateral boundary of
Q either. HenceΓi are defined for everyt > 0 for which the weakC1 solution
exists.

Fig. 3.1. An impossible situation

From the weak maximum principle forux in Gi it follows that ux < si in Gi ,
and sinceux = si on Γi we haveuxx ≥ 0 on Γi because thex-direction onΓi

points out ofGi . Hence inG := G2 \ G1 the functionw = ut (x, t) satisfies



Strong maximum principle 113

wt − (b(u2
x )wx)x = 0 in G,

w(x, t) = b(u2
x )uxx ≥ 0 on Γ1 ∪ Γ2 ∪ [x1, x2].

(3.8)

From the strong maximum principle we may conclude thatw(x, t) = ut (x, t) > 0
in G, i.e. uxx(x, t) = ut (x, t)/b(u2

x ) > 0 in G. The strict convexity ofu is enough
to define the level linesΓ (t) := {(x, t) ∈ G | ux(x, t) = s } emanating from some
Γ (0) ∈ (x1, x2) for every fixeds ∈ (s1, s2). Choose such ans. ThenΓ (t) is a C1

curve fort > 0 andu is strictly convex inx and monotone increasing int along
this line.

Theorem 3.2. Nonexistence of globalC1 solutions
Suppose that a(s) and u0(x) are functions satisfying(1.4)and(3.4).Then Problem
(3.1)(3.2)(3.3)has no global weak solution in C1(Q).

For the proof we use the same notation as in the proof of Theorem 3.1.Γ (t) :=
{(x, t) ∈ G | ux(x, t) = s, s < s0 } is a level line of ux emanating from
Γ (0) < x0 close tox0. If we suppose thatu(x, t) is a global weakC1 solution
of (3.1)(3.2)(3.3), then, as we have shown in Theorem 3.1,Γ (t) is defined for
every t > 0.

Differentiation ofu(Γ (t), t) with respect tot (d/dt)u(Γ (t), t) = uxΓ
′(t)+ut =

sΓ ′(t) + ut (Γ (t), t), so that after an integration along the curve from (Γ (0), 0) to
(Γ (t), t) we obtain

u(Γ (t), t) = u0(Γ (0)) + s[Γ (t) − Γ (0)] +
∫ t

0
ut (Γ (τ ), τ ) dτ. (3.9)

Let us now calculate the expressionI =
∫ Γ (t)

−1 u(x, t) dx. Due to Theorem 2.1
this expression is bounded by 2||u0||∞. On the other hand we intend to show
that it is unbounded ast → ∞. Using (3.2) and (3.9) we obtain

d
dt I = Γ ′(t)u(Γ (t), t) + a(s2)s

= Γ ′(t) [u0(Γ (0)) − sΓ (0) + sΓ (t)] + Γ ′(t)
∫ t

0
ut (Γ (τ ), τ ) dτ + a(s2)s,

and hence

I (t) = I (0) +
∫ t

0
İ (τ ) dτ (3.10)

=
∫ Γ (0)

−1
u0(x) dx + a(s2)st + [Γ (t) − Γ (0)] [u0(Γ (0)) − sΓ (0)]

+
s
2

[Γ 2(t) − Γ 2(0)] +
∫ t

0
Γ ′(σ)

∫ σ

0
ut (Γ (τ ), τ ) dτ dσ.

Notice the terma(s2)st on the right hand side of (3.10). It grows linearly int . To
show the blow up ofI we have to control the last term in (3.10). We integrate
it by parts.
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J : =
∫ t

0
Γ ′(σ)

∫ σ

0
ut (Γ (τ ), τ ) dτ dσ

= Γ (t)
∫ t

0
ut (Γ (τ ), τ ) dτ −

∫ t

0
Γ (σ) ut (Γ (σ), σ) dσ

=
∫ t

0
[Γ (t) − Γ (σ)] ut (Γ (σ), σ) dσ

Recalling thatut > 0 in G and thus on the curve (Γ (σ), σ) for σ ∈ (0, t) and
using the trivial estimateΓ (t) − Γ (σ) ≥ −2 as well as (3.9) we obtain a lower
bound forJ

J ≥ −2
∫ t

0
ut (Γ (σ), σ) dσ

= −2[u(Γ (t), t) − u0(Γ (0))] + 2s[Γ (t) − Γ (0)]

which is bounded from below int . Thus the contradiction is reached and the
proof of Theorem 3.2 is complete.

