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Abstract

We characterize p-harmonic functions including p = 1 and p = oo by using
mean value properties extending classical results of Privaloff from the linear
case p = 2 to all p’s. We describe a class of random tug-of-war games whose
value functions approach p-harmonic functions as the step goes to zero for the
full range 1 < p < o0.

Résumé

On charactérise les fonctions p-harmoniques, y compris les cas p = 1 at p = oo,
en utilisant des propriétés de la moyenne. Ces résultats prolongenent le cas
classique linéaire (p=2) du a Privaloff, a toutes les valeurs de p. Pour tout p
dans l'intervalle (1,00), on décrit une classe de jeux aléatoires de type “tug-of-
war” dont les fonctions valeur approchent le fonctions p-harmoniques lorsque
le pas tend vers zero.
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1. Introduction

In this article we study solutions to a class of non-linear equations that can
be characterized by mean value properties. The quintessential example is the
characterization of harmonic functions by the property

wr)=f, ) g
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Privaloff [24] proved that an upper semicontinuous function u is subharmonic
if and only if
1
lim sup — {][ u(y) dy —u(x)| > 0. (2)
€ B:(x)

e—0

A similar statement for spherical means was obtained by Blasche [1].

If we replace the Laplace equation Au = 0 by a linear elliptic equation
with constant coefficients Lu = ZZ j Wijlly,e; = 0 then mean value formulas
now hold for appropriate ellipsoids instead of balls. This is true also in the
subelliptic case. See Chapter 5 in the recent book [3] and the paper [2] for
updated discussion of mean value properties for solutions of linear equations.

We are interested in understanding mean value properties in the nonlinear
case. We start by observing that in order to characterize continuous harmonic
functions it is enough to ask that the mean value property (1) holds in an
asymptotic sense

u(z) :]{35@) u(y) dy + o(e?) as € — 0. (3)

In fact, even a weaker wviscosity notion suffices. An upper semicontinuous
function u: Q@ C R* — R is subharmonic in €1 if for every x € () and test
function ¢ € C?*(Q) that touches u from above at z we have that

() < o )qﬁ(y) dy + o(e®) as ¢ — 0. (4)

Notice that the characterization (4) implies a simple proof of one half of Pri-
valoff’s characterization. Similarly, solutions to the p-Laplace equation are
characterized by

n+2
p+n

p—2 .
u(r) = ——— < maxu+ min u ¢ +
2(p+n) (Beo)  Bew)

]{3 ROUETCING

in the viscosity sense, for p in the range 1 < p < oo. These facts are proven
in [19]. That is, we have the analogue of Privaloff’s characterization for p-
subharmonic functions by replacing the regular solid average with the nonlinear
average in (5) and using expansions in the viscosity sense. For a related evo-
lution problem see [7] as well as [20], and for general discussion of p-Laplacian
problems including p = 1 and p = oo see [13].

In [22], Peres and Sheffield showed that p-harmonic functions are limits of
value functions of certain tug-of-war games with noise as the step size tends to
zero. These games were modified in [21] so that their value function u., with
step size € > 0, was uniquely defined, and satisfied a dynamic programming



principle of the form

() p—2 { + mi }+n+2][ (v)d
UN\NT ) = ——— max u, min u u s
: 2p+n) \Bt)  Bw J p+ntp S\

when p > 2. See also [15, 16] and [23].

The objectives of this paper are to consider the limit case p = 1, to char-
acterize the 1-harmonic functions in the spirit of (5), and to obtain a dynamic
programming principle valid for all p > 1 for the corresponding tug-of-war
game. Theorem 9 below states that 1-harmonic subsolutions are characterized

by

u(x) = ]{mem u(x + h)dL" 1 (h) + o(e?),

where u(2 +evmin) = min 5,y u(y), and BI"™™ is the (n— 1)-dimensional ball
centered at zero in the hyperplane 7, . . which is perpendicular to v4,;,. Both
definitions are to be understood in the viscosity sense. In Theorems 11 and 13,
we extend this formula to the whole p-range by interpolating between the 1-
Laplacian and the infinity Laplacian. Finally, we state the dynamic program-
ming principle in Lemma 14.

