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Introduction

Certain three-dimensional convex bodies have a counterintuitive property;
they are of constant width. In this particular respect they resemble a sphere
without being one. Discovered a century ago, Meissner’s bodies have often
been conjectured to minimize volume among bodies of given constant width.
However, this conjecture is still open. We draw attention to this challenging
and beautiful open problem by presenting some of its history and its recent
development.

One Century of Bodies of Constant Width

In §32 of their famous book “Geometry and the Imagination”, Hilbert
and Cohn-Vossen list eleven properties of the sphere and discuss which of
these suffices to uniquely determine the shape of the sphere [22]. One of
those properties is called constant width: if a sphere is squeezed between
two parallel (supporting) planes, it can rotate in any direction and always
touches both planes. As the reader may suspect, there are many other con-
vex sets with this property of constant width. To indicate this property in
common with spheres, such three-dimensional objects are sometimes called
spheroforms ([8, p. 135], [36], [7, p. 33]).

Some of the three-dimensional convex sets of constant width have a rota-
tional symmetry. They can be generated by rotating plane sets of constant
width with a reflection symmetry about their symmetry line. The drawing in
Figure 1 is taken from a catalogue of mathematical models produced by the
publisher Martin Schilling in 1911 [34, p. 149]. Influenced by mathematicians
like Felix Klein, such models were produced for educational purposes, many
of which were made by plaster. Figure 1 appears to be the earliest drawing
showing a nontrivial three-dimensional body of constant width. This body
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Figure 1: Rotated regular Reuleaux triangle, squeezed between a gauging
instrument

is generated by rotating the Reuleaux triangle around its axis of symme-
try. The Schilling catalogue also advertises another rotational as well as a
nonrotational body of constant width. The author of its mathematical de-
scription is Ernst Meissner, with the help of Friedrich Schilling, not to be
confused with Martin Schilling, the editor of the catalogue ([34, p. 106f.],
and for a slightly expanded version see [28]). Since Meissner seems to have
discovered this body, it is called a Meissner body. Although it is obvious
that its construction can lead to two noncongruent bodies of constant width,
Meissner explicitely describes only one of them, MV (for details we refer to
the paragraph headed by ”Identifying the Suspect” below). Because their
construction follows similar principles, one often speaks of “the” Meissner
body.

The earliest printed photograph of a plaster Meissner body, the one de-
scribed in the Schilling catalogue MV , can be found in the 1932 German
version of “Geometry and the Imagination”, shown in Figure 2 [22, p. 216].
Photographs of all three bodies of constant width mentioned by Meissner
can be found in more recent publications ([7, p. 64ff.], [16, p. 96–98]). The
mathematical models must have been selling well because they can still be
found in display cases of many mathematical departments. For instance,
they can be found not only at many German universities (for the plas-
ter model of the Meissner body MV at the Technical University of Halle
in Germany see http://did.mathematik.uni-halle.de/modell/modell.

php?Nr=Dg-003) but also at Harvard University in the US and even at
the University of Tokyo (http://math.harvard.edu/~angelavc/models/
locations.html).

Certainly there are many more bodies of constant width than the four
mentioned so far. A very nice collection is displayed in the exhibit “Pierres
qui roulent” (“Stones that Roll”) in the Palais de la Découverte in Paris (see

http://did.mathematik.uni-halle.de/modell/modell.php?Nr=Dg-003
http://did.mathematik.uni-halle.de/modell/modell.php?Nr=Dg-003
http://math.harvard.edu/~angelavc/models/locations.html
http://math.harvard.edu/~angelavc/models/locations.html
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Figure 2: Plaster Model of Meissner body MV

Figure 8 at the end of the paper). In addition to some rotated Reuleaux poly-
gons (two triangles, four pentagons) it shows two Meissner bodies, both of
the same type MF . The exhibit allows the visitor to obtain a hands-on, tac-
tile experience of the phenomenon of constant width. Sliding a transparent
plate over these bodies of the same constant width causes these bodies to roll,
while the plate appears to slide as if lying on balls. Of course there are also
many other, nonrotational bodies of constant width. For their construction
see [36], [24], [31] and [2].