4. Comparison principle and counterexample

In this section we shall prove a comparison principle for weakC1 solutions of
(3.1)(3.2)(3.3) under at least one of two special assumptions on the initial data
u0(x) andv0(x). One of them says that not only are the initial data ordered, i.e.
u0(x) ≤ v0(x) in (−1, 1), but they can be separated by a subsonic profilew0(x):

∃ w0(x) ∈ C2,α such that u0(x) ≤ w0(x) ≤ v0(x),

|w′
0(x)| < s0 in (−1, 1) and w′

0(±1) = 0.
(4.1)

For convenience we call functionsf (x) defined on [−1, 1] sub- resp. supersonic
if they satisfy |f ′(x)| < s0 resp.|f ′(x)| > s0. For subsonic initial data equation
(3.1) is a forward diffusion equation, while for supersonic data it is backward
in time. The other assumption on the initial data under which we can state a
comparison result is that

{x ∈ (−1, 1) with |u′
0(x)| ≥ s0} ∩ {x ∈ (−1, 1) with |v′

0(x)| ≥ s0} = ∅. (4.2)

Loosely speaking (4.2) says that the closures of the supersonic regimes ofu0 and
v0 do not intersect.

Our comparison result will be shown to be sharp, because without our special
assumption on the initial data we can construct a counterexample of two solutions
whose difference changes sign ast increases.

Therefore we cannot derive a uniqueness result from the comparison result.
Instead we shall derive uniqueness directly in Sect. 5 by a different method.
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Theorem 4.1. Comparison principle
Suppose that u(x, t) andv(x, t) are weak C1 solutions of(3.1)(3.2)(3.3)in QT :=
(−1, 1) × (0, T) with C1 initial data u0(x) ≤ v0(x) satisfying(4.1) or (3.4)(4.2)
and with a satisfying(1.4). Then u(x, t) ≤ v(x, t) in QT.

Proof.Notice that case (4.1) can be reduced to (4.2) once we know that (3.1)(3.2)
has aC1 solutionw(x, t) with initial dataw0. This existence problem is positively
answered by Theorem 6.1 in Sect. 6. However, since there is an ad-hoc proof in
case (4.1), let us present it for the reader’s convenience.
Case (4.1): It suffices to show thatu(x, t) ≤ w(x, t) in QT . Otherwise the
weighted differencez(x, t) = exp(−t)(w(x, t) − u(x, t)) has a negative minimum
in an “interior” point (x0, t0) with x0 ∈ (−1, 1) and 0 < t0 ≤ T or on the
lateral boundary ofQT . In the first case, sincezx(x0, t0) = 0 we haveux(x0, t0) =
wx(x0, t0). Recalling thatw is everywhere subsonic (from the classical maximum
principle) we conclude that (x0, t0) belongs to the subsonic regime ofu, too, i.e.
(x0, t0) ∈ Q+

T (u) := {(x, t) ∈ QT with |ux(x, t)| < s0}. In Q+
T (u), though, we can

use the classical comparison result for quasilinear parabolic equations. In fact,
zt (x0, t0) = exp(−t0) (−[w − u] + [w − u]t ) (x0, t0) ≤ 0, so that [w − u]t (x0, t0) ≤
[w − u](x0, t0) < 0. Noting thatC1 solutions are even smoother inQ+