In Section §2 we review the various definitions of viscosity solutions for
the p-Laplacian. In Section §3 we study the limit case p = 1. The results
of this section are used in §4, where we consider p-harmonic functions in the
sense of averages for all p > 1. The corresponding asymptotic mean value
characterization is derived in Section §5. Finally in §6 we describe a tug of
war game whose value function satisfies an appropriate dynamic programming
principle.

2. Viscosity solutions of the normalized p-Laplacian

Let u be a real valued function of class C? with non-vanishing gradient.
For p € [1, 00) the normalized version of the p-Laplace operator acting on w is

1 1
Ay = =|Vul* PAyu = = |Vu>? div(|Vul[’~*Vu)
p p
while for p = oo we set
ANy = |Vu| 2 Au = |Vu| ™2 (D*u Vu, Vu)

After a calculation we see that

div(|VuP~*Vu) = [Vul'7 ((p — 2) \Vu| ™% (D*u Vu, Vu) + Au)
= [Vul"? ((p — 2)AL + Au)
_ - N N (6)
= |[Vul7? ((p — DAL u + (Au — Al u))
= [Vul"™ ((p — DAZu + Af'w)

w



and thus ) .

where ¢ is the Holder conjugate of p, 1/p+1/q = 1. Note that AY = (1/2)Au
and that
Au =AY + AL,

As the name viscosity solution suggests, one of their origins lies in adding an
artificial viscosity term eAu to a degenerate elliptic equation and sending € to
zero. For the normalized 1-Laplacian this amounts to studying equations like
eAuc+AYu. = 0 and this equation can be rewritten as (26 +1)ANu. = 0 with
pe = 1+ . Notice that p. — 1 ase — 0. In fact, it is known that a sequence
of p-harmonic functions converges to a 1-harmonic function as p — 1; see [6]
and also the discussion before Theorem 6. Moreover, a special 1-harmonic

limit is chosen. It is a function of least gradient as pointed out by Juutinen in
[10, Remark 3.3].

To deal with the case of non-smooth functions, we define [F,(n, X) for n €
R™\ {0} and for symmetric n X n matrices X as

Fy(n, X) = Z (2_?5U + ( )TITIJ) Xij

2
- p o Inl

Foo(n, X) = z”: (772‘77]‘) Xijs

2
= \ Il

and for p = oo as

so that we always have
1 1

These functions are used to define viscosity solutions to the nonhomogeneous
problem for the p-Laplace operator in non-divergence form
1
N _ . _
Adu(z) = |=|Vu|*7? div(|VulP*Vu)| (z)
p (8)
= F,(Vu(z), D*u(z)) = g(2).

To define a viscosity solution to the equation
Fp(Vu, D*u) = g(z) (9)

with g € C(Q), g > 0 (or g < 0), we need to compute F,(V¢(x), D?¢(x)) for
(C?-smooth test functions touching u from above or below at the test point x €
2. Unfortunately, except for p = 2, the functions F,(n, X') are discontinuous
when 1 = 0. There are several ways in the literature, see for example [6], [9],
and [23], to resolve this difficulty.



1. We can modify our requirements when V¢(z) = 0,

2. we can restrict the class of test functions so that F,(Ve(z), D*¢(x)) is
uniquely defined also when V¢(z) = 0 by lim, o F,(n, D*¢(x)), and

3. we can extend the domain of F,(n, X) by using semicontinuous exten-
sions.

Let us start with the first approach.

Definition 1. A continuous function v is a viscosity solution to the equation
Fy(Vo, D*v) = g(x)

at z, if and only if every C?-function ¢ that touches v from below in x satisfies

2 forn=V¢(z) if Vo(x) # 0,

£y, D°9(@) < g(a) { for some n C B1(0)\ {0} if Vo(z) =0
and every C?-function ¢ that touches u from above at x satisfies

2 forn=Vo(z) if Vo(z) # 0,

Fy(n, D°6(x)) 2 g(a) { for some n C B1(0)\ {0} if Vo(x) =0.