In this article we restrict our attention for the most part to the three-
dimensional setting. The reader can find more material in excellent surveys
on plane and higher-dimensional sets of constant width, e.g. in Chakerian &
Groemer [12], Heil & Martini [21] or Böhm & Quaisser [7, ch. 2].

As already mentioned there are two different types of Meissner bodies MV

and MF (their construction will be described below). They have not only
identical volume and surface area, but are conjectured to minimize volume
among all three-dimensional convex bodies of given constant width. As these
bodies were discovered one century ago and because the problem is still
unsolved, it is appropriate to raise awareness of this challenging and beautiful
open problem by presenting some of its history and recent development.

Although we could not find a written record by Meissner himself which
explicitly states the conjecture, he seems to have guessed that his bodies are
of minimal volume [7, p. 72]. While Hilbert and Cohn-Vossen in their book
of 1932 do not comment in this direction, Bonnesen and Fenchel mention
the conjecture two years later. In the German edition of their “Theory of
Convex Bodies”, they write: “es ist anzunehmen” which still reads “it is to be
assumed” in the English edition of 1987 [8, p. 144]). Since then the conjecture
has been stated again and again. For example, Yaglom and Boltyansky
make it in all editions of their book “Convex Figures”, from the Russian
“predpolagaiut” in 1951, via the German “es ist anzunehmen” in 1956 to the
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Figure 3: Nonregular Reuleaux tetragon with four circular arcs

English “we shall assume without proof” in 1961 [39, p. 81].
On the other hand, there was the belief that the body which minimizes

volume among all three-dimensional bodies of constant width must have the
symmetry group of a regular tetrahedron, a property not displayed by the
Meissner bodies. This belief was first expressed by Danzer in the 1970’s
as Danzer has confirmed to us in personal communication ([19, p. 261], [13,
p. 34] and [7, p. 72]). In 2009 an attempt was made to arrive at a body of full
tetrahedral symmetry and minimal volume via a deformation flow argument
[17].

Incidentally, the Minkowski sum 1
2
MV ⊕ 1

2
MF , which one obtains half way

in the process of morphing MV into MF , would render a body with tetrahedal
symmetry (see Fig. 7). It actually has the same constant width as MV and
MF . Its volume, however, is larger than that of the Meissner bodies, due to
the Brunn-Minkowski inequality. It can be shown that the increase in volume
is slightly more than 2 ‰ of the volume of the Meissner bodies [32].

Generating Constant Width Bodies by Rotation

Every two-dimensional convex set can be approximated by convex poly-
gons. Similarly, every two-dimensional convex set of constant width can be
approximated by circular arcs and thus by Reuleaux polygons of constant
width. If the arcs are all of the same length, one has regular Reuleaux tri-
angles, pentagons and so on. But to generate a plane convex set of constant
width, it is not necessary that all circular arcs are of the same length. Fig-
ure 3 shows a plane set of constant width, a Reuleaux tetragon, which is
constructed along the lines of [9, p. 192f.]. Note that it is bounded by four
circulare arcs.

Whenever a plane set of constant width is reflection symmetric with re-
spect to some axis, it can be rotated around that axis to generate a three-
dimensional set of constant width. A regular rotated Reuleaux triangle leads
to the body shown in Figure 1, and if an appropriate nonregular Reuleaux
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Figure 4: Rotated nonregular Reuleaux tetragon (side and top view)

tetragon or a Reuleaux trapezoid is rotated, one will obtain a body like the
one in Figure 4. Both are not only bodies of revolution but three-dimensional
sets of constant width [9, p. 196f.].