T , this
contradicts [w−u]t (x0, t0) = (b(w2

x)wxx−b(u2
x )uxx)(x0, t0) ≥ 0. In the second case,

if x0 = ±1 Hopf’s Lemma and (3.2) imply thatz is constant in a neighborhood
of (x0, t0). Thusz attains its negative minimum in an interior point, a situation
that was just ruled out. This proves Theorem 4.1 under assumption (4.1).
Case (4.2):This time we want to show thaty(x, t) = exp(−t)(v(x, t) − u(x, t))
cannot have a negative minimum in some “interior” point (x0, t0) with x0 ∈
(−1, 1) and 0< t0 ≤ T or on the lateral boundary. The second case can be
dealt with as under (4.1). In the first caseux(x0, t0) = vx(x0, t0) and thus (x0, t0)
is either in the subsonic regime of both solutions, or in the supersonic regime of
both u and v, or in both sonic setsQ0

T (u) = {(x, t) ∈ QT with |ux(x, t)| = s0}
andQ0

T (v). In the first case that (x0, t0) ∈ Q+
T (u) ∩ Q+

T (v), we can argue as under
case (4.1) above and reach a contradiction. The other two cases can be ruled out
once we show that [Q−

T (u) ∪ Q0
T (u)] ∩ [Q−

T (v) ∪ Q0
T (v)] = ∅. This is guaranteed

by Theorem 4.2 below, which states that the supersonic regimes of aC1 solution
shrink in time, and by assumption (4.2).

Theorem 4.2. Shrinking of supersonic regimes
Suppose that u(x, t) is a weak C1 solution of(3.1)(3.2)(3.3)and that(1.4) and
(3.4) hold. Then the union of supersonic and sonic regimes of u(x, t) shrinks in
time, i.e. Q−

τ ∪ Q0
τ := (Q− ∪ Q0) ∩ { t = τ } satisfies the inclusion(Q−

τ ∪ Q0
τ ) ⊂

(Q−s ∪ Q0
s ) for every0 ≤ s ≤ τ .

The proof of Theorem 4.2 would be simpler ifu were a classicalC2 (or at least
a C1,1) solution, because then we could argue from the vanishing ofb on Q0

that ut = 0 on Q0. However, we do not know ifu is C2 across the sonic set
and we know little aboutQ0, either. Therefore we shall first state and prove a
qualitative auxiliary result.
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Theorem 4.3.ut = 0 on boundary of sub- and supersonic set
Suppose that u(x, t) is a weak C1 solution of(3.1)(3.2)(3.3), that (1.4) and (3.4)
hold.

Then ut = 0 on ∂Q+ ∩ QT and ∂Q− ∩ QT, for all connected components of
Q+ or Q− which contain a segment from(−1, 1) × {0}.

Proof. Let G be a connected component ofQ+ containing (−1, x0) and letγ be
the boundary ofG ∩ QT . By definition ux = s0 on γ, and according to Theorem
3.1 γ is a time like curve. Let us suppose that contrary to the claim of Theorem
4.3 ut (x̃, t̃) 6= 0 at some point ( ˜x, t̃) ∈ γ. It follows from (3.8) in the proof of
Theorem 3.1 and the maximum principle thatut (x̃, t̃) > 0, and from the continuity
of ut the same inequality holds in a small discB centered at ( ˜x, t̃), see Fig. 4.1.
Without loss of generality we may assume thatγ∩B has no horizontal segments.
Otherwiseuxx = 0 and due to (3.1)ut = 0 on those segments, a contradiction.

Fig. 4.1. An impossible situation

We will show that in a neighborhood of ( ˜x, t̃) in B \ G there are no points
from Q+ ∪ Q−. In fact, otherwise there is a point (x1, t1) ∈ B \ G such that
(x1, t1) ∈ Q−. From (3.1) we have thatuxx(x1, t1) < 0 and henceuxx(x, t1) < 0
in some maximal interval (x2, x1) ⊂ Q− ∩ (B \ G). The case (x2, t1) ∈ Q− but
uxx(x2, t1) = 0 implies ut (x2, t1) = 0 and contradicts the choice ofB. The case
(x2, t1) ∈ ∂Q−, i.e. (x2, t1) ∈ Q0, is also impossible since thenux(x2, t1) = s0 and
the strict concavity ofu in x on (x2, x1) implies s0 = ux(x2, t1) > ux(x1, t1), a
contradiction to (x1, t1) ∈ Q−. Finally, by choosingt1 sufficiently close tõt the
line (x, t1), x2 ≤ x < x1 will necessarily intersectγ and not∂B, so that only the
above cases are possible.