By saying that ¢ touches u from below at xj, we mean

i) u(zo) = ¢(x0),
i) u(z) > ¢(x) for x € Q, x # xy.

Alternatively, we could require that u — ¢ has a strict local minimum at x.
If no such test function exists, nothing is required. The lower semicontinuous
functions satisfying the first half of the definition are called supersolutions,
and the upper semicontinuous functions satisfying the second half are called
subsolutions.

Given a point z € () we consider the class of good test functions
A(z) = {¢ € C* with V¢(z) # 0 or D*¢(z) =0} .

When ¢ € A(xz) we can always uniquely define F(V¢(x), D*¢(z)). When
Vo(x) =0 we set
A)'6(x) = lm B, (1, 0) = 0 (10)



Definition 2. A continuous function v is a viscosity solution to the equation
Fy(Vv, D*v) = g()

at z, if and only if every C*-function ¢ € A(z) that touches v from below in x
satisfies

Fy(Vo(z), D*¢(2)) < g(x)

and every C?-function ¢ € A(x) that touches u from above at x satisfies
Fp(Vo(x), D*¢(x)) > g().

To state our third definition we need the semicontinuous extensions of IF,,.
For a symmetric matrix X we denote by Apin(X) and Apay(X) the smallest
and largest eigenvalues of X respectively. For p > 2 the upper-semicontinuous
extension is given by

1 —2
(0, X) = lim S(l)lp F,(n, X) = ]—)trace(X) + %/\maX(X)
7’]—>

and the lower-semicontinuous extension by

1 -2
F,,(0,X) =liminf F,(n, X) = — trace(X) + =2

AInin X).
m i p ) (X)

Otherwise, we define F;, = F,, = . For p < 2 we need to exchange Ayin(X)
and Apax(X). Observe that

—o0 < IF, ,(0,X) <F,(0,X) < o0
and that for ¢ € A(z) we have

F.p(Vo(z), D*¢(z)) = F}(Vo(z), D*¢(x)).

Definition 3. A continuous function v is a viscosity solution to the equation
F,(Vv, D*v) = g(z)
at x, if and only if every C*-function ¢ that touches v from below in x satisfies
F.»(Vo(z), D*¢(2)) < g(x)

and every C?-function ¢ that touches u from above at x satisfies

F,(Vé(x), D*¢(x)) > g(x).



The above definitions are equivalent. The proof of this fact is based on the
well-known fourth order perturbation argument, cf. [4], [8] or [11].

Proposition 4. Definitions 1, 2, and 3 are equivalent for 1 < p < oo and

g€ C(Q),g>0 (org<0).

Proof. We restrict ourselves to the case of finite p, since the case p = oo
follows by a simple modification. Clearly Definitions 1 and 3 are equivalent,
and we can focus attention on showing that we can restrict the class of test
functions as in Definition 2. We show directly that if Definition 3 fails, then
also Definition 2 fails. To this end, we suppose that there is ¢ € C?(Q) and
o € € such that

i) u(o) = ¢(z0),
i) u(x) > ¢(x) for x € Q, = # wo,
for which V¢ (z¢) = 0 and
P 9(10) < Auin(p — 2 D?0(0)) + A (o). (11)

We then go on showing that there exists a test function ¢ with either Vo(x) # 0
or Vo(z) = 0, D*¢(z) = 0, for which the definition of a viscosity solution fails.

