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Abstract: We generalize an old problem and its partial solution of Pólya [7]
to the n-dimensional setting. Given a plane domain Ω ⊂ R2, Pólya asked in
1958 for the shortest bisector of Ω, that is for the shortest line segment l(Ω)
which divides Ω into two subsets of equal area. He claimed that among all
centrosymmetric domains of given area l(Ω) becomes longest for a disk. His
proof, however, does not seem to be valid for domains that are not starshaped
with respect to the center of Ω. In the present note we provide two proofs
that it suffices to restrict attention to starshaped sets. Moreover we state
and prove a related inequality in Rn. Given the volume of a measurable set
Ω with finite Lebesgue measure, only a ball centered at zero maximizes the
length of the shortest line segments running through the origin. In this sense
the ball has the longest shortest piercing.
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1 Motivation and Result

Let Ω be a measurable (possibly unbounded) set with finite volume in Rn,
n ≥ 2. For every z on the unit sphere Sn and ray Lz emanating from the
origin and passing through z we can measure `z(Ω), the length of Lz ∩ Ω,
which can be given by

`z(Ω) =

∫ ∞
0

χΩ(z, r)dr, (1)
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where χΩ(z, r) is the characteristic function of the set Lz ∩ Ω. Note that
`z(Ω) can be infinite for some z ∈ Sn, but since the volume of Ω is finite, this
can happen only on a nullset of Sn. We define the piercing length of Ω as

`(Ω) := inf
z∈Sn

(`z(Ω) + `−z(Ω)) (2)

and prove the following result:

Theorem 1 Let Ω be a measurable (possibly unbounded) set with finite vol-
ume in Rn, n ≥ 2. Then the inequality

`(Ω) ≤ `(Ω∗), (3)

holds, where Ω∗ denotes the ball centered at the origin and of the same volume
as Ω. Moreover, equality holds in (3) if and only if Ω = Ω∗ modulo a set of
measure zero.

For the case n = 2 this theorem was implicitly stated in [7], but the proof
given there had starshaped centrosymmetric domains in mind. We call a set Ω
centrosymmetric (with respect to the origin) iff x ∈ Ω implies −x ∈ Ω and
starshaped (with respect to the origin) iff x ∈ Ω and t ∈ [0, 1] imply tx ∈ Ω.
Later Cianchi gave an independent proof of (3) for convex centrosymmetric
plane domains, see Theorem 4 in [2].

2 Proof

First we prove the theorem for starshaped centrosymmetric sets. In a second
step we show that the maximum of `(Ω) over all starshaped sets is assumed
among centrosymmetric sets. In a third step we show that the maximum of
`(Ω) over all measurable sets with finite n-dimensional Lebesgue measure is
necessarily attained among starshaped sets.

Step 1. Suppose Ω is an arbitrary centrosymmetric starshaped (possibly
unbounded) set with finite volume in Rn but not a ball (modulo a nullset).
Then there must exist a boundary point x of Ω which lies in the interior of
Ω∗, and so does −x. Therefore, the line segment connecting x with −x is
strictly shorter than the diameter of Ω∗, that is `(Ω) < `(Ω∗). For n = 2 this
is Pólya’s proof, but it extends without changes to general n ≥ 2.

2



Step 2. We will prove that if Ω is starshaped but not centrosymmetric, then
it can be replaced by a centrosymmetric starshaped set Ω̃ of same volume as
Ω such that `(Ω) ≤ `(Ω̃). In fact, if we replace the representation of Ω in
polar coordinates `z(Ω) by ˜̀

z(Ω) with(
1

n
(`nz + `n−z)

)1/n

=

(
2

n
˜̀
z
n
)1/n

, (4)

then the set Ω̃ whose boundary is described by `z(Ω̃) := ˜̀
z(Ω) is of same

volume as Ω. Its piercing length, however, has not decreased, because the
convexity of the mapping t 7→ tn implies(

˜̀
z(Ω)

)n

=
1

2
(`nz + `n−z) ≥

(
`z(Ω) + `−z(Ω)

2

)n

≥ (`(Ω))n ,

and after infimizing over z ∈ Sn we arrive at

`(Ω̃) ≥ `(Ω)

as claimed.