According to the theorem of Blaschke-Lebesgue the Reuleaux triangle
minimizes area among all plane convex domains of given width. Thus one
could expect that the rotated Reuleaux triangle in Figure 1 would minimize
volume among all rotational bodies of given width. It was not until recently
(1996 and 2009) that this longstanding conjecture was confirmed ([10], [25]
and [1]).

Identifying the Suspect: Meissner Bodies

The plane Reuleaux triangle of constant width d is constructed as the
intersection of three discs of radius d, each centered at a different corner
of an equilateral triangle. In an analogous way a Reuleaux tetrahedron RT

can be constructed by intersecting four balls of radius d, each of which is
centered at a vertex of a regular tetrahedron with side length d. It consists
of four vertices, four pieces of spheres and six curved edges each of which is
an intersection of two spheres.

Whenever this Reuleaux tetrahedron is squeezed between two parallel
planes with a vertex touching one plane and the corresponding spherical
surface touching the other, their distance is d by construction. However,
the distance of the planes must be slightly enlarged by a factor of up to√

3 −
√

2
2
≈ 1.025 when the planes touch two opposite edges of RT . This

means that the width of RT is not constant but varies depending on its
direction up to 2.5 %. Incidentally, as Meissner mentioned in [27, p. 49], the
ball is the only body of constant width that is bounded only by spherical
pieces. Thus RT is not of constant width, because it is bounded only by
spherical pieces and is different from a ball.
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Figure 5: Replacing three wedges (left, one shaded gray) by pieces of spindle
tori (right)

Nevertheless, RT can be used as a starting point for a set of constant
width. According to Meissner, some edges must be rounded off by the fol-
lowing procedure ([28], [8, p. 144], [39, p. 81], [6, p. 54f.]):

a) Imagine two planes bounding adjacent facets of the underlying tedrahe-
dron. Remove the wedge located between the two planes and containing
the curved edge of RT of the Reuleaux tetrahedron (see figure 5 from
[39, p. 81]).

b) The intersection of the planes with RT contains two circular arcs that
meet in the two ends of the wedge. Rotate one of these arcs around the
corresponding edge of the tetrahedron. This generates a spindle-shaped
surface, a spindle torus.

c) Notice that now the sharp edge has become a differentiable surface even
across the boundary between spindle-torus and spherical piece.

After rounding off three edges of RT that meet in a vertex, according to
this procedure, one obtains the first type of Meissner body, MV (see Figure
6, left). The second Meissner body MF is obtained by rounding off three
edges surrounding one of faces of RT (see Figure 6, right). The resulting
Meissner body features four vertices, three circular edges, four spherical and
three toroidal surfaces. Both bodies have identical volume and surface area,
and they are invariant under a rotation of 120◦ around a suitable axis. A
computer animation showing both bodies MV and MF from all sides can be
watched under [38].

Meissner bodies touch two parallel planes between which they are squeezed
always in one of two possible ways: either one contact point is located in a
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Figure 6: Meissner body MV with rounded edges meeting in a vertex (left)
and Meissner body MF with rounded edges surrounding a face (right)

vertex and the antipodal contact point is located on a spherical piece of
the body or one contact point is located on a sharp edge and the antipodal
contact point is located on a rounded edge of the body.

Their constant width becomes obvious if one intersects a sharp, non-
rounded edge opposite the rounded edge with a plane orthogonal to the sharp
edge. In this plane the sides of the original tetrahedron form an isosceles
triangle like the one in Figure 3. The line segment passing from the sharp
edge of RT through the opposite sharp edge of the regular tetrahedron varies
in length and is generally shorter than the width d. If its length is extended
to d, one arrives at the boundary of the edge that has been rounded off.