Let 0 > 0 be small, and set

w(e,) = (1= Our) — (6(y) ~ 2 o — o'

and denote by (7;,;) the minimum point of w; in Q x Q. Since g is a strict
local minimum for u — ¢ there exists a strict local minimum =z for (1 —d)u— ¢
and small enough § > 0 such that 2§ — x as § — 0. By first choosing a small
enough ¢ > 0 and then large enough j, we have z;,y; € €, and

T, Y; — xg, as j — oo.
We observe that
8(y) — 2 Iy — ",
has a local maximum at y;. By (11) and continuity of
2 = Auin((p — 2)D?¢(2)) + Ag(2),
and g, we have

P9(W;) < Amin((p — 2)D?9(y;)) + Ad(y;) (12)

7



for small enough § > 0 and large enough j. We denote ¢ = % |z; — y|*, and

observe that D?*¢(y;) < D%*p(y;). Thus by (12) we have

P9(;) < Amin((p = 2)D*p(y5)) + Ap(y;)- (13)
This also holds when p < 2, because

Amin (P = 2)D*¢(y;)) + Ad(y;) = (P — 2) Amax (D0 (y;)) + trace(D*¢(y;))
= (P = DAuax(D*(y;)) + Y Mi(D?6(y;))

)\i3é)\max

< (P = Dhmax (Do) + > M(D0(y)))-
AiFAmax

We consider the two cases: either x; # y; for all j large enough or z; = y;
infinitely often. First, let y; # x;. We use the theorem of sums for w;, see [5]
and also [6]. It implies that there exists symmetric matrices X, Y; such that
X, —Yj is positive semidefinite and

. —2.+
(J |z — y,1* (z — yj), Yj) € J oy))
. —2,—
(J |z —y,I* (2 — y;), Xj) €J us(zy),

where we denoted us = (1—0)u. Using this fact, inequality (12), the continuity
of g, and the fact that g > 0 in €2, we get for large enough j that

(1=30)pg(z;) <pg(y;)

(z; —y;) (75 —y5)
lz; =yl |z —

< (p—2)(Y; ) + trace(Y;)

(z; —y5) (= —y))
< (p—2)(X; : ) + trace(X)
Mg =il |y — il ’
so that the definition of the viscosity solution fails already for (5 |z; — y;|* (2 —
vi), X;) € 72’_U5(3:j) with nonvanishing j |z; — y;|° (; — ;). In the case g < 0
in 2 we need to replace 1 — ¢ by 1+ ¢ throughout the argument. If p < 2, the
last inequality follows from the calculation

(0= 2)(¥; = X)) [ S ey - )

S (p - 2))\min + Z >\Z
i=1

>\i7é>\min
<0

P — )



where \;, Amin, and Apax denote the eigenvalues of Y; — X;.
Let then x; = y;. The fact D*p(y;) = D* (%, —yj|4) = 0 together
with (13) shows that this case cannot happen. If g were negative instead of

positive, this case would show that there exists a test function with V(y;) =
0, D?p(y;) = 0 for which Definition 2 fails. O

A similar argument also provides comparison principle and uniqueness, see
also Lu and Wang [17, 18]. Notice that Theorem 5 below is only stated for
g > 0. In fact, for p = 1 and g = 0, there is a counterexample in [25], see also
[13] and [14].

Theorem 5. Let €2 be a bounded domain, u lower semicontinuous and v upper
semicontinuous. Suppose that v is a subsolution, and u a supersolution to (9)
with g € C(Q), g >0 and 1 < p < co. Further, suppose that v < u on 9§ in
the sense that

limsup v(z) < liminf u(z) (14)

T—z T—z

for all z € 052, where both sides are not simultaneously —oo or oo. Then
v<wu in €.

Proof. We consider first the case 2 < p < co. We argue by contradiction and
assume that u — v has a strict interior minimum, that is,

u(zo) — v(xo) = igf(u —v) < iaan(u — ).

Let 0 € (0,1), and set

wi(e,y) = (1= B)u(e) = (uly) = 21z~ y|")

and denote by (z;,y;) the minimum point of w; in Q x Q. Since w, is a local
minimum for u — v, there exists a strict local minimum zj for (1 —d)u — v such
that 2§ — o as & — 0. Further

) .
Tj,Y; — Xy, as J — 00

and z;,y; € (2 for all large j. It follows that

J
?/'—>U(y)—1|xa’—y!4,
has a local maximum at y;, and

x»—>(1—5)u(x)+‘1]x—yj

‘ 4
4

Y



a local minimum at ;.