In the same way one can prove that in a small neighborhood of ( ˜x, t̃) in B\G
there are no points fromQ+. Hence the points in a neigborhood of ( ˜x, t̃) in B \G
are fromQ0, i.e. ux ≡ s0, uxx ≡ 0 and from (3.1)ut (x̃, t̃) = 0, a contradiction.
This proves Theorem 4.3.
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Proof of Theorem 4.2.We use the notations from the proof of Theorem 4.3. If
G ⊂ Q+ is a connected component containing (−1, x0) and γ is the boundary
of G ∩ QT then we claim that for every (y, λ), (z, τ ) ∈ γ with 0 ≤ λ < τ the
inequality y ≤ z holds. Otherwisey > z and we can apply formula (3.9) with
initial time t = λ and initial pointy = γ(λ) to the generalized curveγ(t). Notice
that as a limit of time like curvesγ can possibly have horizontal segments. Since
ut = 0 onγ(t), (3.9) becomes

u(z, τ ) = u(y, λ) + s0(z − y). (4.3)

Recall thatut anduxx are positive inG nearγ. Thereforeu(z, λ) < u(z, τ ). This
and (4.3) contradict the convexity ofu, since

u(z, λ) < u(y, λ) + s0(z − y).

This shows thatγ moves to the right and proves Theorem 4.2.

The following example shows that without assumptions of type (4.1) or (4.2)
on the initial data one should not expect a comparison principle.

Example 4.4.Suppose that there exist weakC1 solutionsu(x, t) and v(x, t) of
(3.1)(3.2)(3.3) with initial data

u0(x) = 3bx + 2cx2 − bx3 − cx4,

v0(x) = 3bx − 2dx2 − bx3 + dx4,

where b, c, d with b > s0/3 are arbitrary positive constants. Thenu and v
violate the comparison principle, becauseu0 ≥ v0 but for everyt > 0 we have
u(0, t) < v(0, t). This can be seen as follows.

Sinceu′
0(0) = v′

0(0) = 3b > s0, the origin is in the supersonic regime of both
u and v. Henceu and v are classical solutions near the origin (0, 0). Now we
note thatu′′

0 (0) > 0 andv′′
0 (0) < 0. From (3.1) it follows thatut (0, 0) < 0 and

vt (0, 0) > 0. Sinceu0(0) = v0(0) the claim follows.

5. Uniqueness ofC1 solutions

In this section we give a direct proof of the uniqueness of weakC1 solutions to
(3.1)(3.2)(3.3). For this purpose we shall need an additional result about quali-
tative properties of solutions, see Theorem 5.2.

Theorem 5.1. Uniqueness
Suppose that u andv are weak C1 solutions of(3.1)(3.2)(3.3) in QT := (−1, 1)×
(0, T) with identical and analytic initial data u0. Moreover assume that(u0) 2

x −s2
0

has only simple zeroes and that the diffusion coefficient a is analytic and satisfies
(1.4). Then u(x, t) ≡ v(x, t) in QT.
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Proof. Consider the differencew := u − v. We note thatw solves the problem

wt − (B(x, t)wx)x = 0 in QT , (5.1)

wx = 0 on{±1} × (0, T), (5.2)

w(x, 0) = 0 on [−1, 1], (5.3)

whereB(x, t) =
∫ 1

0 b(|vx +θ(ux − vx)|2) dθ. We want to show thatw ≡ 0 in QT .
Let us first look atw on the setQ−(u) ∩ Q−(v). If w is nonzero in some

point from this set, then there is a thin cylinderQε := (xe − ε, xe + ε) × (0, te) in
which (5.1) is a backward parabolic equation. Consequently its solution is very
regular, even analytic with respect tox in Qε. If there exists a timet0 such that
w(x, t0) = 0 for a nontrivial open interval in (xe − ε, xe + ε) or at infinitely many
points, thenw(x, t0) = 0 in (xe − ε, xe + ε) by analytic continuation.