Meissner showed the constant width of his bodies using Fourier series [27,
p. 47ff.]. Like Hurwitz, he originally studied convex closed curves inscribed in
a regular polygon which remain tangent to all the sides of the polygon during
rotations of the curve. Nowadays such curves are called rotors. Following
Minkowski he characterized the curves by their support functions (length
of the polar tangents). These are periodic and thus can be expanded in a
Fourier series. Using this technique he finally succeeded in describing all
rotors of regular polygons analytically [26]. With the analogous technique in
three dimensions, he was able to determine the rotors of the cube as bodies
of constant width. He even proved that non-spherical rotors do exist not
only for the cube, but also for the regular tetrahedron and octahedron. In
contrast, there exist no non-spherical rotors for the regular dodecahedron and
icosahedron ([30], for some mechanical adaptions of Meissner’s technique see
[9, p. 213ff.]).

Volume and Surface Area of the Meissner bodies

In this section we give some numerical results on the volume and surface
area of the Meissner body of constant width d. The volume VMV

and VMF
of
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Figure 7: Morphing MV to MF including the Minkowski mean (second frame)

the two Meissner bodies is identical and is given by

VMV
= VMF

=

(
2

3
−
√

3

4
· arccos

1

3

)
· π · d3 ≈ 0.419860 · d3,

see [12, p. 68], [7, p. 71], [35, A137615], [31, p. 40–43]. Therefore we will
not distinguish between MV and MF . The volume of the Meissner body
is approximately 80 % of the volume π/6 of a ball of diameter 1 and it is
considerably smaller (by about 6 %) than the volume of the rotated Reuleaux
triangle R3, which is given by

VR3 =

(
2

3
− π

6

)
· π · d3 ≈ 0.449461 · d3.

in [10] and [35, A137617]. As far as we know, the highest lower bound for
the volume of a body K of constant width 1 is the one given by Chakerian
et al. in 1966,

VK >
π

3
·
(

3
√

6− 7
)
· d3 ≈ 0.364916 · d3,

see [11] and [24].
The surface area SMV

and SMF
of the two Meissner bodies is identical,

as well, and is given by

SMV
= SMF

=

(
2−
√

3

2
· arccos

1

3

)
· π · d2 ≈ 2.934115 · d2,

see [12, p. 68], [7, p. 71], [35, A137616]. This follows from the remarkable fact
that in three dimensions the volume VK and surface area SK of a convex body
K of constant width d are related through Blaschke’s identity ([5, p. 294],
[12, p. 66])

VK =
1

2
· d · SK −

π

3
· d3.
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Figure 8: Various Bodies of Constant Width (Palais de la Découverte, Paris)

Since VK is monotone increasing in SK , the question of finding the set
that minimizes volume is equivalent to finding the set that minimizes sur-
face area (or generalized perimeter) of K among all convex sets of constant
width. Incidentally, this is in sharp contrast to the two-dimensional case, in
which, according to a theorem of Barbier, all sets of constant width d are
isoperimetric, that is they have the same perimeter π · d ([3], [8, p. 139]).

The major part of the surface of the Meissner body consists of pieces of
a sphere of radius d. The rounded edges (or spindle tori) have an angle of
rotation of arccos(1/3) and their smaller principal curvature is constant and
has the value 1/d. Their part of the surface area is

SSp = 3 ·
arccos(1

3
)

2π
· 2π · d2 ·

1∫
0

(√
3

4
+ x− x2 −

√
3

2

)
· dx ≈ 0.334523 · d2.

In other words, the nonspherical pieces of the surface of a Meissner body
make up about 11 % of the total surface area.

Circumstantial evidence, but no proof

Why do we believe that Meissner bodies minimize volume among all
three-dimensional convex bodies of constant width? There are more than
a million different reasons for it. Clearly the fact that the conjecture re-
mained unsolved for so long shows that a counterexample is hard to come
by. But there is more than this one reason supporting the conjecture. In 2007
Lachand-Robert and Oudet presented a method to construct a large variety
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of bodies of constant width in any dimension, see [24]. For plane domains
this construction boils down to a method of Rademacher and Toeplitz from
1930 [33, p. 175f.]. Their algorithm begins with an arbitrary body of con-
stant width Kn−1 in (n−1) dimensions and arrives at a body Kn of constant
width in n dimensions with Kn−1 as one of its cross sections. It was used
in 2009 to generate randomly one million different three-dimensional bodies
of constant width [31]. None of them had a volume as small as that of a
Meissner body. It should be noted, however, that while the algorithm can
generate every two-dimensional set of constant width from a one-dimensional
interval, it cannot generate all three-dimensional sets of constant width, but
only those that have a plane cross section with the same constant width. In
[14], Danzer describes a set K3 of constant width d for which each of its cross
sections has a width less than d.