Step 3. We will prove the following claim: If Ω is not starshaped, then
it can be replaced by a starshaped set Ω# of same volume as Ω such that
`(Ω) ≤ `(Ω#). This claim and Steps 1 and 2 result in a proof of Theorem 1.

For an arbitrary (possibly unbounded) set Ω with finite volume in Rn its
volume is given by

|Ω| =
∫

Sn

∫ ∞
0

χΩ(z, r)rn−1dr dz

in polar coordinates. Let us consider the function

R#
Ω (z) =

[
n

∫ ∞
0

χΩ(z, r)rn−1dr

] 1
n

(5)

which can be infinite for some z ∈ Sn, but since the volume of Ω is finite, only
on a nullset of Sn. If Ω# is defined (modulo a nullset) as the starshaped set
bounded in polar coordinates by R#

Ω (z), then |Ω| = |Ω#|, that is Ω has been
rearranged by starshaped rearrangement into an equimeasurable starshaped
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set, see [6]. What happens to `(Ω) after this operation? First, it is clear that
the inequality

`(Ω) ≤ `z(Ω) + `−z(Ω) (6)

holds for all z ∈ Sn. Second, due to monotonicity of the function ρ(r) = rn−1,
n ≥ 2, we have the inequality∫ `z(Ω)

0

rn−1dr ≤
∫ ∞

0

χΩ(z, r)rn−1dr

and thus the inequality

1

n
(`z(Ω))n ≤ 1

n

(
R#

Ω (z)
)n

, (7)

which holds for all z ∈ Sn. In turn, (6) and (7) yield the inequalities

`(Ω) ≤ `z(Ω) + `−z(Ω) ≤ R#
Ω (z) +R#

Ω (−z) = `z(Ω#) + `−z(Ω#) (8)

for all z ∈ Sn. Finally, after infimizing (8) over all z ∈ Sn we obtain

`(Ω) ≤ `(Ω#)

which shows that the piercing length of Ω does not decrease in passing from
Ω to Ω#. Since we try to maximize the domain functional `(Ω), it suffices to
study starshaped sets.

For a second proof of Step 3 we can also follow the idea in [3], there for
the case n = 2, and recall a Hardy-Littlewood inequality that seems to be
mathematical folklore. If u and v are two nonnegative functions defined on
R+, and if u∗ denote the decreasing and v∗ the increasing rearrangement of
u and v, then ∫ ∞

0

u(r)v(r) dr ≥
∫ ∞

0

u∗(r)v∗(r) dr.

For the benefit of the reader let us remark in passing that its proof goes along
the lines of Lemma 2.1 in [6] by reduction to the product of two nonnegative
finite sequences. This product becomes minimal when the sequences are
oppositely ordered, see Theorem 368 in [5].

Identifying u with χΩ(z, r) and v with rn−1 gives now

|Ω| =
∫

Sn

∫ ∞
0

χΩ(z, r)rn−1 drdz ≥
∫

Sn

∫ ∞
0

χ∗Ω(z, r)rn−1 drdz = |Ω̃|,
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i.e. the volume of a starshaped set Ω̃ whose characteristic function is given
by χ∗Ω(z, r). While the percing length `(Ω) remains invariant under this rear-
rangement, in fact `(Ω) = `(Ω̃) by construction, the volume decreases, unless
Ω was already starshaped. Now we define Ω# to be a rescaled (enlarged)
version of Ω̃, so that |Ω#| = |Ω|. Then again `(Ω) ≤ `(Ω#) as claimed.

3 Related questions

In this section we address related questions.

A) We have learned from F. Brock that he and M.Willem have considered
planes which cut centrosymmetric n-dimensional bodies into two halves of
equal volume. If An−1(Ω) denotes a cut through Ω which minimizes (n− 1)-
dimensional area, they were able to show that An−1(Ω) ≤ An−1(Ω∗).