By shifting the initial time, if necessary, we may assume without loss of
generality thatw 6= 0 a. e. inQε. Suppose there exists a nontrivial connected
componentK of one of the setsK ±

ε := { (x, t) ∈ Qε | ± w(x, t) > 0 }
whose common boundary with the initial time∂K ∩ { t = 0 } has positive one–
dimensional measure. This contradicts the strong interior maximum principle [25]
for (5.1) in K , becausew attains its zero maximum or minimum at an interior
point of K at t = 0. Hence all components ofK ±

ε := { (x, t) ∈ Qε | ± w(x, t) >
0 } with nonempty intersection with{ t = 0 } intersect the initial time on a
nullset. By construction there are infinitely many such components.

Where do they go as time proceeds? They cannot be compactly embedded in
the parabolic interior ofQε because of the maximum principle for (5.1). They
cannot instantly disappear either. So for some positive timeδ the functionw has
inifinitely many sign changes. But thenw(x, δ) = 0 in (xe − ε, xe + ε), another
contradiction. This implies thatQ−(u) = Q−(v) andu ≡ v in Q−(u).

Next we investigate the behaviour ofw on Q0(u) ∩ Q0(v). We observe that
wx ≡ 0 by definition andut = vt = wt ≡ 0 by Theorem 4.3. Thereforew = const.
on Q0(u) ∩ Q0(v).

Theorem 5.2 below implies that each component ofQ0(u) (resp. Q0(v))
touchesQ−(u) (resp.Q−(v)) in at least one point (x, t). From the first step we
know thatu ≡ v in Q−(u), so thatw = 0 everywhere on the joint boundary of
Q− andQ0. This and the fact thatw = const. on Q0(u) ∩ Q0(v) lead to

u ≡ v on Q0(u) ∩ Q0(v). (5.4)

It remains to investigatew on Q+(u) ∪ Q+(v). Suppose thatw has a positive
maximum in (xe, te) ∈ QT . Three cases are possible. If (xe, te) ∈ (Q+(u)∪Q+(v))\
(Q+(u) ∩ Q+(v)) then wx(xe, te) 6= 0, a contradiction. The extremum ofw will
lie elsewhere. If (xe, te) lies on the lateral boundary ofQT , this contradicts (5.2)
unlessw is constant in a neighborhood of this maximum point. But thenw > 0
at some initial point, a contradiction to (5.3).
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Finally, if (xe, te) ∈ Q+(u)∩Q+(v) then by the strong interior maximum prin-
ciple, the same extremum must occur in a point (y, s) on the parabolic bound-
ary of Q+(u) ∩ Q+(v), a situation which has already been ruled out. The case
(y, s) ∈ Q0(u) ∩ Q0(v) is ruled out by (5.4). This proves Theorem 5.1.

Remark 5.1.Let us remark in passing that Theorem 5.1 is well-known if the
initial datum u0 is subsonic, i.e.|u′

0| < s0 in (−1, 1). The degenerate situation
that |u′

0| ≤ s0 in (−1, 1) and|u′
0(x)| = s0 for somex ∈ (−1, 1) cannot occur due

to our assumptions, but the transsonic case is covered.

In image enhancement we want to preserve edges and shapes. No new edges
should be generated as the image evolves, nor do we want edges to disappear.
If we call each component ofQ−(u) ∩ {t = t0} an edge at timet0, then we can
classify shapes ofu according to their number of edges. The following theorem
states roughly speaking, that this number is invariant in time. The first step in the
proof of Theorem 3.1 consisted in showing that a single edge cannot disappear
and gives a special case of Theorem 5.2.