Analysts have recently tried to identify the necessary conditions that a
convex body M of minimal volume and given constant width must satisfy.
The existence of such a body follows from the direct methods in the calculus
of variations and the Blaschke selection theorem. Let us mention in passing
that the boundary of M cannot be differentiable of class C2. If it were, one
could consider Mε := {x ∈M | dist(x, ∂M) > ε > 0}, that is the set M with
a sufficiently thin ε-layer peeled off and with a volume less than the one of
M . According to the Steiner formula, its volume VMε can be expressed in
terms of the volume VM of M , the mean width dMε of Mε and the surface
area SMε of M as follows

VMε = VM − ε · SMε − dMε · ε2 − 4π

3
· ε3.

By construction, and because of our smoothness asumption Mε is a body of
constant width d − 2ε. Therefore its mean width is dMε = d − 2ε. If one

blows Mε up by a linear factor of d/(d− 2ε) to a set M̃ , its volume is given
by

VfM =

(
d

d− 2ε

)3

· VMε

and M̃ is of constant width d again. It is now possible to show that VfM <
VM , which shows that no body of class C2 can minimize volume. In fact,
VfM < VM , provided (d− 2ε)3 · VfM = d3 · VMε < d3 · VM , or equivalently

d3 ·
(
VM − ε · SMε − (d− 2ε) · ε2 − 4π

3
· ε3

)
< d3 · VM .

This shows that for sufficiently small ε the volume VfM stays below the original
volume VM of M and contradicts the minimality of M ’s volume.



11

Figure 9: Ernst Meissner (1883–1939), ETH-Bibliothek Zürich, Bildarchiv

In 2007 a stronger result was shown: Any local volume minimizer cannot
be simultaneously smooth in any two antipodal (contact) points [4]. In other
words, squeezed between two parallel plates, one of the points of contact
with the plane must be a vertex or a sharp-edge point. As already pointed
out, Meissner bodies have this property. Because rotated Reuleaux polygons
satisfy this property as well, this result also supports the conjecture without
proving it. Finally, in 2009, it was shown by variational arguments that a
volume minimizing body of constant width d has the property that any C2

part of its surface has its smaller principal curvature constant and equal to
1/d [1]. Again, Meissner bodies meet this criterion, as well, because they
consist of spherical and toroidal pieces with exactly this smaller principal
curvature.

After this paper was accepted for publication we learned from Qi Guo in
personal communication, that Qi Guo and and Hailin Jin had just observed
another remarkable property of Meissner’s bodies. It is well known that
the inradius r and circumradius R of a body of constant width add up to
d. The ratio R/r of these two radiii is a measure of asymmetry for a set,
and according to the observation of Guo and Lin it is maxmized (among all
three-dimensional bodies of constat width) by Meissner’s bodies. For those
bodies R/r = (3 + 2

√
6)/5) ≈ 1.5798. In fact R is maximized, given d, by

a Meissner body, see e.g. [18], and so r is minimized and a fortiori R/r is
maximized. It is in this sense that Meisner’s bodies are more slender and
should have less volume than others of constant width d.

All these results seem to suggest that it will not take another century
until the conjecture is confirmed.