Observe that if y; = z;, then Vip(y;) = 0, D*p(y;) = 0, which immediately
contradicts with the subsolution property of v since ¢ > 0. Thus we may
concentrate on the case x; # y;. Again, theorem of sums for w; implies that
there exists symmetric matrices X;, Y} such that X; —Y] is positive semidefinite
and

. —2,4+
(5125 = il (5 =), i) € T wlyy)
. —2—
(.7 |z — y;1* (2 — y;), Xj) €J7 us(xy),

where we denoted us = (1 — §)u so that us satisfies (1 —d)g > AYus in the
viscosity sense i.e.

(1-8)pglz;) = (p - 2)(X; (éj — zj‘) (éj - zﬁ> + trace(X;).

Using this and the corresponding inequality for v, we get for large enough j
that

0<pg(y;) — (1= )pg(z;)

B (=) @y

<=2 25 — 5l |$j—yj!>+t &)
o ‘(ffj —y;) (x5 —yy) — trace( X
=2 25—yl 2y =yl )~ trace(Xy)

_ (p_2)<(§/] _Xj)(xj _yj) (xj _yj)> —|—trace(Y} _Xj)

25 — w57 25—yl

<0

— Y

because Y; — X is negative semidefinite. In the first inequality we used conti-
nuity of g. This provides the desired contradiction. The cases 1 < p < 2 and
p = 00 can be treated in a similar fashion as above. O

According to [12], when 1 < p < co and g = 0, it is enough to test using
test functions with V¢(x) # 0. This definition still guarantees the uniqueness.
We observe that the proof of Proposition 4 shows that in the case ¢ = 0 and
1 < p < o0, Definition 3 is equivalent to a definition where we only use test
functions with Ve(z) # 0.

Theorem 6. A continuous function v is a viscosity solution to the equation

F,(Vv, D*v) = 0, 1<p<

10



at x, if and only if every C*-function ¢ with Vé(x) # 0 that touches v from
below in x satisfies

R, (Vo(2), D*0(x)) < 0
and every C?-function ¢, Vo (z) # 0 that touches u from above at x satisfies

Fy(Vo(z), D*¢(x)) = 0.

3. 1-harmonic functions in the sense of averages
Given a unit vector v € R" consider the (n — 1)-dimensional hyperplane
r=vt={zcR": (z,v) =0}

For small £ > 0 we denote by BT the (n — 1)-dimensional ball in 7 centered at

0 with radius ¢
BT = B.(0) N .

&€

Let 2 C R™ be an open set and u: Q — R be a C?-function.

Averaging the Taylor expansion
1
u(w + h) = u(x) + (Vu(x), h) + 5 (D*u(x)h, h) + o(|h["), (15)
over BT we obtain

]{Bﬁ u(z +h) dL" 1 (h) = u(x) +*- 5 L Ayu(z) +o(e?),  (16)

(n+1)

where A, denotes the Laplace operator on the plane x + 7. To see this, we
use the orthonormal basis made up of v and an orthonormal basis for 7, and
observe that

1

2 n—1 _ 2 ]‘
5]{ggw u(x)h, by AL () = &2

mAﬁu(:c),

cf. [19]. We denote by D? u(x) = (D?*u(x)v,v) the second derivative of u at
in the direction v. Note that

Au(x) = trace(D*u(r)) = Azu(x) + D2 u(x)
= Au(x) + (D*u(x)v, v).

Thus we get a formula for A,

Ayu(z) = Au(z) — (D*u(z)v, v). (17)

11



Suppose that Vu(z) # 0 and write

~ Vu(z)
[Vu(z)]

V=

The vector v is the exterior normal to the level set
S={yeR": u(y) >u(x)}.
Whenever Vu(z) is nonzero, the mean curvature H(z) of S is given by

H(x) = - i 1 div(—v),

so that we can rewrite A u(z) as

Ayu(z) = ANu(z) = |Vu(x)| div (%) (x)

= (n—1)H(z) |Vu(z)]|.