Theorem 5.2. Preservation of Shapes
Under the same assumptions as in Theorem 5.1

i) the number of the connected components of Q+(u) ∩ { t = s }
and of

(
Q−(u) ∪ Q0(u)

) ∩ { t = s } is invariant in s, and
ii) in particular, no component of Q0(u) can originate in Q+(u).

Proof. From the proof of Theorem 3.1 we know that the supersonic regimesQ−

starting from some interval at the initial time zero do not disappear fort > 0 as
long as the solution exists.

In order to prove that the subsonic regimesQ+ do not disappear either,
suppose that there is an interval (y, z) ⊂ (−1, 1) contained inQ+ ∩ { t = 0 }. If
the component ofQ+ containing this line segment disappears after some finite
time t1 > 0 we will apply formula (3.9) to the left and right boundariesµ(t) and
γ(t), resp. of this component ofQ+, whereµ(0) = y and γ(0) = z. Hence we
have

u(µ(t1), t1) = u0(y) ± s0[µ(t1) − y]

u(γ(t1), t1) = u0(z) ± s0[γ(t1) − z].
(5.5)

Without loss of generality we assume the + sign in (5.5). Recall that from the
reasoning in the proof of Theorem 3.1 we know that these curves are time-
like and µ(t) ≤ γ(t) for t ∈ [0, t1]. We distinguish the casesµ(t1) = γ(t1) and
µ(t1) < γ(t1). In the first case the left hand sides of (5.5) coincide. Therefore
the difference of the right hand sidesu0(y) − u0(z) + s0[z − y] should vanish, or
equivalently

u0(y) − u0(z)
y − z

= s0. (5.6)

But this contradicts the assumption that the (modulus of the) slope ofu0 is strictly
less thans0 in (y, z).
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In the second caseu(µ(t1), t1) = u(γ(t1)±s0[µ(t1)−γ(t1)] because the segment
(µ(t1), γ(t1)) × { t = t1 } belongs toQ0. Again we assume that the + sign holds.
Now we arrive again at (5.6), a contradiction.

Thus far we have shown that supersonicQ− and subsonicQ+ regimes persist
and do not disappear. Next we shall show that the number of supersonic and
subsonic regimes does not increase. Such an increase is conceivable for instance
if new components ofQ− ∪Q0 appear insideQ+ at some positive time or if new
components ofQ+ appear insideQ− ∪ Q0 at some positive time. Neither one is
possible. In fact, one can apply maximum principle arguments toux or one can
reverse time to see this.

Finally it remains to analyze the interface between adjacent components of
Q+ and Q−. Without loss of generality, supposeQ+(u) ∩ {t = 0} = (y1, y0)
and Q−(u) ∩ {t = 0} = (y0, y2). This interface belongs toQ0(u) and may be
of postive measure, in which case new components ofQ+ or Q− might appear
inside Q0. Let us rule out this final situation with a familiar argument. Denote
the right hand boundary ofQ+ by (µ(t), t) and the left hand boundary ofQ−
by (γ(t), t) and recall that this is justified because both are time-like curves. As
we already proved in the previous paragraph there are no components ofQ+ in
the setI := {(x, t) | x ∈ (µ(t), γ(t)), t > 0}. In order to prove that there are
no components ofQ− in I , we can apply again formula (3.9), replacingΓ by µ
andγ respectively and reach the same contradiction as in (5.5). This concludes
the proof of Theorem 5.2.

6. Existence of solutions

Theorem 6.1. Global existence for subsonic initial data
Suppose that a satisfies(1.4) and that the initial datum u0 in (1.3) is in C2,α(Ω)
with α ∈ (0, 1) and satisfies the compatibility condition(1.2) at time zero. If u0 is
subsonic, i.e. if|∇u0(x)| < s0 onΩ, then for every T> 0 Problem(1.1)(1.2)(1.3)
has a classical solution in C2(QT ).

