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Abstract: We give a short proof that positive eigenfunctions for the p-Laplacian
are necessarily associated with the first eigenvalue and that they are unique modulo
scaling.
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1 Introduction

In a given bounded domain Ω in Rn the problem of minimizing the Rayleigh quo-
tient ∫

Ω
|∇v|pdx∫

Ω
|v|pdx

(1 < p < ∞) (1.1)

among functions v ∈ W 1,p
0 (Ω) with boundary values zero leads to the Euler-

Lagrange equation
div(|∇u|p−2∇u) + λ|u|p−2u = 0 . (1.2)

Weak solutions of this equation are called eigenfunctions. This nonlinear eigenvalue
problem was introduced by E. Lieb in 1983, cf. [9], and independently by F. de
Thélin [16]. Restricted to a nodal domain, any eigenfunction is a first one there.
This conclusion requires the following theorem.

Theorem 1.1 Suppose that Ω is an arbitrary bounded domain. A positive eigen-
function in Ω is unique (up to multiplication with constants). Therefore λ = λ1,
the infimum of the Rayleigh quotient (1.1).
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We have stated the theorem for arbitrary domains for the following reason. Al-
though the original domain might be smooth, this is not always inherited by the
nodal domains of higher eigenvalues, to which the theorem is often applied. There-
fore it is expedient to allow for irregular domains. The theorem is well-known but
the hitherto available proofs are rather complicated. The objective of our note is
to provide a simple proof, valid in arbitrary domains.

M. Belloni and B. Kawohl have found a short variational proof of the simplicity
of the first eigenvalue (principal frequency). In [5] they established the uniqueness
of minimizers (which are positive by nature). However, their proof does not exclude
the possibility of positive eigenfunctions that are not minimizers of (1.1). We will
now complement their proof by showing that such functions cannot exist. In smooth
domains a simple and appealing proof of M. Ôtani and T. Teshima excludes such
eigenfunctions, cf. [13]. Our contribution is to adapt their reasoning to irregular
domains.

Taken as a whole, this yields a simpler proof than the older proofs by A. Anane
[2], P. Lindqvist [10] and W. Allegretto & Y. Huang [1].

Remarks.
Our results remain true (and the proofs are literally identical) if the Dirichlet

condition u = 0 is only assumed on a part Γ1 of the boundary, where Γ1 has
positive (n− 1)-dimensional measure. In that case the natural boundary condition
on Γ2 := ∂Ω \ Γ1 is Neumann’s boundary condition ∂u

∂ν = 0.
The simplicity of the first eigenvalue has been much studied. After a partial

result in [17], the case of a ball was proved in [7] and [3]. A. Anane proved the
theorem in smooth domains, cf. [2]. C2-domains were considered in [14] and [4]. In
1990 P. Lindqvist proved the theorem in arbitrary domains, essentially by improv-
ing Anane’s test function, cf. [10]. Another proof, based on an identity of Picone’s
type, was constructed by W. Allegretto & Y. Huang in [1]. The variational proof
of M. Belloni and B. Kawohl is by far the simplest, though restricted to true min-
imizers of the Rayleigh quotient, cf. [5]. For the one-dimensional case, we refer to
[12], [11] or [15].

Acknowledgement.
This research is part of the ESF program “Global and geometricalk aspects of

nonlinear partial differential equations (GLOBAL)”.

2 Preliminaries

Let Ω denote an arbitrary bounded domain in Rn. Fix an exponent p in the range
1 < p < ∞. An elementary inequality shows that

λ1 = inf
ϕ∈C∞0 (Ω)

∫
Ω
|∇ϕ|pdx∫

Ω
|ϕ|pdx

> 0 .
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The infimum is attained for a function v1 in the Sobolev space W 1,p
0 (Ω), and

without loss of generality v1 > 0. To be on the safe side, we give the interpretation
of the Euler-Lagrange equation (1.2) in the weak sense.

Definition 2.1 We say that v ∈ C(Ω) ∩W 1,p
0 (Ω), v 6≡ 0, is an eigenfunction, if∫

Ω

〈|∇v|p−2∇v,∇ϕ〉dx = λ

∫
Ω

|v|p−2vϕdx (2.1)

whenever ϕ ∈ C∞0 (Ω). The corresponding real number λ is called an eigenvalue.

By standard elliptic regularity theory the continuity requirement on v is redundant
in the definition. If Ω is smooth, one even has continuity up to the boundary:
v ∈ C(Ω̄) and v|∂Ω = 0. If v ≥ 0, then v > 0 because of the Harnack inequality
[18]: if v is a non-negative eigenfunction, then

max
B̄r

v ≤ Cn,p ·min
B̄r

v

whenever Br = B(x0, r) and B(x0, 2r) ⊂ Ω.
In passing, we mention that the existence of a positive eigenfunction follows

easily. The direct method in the Calculus of Variations yields a minimizer, say
v. Then also |v| is minimizing and hence |v| is an eigenfunction. By Harnack’s
inequality |v| > 0 in Ω. By continuity v does not change sign.

Proposition 2.2 Let
Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · ⊂ Ω

be an exhaustion of Ω =
∞⋃

j=1

Ωj. Then

lim
j→∞

λ1(Ωj) = λ1(Ω) .

Proof. Since λ1(Ω1) ≥ λ1(Ω2) ≥ . . . ≥ λ1(Ω), the limit exists. Given ε > 0, there
is a ϕ ∈ C∞0 (Ω) such that ∫

Ω
|∇ϕ|pdx∫

Ω
|ϕ|pdx

< λ1(Ω) + ε ,

because λ1(Ω) is the infimum. For j large enough supp(ϕ) ⊂ Ωj . Hence

λ1(Ωj) ≤

∫
Ωj
|∇ϕ|pdx∫

Ωj
|ϕ|pdx

=

∫
Ω
|∇ϕ|pdx∫

Ω
|ϕ|pdx

.