(18)

Here AY refers to the notation introduced in (8).

Equation (16) immediately implies a characterization of harmonic functions
on the hyperplane in a sense of averages.

Proposition 7. Let u € C*(2), v € R™ be a unit vector, and 7 the (n — 1)-
dimensional hyperplane defined by v. Then

][ﬂ (@ + B) AL () = u(z) + o(e2)

€

if and only if Ayu(z) = 0.

We define unit vectors vy, and vy. by requiring that

U(ZL‘ + 5Vmin) = ILHD u<y>
yGBE(w) (19)
u(T + EVmax) = max u(y).
yEB:(z)

Observe that whenever Vu(x) # 0, then v, and vy, converge to the uniquely
defined directions

~ Vu(z) and Vu(x)
[Vu(z)| [Vu(z)|

respectively even if those vectors themselves may not be unique.

12



Definition 8. A continuous function u is 1-harmonic in the sense of averages

if
u(z) :][ e ALY+ o) as &0, (20)

in the viscosity sense i.e.

1. if for every ¢ € C? such that ¢ touches u at x € Q from below, we have
o) = f o+ )AL w) + ol
Bngax

for any vimax in (19) as e — 0.

2. if for every ¢ € C? such that ¢ touches u at x € Q from above, we have
o)< f 0wt RAL(b) + o),
le’min

for any vy, in (19) as e — 0.

Theorem 9. A continuous function u in a domain 2 C R™ is 1-harmonic in
the sense of averages if and only if

AMu=0
i the viscosity sense.

Proof. For a smooth ¢

2

n—l/py _ € 2
[ ola e a0 = o0) 4 s Aol ol (21
holds for any v # 0. If V¢ # 0, then
Vmin — —V¢/|V¢|=v as e —0. (22)

We choose ¢ € C?, V¢ # 0 such that ¢ touches u at x €  from below, and
suppose that v is a viscosity solution to Au—AYu = A, u = 0. In particular,
Ay, o(x) < 0. This, (21), (22), and the continuity of the second derivatives

imply
][ o+ R ALY (R) < 6a) + ofe?).
B, Ymin
The second half of the definition of a viscosity solution follows similarly.

13



Suppose then that w is 1-harmonic in the sense of averages, i.e. for the
above ¢ we have

o) = f o+ h)aL (b) +ofe?)

Combining this together with (21) we obtain

52

0> mAMmme(I) +o(c%).

Dividing this by €2, passing to a limit with ¢, and using (22), we see that u
satisfies the condition for the viscosity supersolution with this ¢. The proof
for the second half is analogous.

We are left with the case Vé(x) = 0. Suppose that ¢ € C? such that
¢ touches u at z € Q from below with Vé(z) = 0, and suppose that u is a
viscosity solution so that

~Amax(D?¢(2)) + Ag(x) < 0.
Observing that now

<D2¢Vma>c7 Vmax) — /\maX(DQQS(x)) (23)

as ¢ — 0, and combining this with (21), we see that u is 1-harmonic in the
sense of averages.

Suppose then that w is 1-harmonic in the sense of averages, i.e. for the
above ¢ we have

o(x) > ]{3 (e )aL ™ (h) + o)

Combining this together with (21) and (23), dividing by €? and passing to a
limit with €, we see that u satisfies the first half of a definition of a viscosity
solution. The second half is again analogous. ]

4. p-harmonic functions in the sense of averages

We start with a formal calculation assuming that u is smooth and Vu # 0.
The gradient direction is almost the maximizing direction for a smooth function
whenever the gradient does not vanish. We insert h = £Vu/|Vu| in (15) and

14



sum up the two resulting expansions to get rid of the first order terms

1
u(x) — = {maxu+ min u}
2 (B.w)  B:(a)

%u(x)—%{u (x+s%) +u<x—a|§Z—Eg|)} (24)
= —%Agou(x) + o(g?).