Appendix: CV of Ernst Meissner

Who was the man who discovered the body that is presumed to minimize
volume? Ernst Meissner was born on 1 September, 1883 as the son of a
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manufacturer in Zofingen (Switzerland). He attended secondary school in
Aarau, where he had the same teacher in mathematics as previously Albert
Einstein, Heinrich Ganter. Ganter’s style of teaching is described as follows.
“He was a good mathematician but not, in his own reckoning good enough
to pursue a career in higher mathematics. But he could teach, something
that many speculative gentlemen cannot do. [. . . ] Ganter never treated us
demeaningly, but taught us as men.” Meissner himself described him “as a
teacher who, far from transmitting mere information to prepare a pupil for a
career, educated the heart and character and truly civilized his charges. If all
teachers were like Ganter, [. . . ] there would be no need for school reform.”
[15, p. 91]

Meissner’s own dedication to teaching is evident from a public lecture
that he gave on Nov. 18, 1915 in the townhall of Zurich. The renowned
newspaper “Neue Zürcher Zeitung” (NZZ) dedicated half a page to his lec-
ture “Why does mathematics appear difficult and boring to some while it
does not to others?” [29]. For Meissner grasping a mathematical concept
is more than passively understanding its logics. In fact, many people are
capable of logical thinking without appreciating mathematics. The deeper
understanding of mathematics is rather connected with the creation of one’s
own mental images and concepts. Meissner promotes the idea that mathe-
matical education should not confront pupils with abstract and fully matured
facts. Instead it should enable them to construct and connect mental images
in several ways. To a great extent his criticism still applies to contemporary
teaching.

After graduating from school Meissner studied from 1902 to 1906 at the
Department of Mathematics and Physics of the Swiss Polytechnic, which was
later to become the Swiss Federal Institute of Technology (ETH) in Zurich.
He was awarded a doctorate there on the basis of a thesis in number theory.
After two semesters at the University of Göttingen, where he studied with
Klein, Hilbert and Minkowski, he returned to the ETH. There he qualified
as a professor (Habilitation) in 1909 in mathematics and mechanics. A year
later he was offered the chair of technical mechanics which he held until 1938.
Ernst Meissner died on March 17, 1939 in Zollikon (near Zurich).

Meissner’s scientific achievements were extraordinarily diverse (for a list
of his publications see [23, p. 294f.]). In his earlier works he dealt with
questions in pure mathematics (geometry, number theory). Not only his
dissertation but also his investigations on sets of constant width fall within
this period. During the years between 1910 and 1920 he turned increasingly
toward applied mathematics (graphic integration of differential equations,
graphic determination of Fourier coefficients) and then to mechanics (geo-
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Figure 10: Meissner 1931 teaching students suffering from tuberculosis in the
“sanatorium universitaire” in Leysin operated by Swiss universities

physics, seismology, theory of oscillations). It is in these applied papers that
Meissner’s true scientific achievements lie because, like Franz Reuleaux, the
originator of theoretical kinematics, before him, he always sought his models
in pure, strict mathematics.

In an obituary from 1939 Meissner is depicted as a person who not only
expected much from himself but also from those around him. “Ernst Meiss-
ner demanded the most from himself and others. His intense sense of duty
and professional ethics made him seem strict and reserved. However, those
who knew him better, his nearest friends and his students, were allowed
the unforgettable experience of his extraordinarily comprehensive knowledge
and his deep perception, a truly classical appreciation of beauty, touching
kindness and finely honed wit.” [40]
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[26] E. Meissner, Über die Anwendung der Fourier-Reihen auf einige Auf-
gaben der Geometrie und Kinematik, Vierteljahrsschr. Nat.forsch.
Ges. Zür., 54 (1909), 309–329. (http://www.archive.org/stream/
vierteljahrsschr54natu#page/308/mode/2up)
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tischen Unterricht, Leipzig, 1911. (http://uihistories.ncsa.uiuc.
edu/cgi-bin//rview?REPOSID=8&ID=7970)

[35] N. Sloane, The On-Line Encyclopedia of Integer Sequences, A137615–
A137618, 2008; http://oeis.org/.

[36] G. Tiercy, Sur le surfaces sphériformes, Tôhoku Math. J., 19 (1921),
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