B) If one wants to trade the assumption of centrosymmetry against con-
vexity, already in 2 dimensions the question of the longest shortest cut that
bisects area poses a major challenge. If one allows only straight lines to cut
a convex plane set Ω into two parts of equal area (and any straight line can
be shifted to do so), then among all (convex plane) sets of given area, the
length A1 of the bisecting line segment becomes maximal not for the disk
Ω∗, but for the so-called Auerbach triangle T , see [3]. The Auerbach triangle
belongs to a class of so-called Zindler sets. By definition a Zindler set Z has
the remarkable property that every line-segment which bisects the area of Z
has the same length. To be precise [3] contains a proof that

A1(Ω) ≤ A1(T ) (9)

for every plane convex set Ω of given area, while [4] proves (9) for the smaller
class of plane convex Zindler sets.

On the other hand, the shortest curve that bisects the area of the Auer-
bach triangle, is a circular arc and its length is shorter than the diameter of
the disc of equal area. In fact, it has long been conjectured that the among
all plane convex sets of given area, the disk maximizes length of the shortest
curve that bisects the area. In [3] this conjecture is confirmed by a long and
rather technical proof.

C) The result of Brock and Willem described above under A) as well
as our Theorem 1 can be generalized to the k-dimensional setting for all
k = 1, . . . , n− 1. Then it reads as follows: If Ak(Ω) denotes a k-dimensional
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cut (or generalized piercing) through Ω which minimizes k-dimensional area,
then Ak(Ω) ≤ Ak(Ω∗). To prove these results by induction with respect
to k one can follow Steps 1–3: First, using an analytic version of Pólya’s
proof and an iteration from n − k + 1 to n − k for any k = 1, . . . , n − 1,
one can obtain the corresponding (n− k)-dimensional results for starshaped
centrosymmetric sets. Next, using Step 2, one can show that the maximum of
(`(Ω))k is assumed among centrosymmetric sets. Finally, one can show that
the maximum of Ak(Ω) over all measurable sets with finite n-dimensional
Lebesgue measure is necessarily attained among starshaped sets by using the
following observation which can be of independent interest. To formulate the
corresponding result, for any z ∈ Sn and any 1 ≤ p ≤ n let us consider the
function

RΩ(z, p) =

[
p

∫ ∞
0

χΩ(z, r)rp−1dr

] 1
p

. (10)

Lemma 1 Let Ω be a measurable (possibly unbounded) domain with finite
volume in Rn, n ≥ 2. Then the inequality

RΩ(z, p) ≤ RΩ(z, q) (11)

holds for any z ∈ Sn and any 1 ≤ p < q ≤ n. Moreover, equality in (11)
holds if and only if Ω is a starshapped set.

Proof. Let r = ρ1/q. Then by (10),

[RΩ(z, p)]p = p

∫ ∞
0

χΩ(z, r)rp−1dr =
p

q

∫ ∞
0

χΩ(z, ρ1/q)ρ
p
q
−1dρ. (12)

It is clear that in the integral on the right-hand side of (12) one integrates
over the set Lz ⊂ Lz of length

|Lz| =
∫ ∞

0

χΩ(z, ρ1/q)dρ.

Changing in (12) the variable of integration to ρ = rq, we have the relations

|Lz| =
∫ ∞

0

χΩ(z, ρ1/q)dρ = q

∫ ∞
0

χΩ(z, r)rq−1dr = [RΩ(z, q)]q . (13)

Further, due to the fact that the function f(ρ) = ρ
p
q
−1 decreases monotoni-

cally on R+, we conclude from (12) by (13) that

p

q

∫ ∞
0

χΩ(z, ρ1/q)ρ
p
q
−1dρ ≤ p

q

∫ (RΩ(z,q))q

0

ρ
p
q
−1dρ. (14)
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Integrating on the right-hand side of (14) we obtain the inequality

p

q

∫ ∞
0

χΩ(z, ρ1/q)ρ
p
q
−1dρ ≤ (RΩ(z, q))p

which, together with (12), yields (11). Equality in (11) holds iff one has
equality in (14), which in turn implies

RΩ(z, q) =

[
q

∫ `z(Ω)

0

rq−1dr

] 1
q

,

i.e., iff the set Ω under consideration is already starshaped. Finally let us
remark that a discrete version of this Lemma can be found in [6], p.64.
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