Next we multiply (24) and (16) by the constants a = 11:—711 and f = ZTJF}Z
satisfying o + 3 = 1 and add up the formulas so that we have the operator in

(6) on the right hand side. We get

1 — 1\ maxg () + ming U
nt ][ w(x + ) dLY (k) + (ﬁ ) Be(@) Be(2)
p + n ;rl’min + n 2

%U(I) + W

This motivates the following definition which we only formulate in the case
1 < p < 2. In the case p > 2 the definition is almost identical, except that v,
and vpa, should be interchanged. This only plays a role when V¢ vanishes.
In that case

<D2¢Vmax7 Vmax> - )\max(D2¢(x)> and <D2¢Vmin7 ymin) - )\min(D2¢<x>>
see also (23).

((p — DAY u+ ANu(z)) + o(e?).

Definition 10. A continuous function u is p-harmonic, 1 < p < 2, in the
sense of averages if it satisfies

1 — 1\ maxg () ¢ + ming U
u(w) =F ][ u(x+h)d£”1(h)+<ﬁ ) Pele) Pel)
+ (%),

as € — 0 in the viscosity sense, that is,
1. for every ¢ € C? such that ¢ touches u at x € Q from below, we have

$(x) >~ 1 ][ oz + h)dL " (h) + (ﬁ 1) maxg, () ¢ +ming ) ¢

“ptn +n 2
+o(e?),

for any Vimax in (19) as e — 0,
2. for every ¢ € C? such that ¢ touches u at v € ) from above, we have

(b(x) <TL—|—1 ][W ¢($+h) dﬁnil(h) + (;) 1> maXBE(x)¢ mlnBE(I)gb

Tp+n +n 2
+o(e?),
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for any vy in (19) ase — 0.

Unfortunately, using test functions in the above definition instead of u itself
seems to be necessary to obtain the next theorem as indicated by the known
counterexample in the case p = oo (see [19] for an example).

For p = 1, Theorem 11 follows from Theorem 9, for p = oo, the proof
follows from (5), cf. Theorem 2 in [19], and for p € (1,00) it is analogous to
the proof of Theorem 13 below, so we omit it here.

Theorem 11. Let 1 < p < oco. A continuous function u in a domain 2 C R"
is p-harmonic in the sense of averages according to Definition 10 if and only
of
N _
Aju(r) =0

in the viscosity sense.

5. Mean value formula for a tug-of-war game

We already defined p-harmonic functions in the sense of averages in the
previous section. In this section, we derive another mean value formula. It
appears to be more complicated, but in the context of the tug-of-war game
similar to that in [22] it turns out to be quite natural. Below

p—1 ~n+1

o= ,
p+n p+n

and BT is the (n — 1)-dimensional ball of radius ¢ centered at zero in the
hyperplane .

Definition 12. A continuous function u satisfies

u(z) 1 sup {au(m +ve)+ u(z + h) dE”_l(h)}
2 o<pl<1 B (26)
+ E inf {au(m +rve)+ [ u(x + h) dﬁ”_l(h)} + o(e?),
2 0<‘I/|S1 B;fu

as € — 0 in the sense of averages if

1. for every ¢ € C* such that ¢ touchesu at x € Q from below with V() #
0, we have

o(x) >1 sup {a¢(m +ve)+ o(x + h) dE”l(h)}

2 o<t BIv

S, {fw(%’ +ve)+ B4 dla+h) dﬁ“(h)} +o(e?).

2 0<‘l/|§1 Bg"u
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2. for every ¢ € C? such that ¢ touches u at x € Q from above with V() #
0, we have

o(x) <= sup {a¢(x+%)+ﬁ ¢<x+h>dﬁ”-1<h>}

2 o<t B

byt fastrve) 45 oo s maca)+ o),

2 0<‘l/|§1 BIv

The case p = oo is already considered in [19], and thus we concentrate on
the case 1 < p < o0.