Proof. SinceΩ is bounded|∇u0(x)| ≤ s1 < s0. Therefore we can modify the
functiona(s) outside [0, s1] in such a way that (1.1) becomes uniformly parabolic.
In fact, we chooses2 ∈ (s1, s0) and set

ã(s) =

{
a(s) for s ∈ [0, s2],
a(s2) + (s − s2)a′(s2) for s > s2.

Then according to [17, Theorem 7.4, Ch. 5], the modified problem

wt − div(ã(|∇w|2)∇w) = 0 in Ω × (0, T), (6.1)

ã(|∇w|2)
∂w

∂ν
= 0 on∂Ω × (0, T), (6.2)

w(x, 0) = u0(x) on Ω, (6.3)
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has a classical solutionw ∈ C2,α(QT ) for everyT > 0. Since (6.1) is a forward
parabolic equation, the weak maximum principle holds for the modified version
of (3.5)(3.6)(3.7), so that

sup
QT

|∇w(x, t)| ≤ sup
Ω

|∇u0(x)| ≤ s1 < s0.

Thusw is a solution not only of (6.1)(6.2)(6.3) but of (1.1)(1.2)(1.3). Moreover
this solution remains subsonic, and this is in accordance with Theorem 3.1.

For transsonic initial data, the problem of local existence ofC1 solutions
appears to be wide open. Various approaches have been suggested, for instance
regularization by operators of third and fourth order inx, as described in [3],
but they seem to lead to different solutions as the regularization parameter goes
to zero. De Giorgio suggested to prove convergence of a numerical difference
scheme in [7]. We tried an adaptation of Rothe’s method which would take
forward resp. backward approximations into account, but could not prove con-
vergence of the method either. We also tried a series expansion of a solution in
the analytical case. Formal expansion gave us a good guess on the exact structure
of solutions, but we were unable to prove the absolute convergence of our series.

A viscosity solution approach has been dismissed as hopeless by several
colleagues, because the divergence type operator in (1.1) has eigenvalues of
varying sign and is not even degenerate elliptic. However, one can multiply (1.6)
in the one-dimensional situation byb and rewrite it as

b(|ux |2)ut − b2(|ux |2)uxx = 0. (6.4)

But (6.4) is degenerate elliptic and can be regularized for example to

ε(uε
tt + uε

xx) + b2(|uε
x |2) uε

xx − b(|uε
x |2) uε

t = 0 in QT . (6.5)

Of course (6.5) can be supplemented by Dirichlet data on the top and bottom
part of ∂QT , i.e. for t = 0 and t = T, and by homogeneous Neumann data
on the lateral boundary of the space-time cylinder, and this elliptic boundary
value problem can be solved for everyε > 0. What happens forε → 0? As for
the ordinary heat equation or in other degenerate parabolic settings such as in
[14] we cannot expect the “viscosity limit” to satisfy the given boundary data
on the supersonic part of the boundary. This is a well known effect in singular
perturbation theory, but one should be aware that the viscosity limit still satisfies
the Dirichlet condition in a viscosity sense, see [14]. Instead we should expect
the viscosity limit to develop discontinuities, but then we are outside the class of
C1 solutions. One would have to develop a satisfactory theory of discontinuous
viscosity solutions for second order equations. This is outside the scope of the
present manuscript.

At the risk of confusing the reader, let us finally report on the so-called “stair-
casing effect” which is sometimes observed by numerical analysts. Staircasing
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means that spatial profiles of moderate slope develop small step-like oscilla-
tions on the scale of the meshsize. This effect is not a numerical artefact intro-
duced by discretization, but there is an analytical interpretation for it. The energy∫

Ω
A(|∇u|2) dx associated to (1.1) has a nonconvex integrandA. By developing

steps, the energy ofu decreases to the one given by the convex relaxation ofA.
We believe that this happens for the continuous equation after some finite time.
Therefore it would not contradict the local existence ofC1 solutions nor our
results on shape preservation.
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