It follows that λ1(Ω) ≤ λ1(Ωj) ≤ λ1(Ω) + ε for sufficiently large j.
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3 The proof

The proof of the lemma below is an adaptation of the method of Ôtani & Teshima
in [13]. We avoid their argument about the normal derivatives.

Lemma 3.1 If λ > λ1, there are no positive eigenfunctions with eigenvalue λ. In
other words, any positive eigenfunction is a minimizer of the Rayleigh quotient.

Proof By contradiction. Assume that a positive eigenfunction v with eigenvalue
λ > λ1(Ω) exists. Using the Proposition and the fact that any bounded domain can
be exhausted by a sequence of smooth domains (see for instance ([8], pp.317–319
or [6], p. 124), we can construct a smooth domain Ω∗ ⊂⊂ Ω such that also

λ∗1 = λ1(Ω∗) < λ .

Let v∗1 denote the corresponding first eigenfunction in Ω∗. Since ∂Ω∗ is smooth,
we have v∗1 ∈ C(Ω∗) and v∗1 = 0 on the boundary ∂Ω∗. Because

min
Ω∗

v > 0 ,

we can arrange it so that
v∗1 ≤ v in Ω∗ (3.2)

by multiplying v∗1 by a small constant, if needed. We define

κ :=
(

λ∗1
λ

) 1
p−1

. (3.3)

It is decisive that 0 < κ < 1. We claim that

−div(|∇v∗1 , |p−2∇v∗1) ≤ −div(|∇(κv)|p−2∇(κv)) ,

from which it follows that
v∗1 ≤ κv in Ω∗ . (3.4)

Indeed, for a test function ϕ ≥ 0 we can use (3.2) and (3.3) to verify∫
Ω∗
〈∇v∗1 |p−2∇v∗1 ,∇ϕ〉dx = λ∗1

∫
Ω∗

(v∗1)p−1ϕdx

≤ λ∗1

∫
Ω∗

vp−1ϕdx = λ

∫
Ω∗

(κv)p−1ϕdx

=
∫

Ω∗
〈|∇(κv)|p−2∇(κv),∇ϕ〉dx .

We may take ϕ = (v∗1 − κv)+. It follows that∫
v∗1≥κv

〈|∇v∗1 |p−2∇v∗1 − |∇(κv)|p−2∇(κv),∇v∗1 −∇(κv)〉dx ≤ 0
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and hence v∗1 ≤ κv by the elementary inequality

〈|b|p−2b− |a|p−2a, b− a〉 > 0 for a 6= b .

Thus we have proved (3.4).
Repeat the procedure, now with κv in the place of v. The conclusion is that

v∗1 ≤ κ2v. By iteration,

0 ≤ v∗1 ≤ κjv −→ 0 as j −→∞ .

This yields the contradiction v∗1 = 0.

Remark. The zero boundary values of v have no bearing. The proof shows that
the equation (1.2) cannot have a positive weak solution for λ > λ1.

For the benefit of the reader we reproduce the proof from [5] for minimizers.

Lemma 3.2 The minimizer of the Rayleigh quotient (1.1) is unique, except that
multiplication with constants is possible.

Proof. We can assume that the minimizers are positive. If u1 > 0 and u2 > 0 are
minimizers, then we consider v = (up

1 + up
2)

1/p and observe that for i = 1, 2

λ1 =

∫
Ω
|∇ui|pdx∫

Ω
|ui|pdx

≤
∫
Ω
|∇v|pdx∫

Ω
|v|pdx

. (3.5)

We can write

∇v = v

(
up

1∇ log u1 + up
2∇ log u2

up
1 + up

2

)
whence we have a convex combination of∇ log ui. By Jensen’s inequality for convex
functions

|∇v|p ≤ vp

(
up

1|∇ log u1|p

up
1 + up

2

+
up

2|∇ log u2|p

up
1 + up

2

)
= |∇u1|p + |∇u2|p .

The inequality is strict where ∇ log u1 6= ∇ log u2. By integration and (3.5) we get
the contradiction

λ1 <

∫
Ω
|∇u1|pdx +

∫
Ω
|∇u2|pdx∫

Ω
up

1dx +
∫
Ω

up
2dx

= λ1

if ∇ log u1 6= ∇ log u2 on a set of positive measure. Hence ∇ log u1 = ∇ log u2 a.e.
in Ω. It follows that u1 = Cu2 or u2 = Cu1 for some positive constant C.
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[6] Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear potential theory of de-
generate elliptic equations. Oxford University Press, New York, 1993.

[7] Kawohl, B., Longinetti, M., On radial symmetry and uniqueness of positive
solutions of a degenerate elliptic eigenvalue problem. Z. Angew. Math. Mech.
68 (1988), T459–T460.

[8] Kellogg, O.D., Foundations of Potential Theory, Die Grundlehren der Math-
ematischen Wissenschaften 31, Springer, Berlin 1929.

[9] Lieb, E., On the lowest eigenvalue of the Laplacian for the intersection of two
domains. Inventiones Mathematicae 74 (1983), 441–448.

[10] Lindqvist, P., On the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0. Proc. AMS
109 (1990), 157–164. Addendum, ibid. 116 (1992), 583–584.

[11] Lindqvist, P., Some remarkable sine and cosine functions. Ricerche Mat. 44
(1995), 269–290.
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