Theorem 13. Let 1 < p < oo. A continuous function u in a domain 2 C R"
satisfies Definition 12 if and only if

N _
Aju(z) =0
in the viscosity sense.

Proof. First we recall a calculation from [19] leading to an asymptotic expan-
sion involving the infinity Laplacian. Choose a point z € Q and a C?-function
¢ defined in a neighborhood of x. Let v, be a vector giving

inf {agb(x +ve)+ o(z+ h) dﬁn_l(h)} .

0<‘I/|S1 B;Tl/

Later we check that the infimum is not obtained when v — 0 so that v,
really exists. Similarly, let vy, be a vector giving

sup {agzﬁ(a: +ve) + 3 o(z + h) dﬁ”—l(h)} :

0<|v|<1 BTV

Consider the Taylor expansion of the second order of ¢

8o +v) = 6(a) + Vo(a) v + 5 (Do), v) + ol

as |v| — 0. Evaluating this Taylor expansion of ¢ at the point x with v = v,e,
and v = —vyine we get

Oz + Vmine) = 0(z) + V() « Upine + %(D%(m)yming, Vming) +0(e%), (27)

O(x — Vmine) = d(x) — V() « vimine + %(D%(:c)yming, Vming) + 0(g%)  (28)

as ¢ — 0. Adding the expressions, we obtain
(T — Viin€) + O(@ + vinine) — 20(x) = *{D*G(T)Vimin, Vmin) + 0(?).  (29)
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We also have

2

n—1 € 2
= — A
| AL ) = o) + 5 Ao o), (30
for any nonzero v. We choose v = vy, and v = —vp, in (30), multiply by

a/2 and sum up the results with (29) multiplied by /2. Then we use the
definition of Vyax and estimate ¢( — Vmin€) + f 57-vi @(x + ) AL (h) from
above, as well as observe that A;, ~=A; . and obtain

L sup {ong(a: +uve)+ [ oz + h) dﬁ”_l(h)}

2 o<pl<1 BZY
+ %0 1|n‘f X {ozng(x +ve)+ o(z+h) dﬁn_l(h)}
<< B
> ¢(x) o
b (0= D)D) i i) + D, 6L)
Q(n T 1) D miny Ymin Tmin
+ o(£?),

which holds for any smooth function for which v, # 0.

Suppose then that Vé(z) # 0. By considering the lowest order terms in
the sum of (27) and (30)

Ty .
Ymin

G(T + Vigin) + ]{3 oz + h) AL (h) = 3(z) + AVH(2) - Vigine

£

1, £ 2
+ Oz§<D gb(l’)ymin&, Vmin5> + ﬁmAnymin¢($) + 0(8 )a
we see that
Vmin — _v¢/ ’v¢| (32)

as € — 0 because p # 1 i.e. a > 0.

Suppose that function u satisfies Definition 12. Consider a smooth ¢, V¢ #
0 which touches u at x from below. Combining Definition 12 together with
(31), we obtain

e

0> m ((p — 1)(D?*¢(2) Vnins Vinin) + A

o(x)) + o(?).

™ .
Ymin

Dividing this by €% and recalling (32), and passing to a limit, we obtain the
condition in the definition for the viscosity supersolution because with v =

V/ V| we have AY¢(z) = Ar, ¢ = Ad — Al¢.
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To prove the reverse implication, assume that u is a viscosity solution. In
particular u is a subsolution. Let ¢ be a smooth test function touching u at
x € Q from above. If V¢(x) # 0 and we set v = V¢ / |V, it follows that

0< (p—2)ALS(x) + Ad(2) = (p — DALH(x) + (Ag(x) — ALg(x))
= (p— DALS(@) + Ar, ().

This together with (31) and (32) shows that ¢ satisfies the second half in
Definition 12. The other cases are similar. According to Theorem 6, we only
need to test with the test functions with nonvanishing gradients, and thus the
proof is complete. [

(33)

6. Tug-of-war with noise

The asymptotic expansion in the previous section is related to the tug-of-
war game with noise which is quite similar to that in [22].

Fix € > 0 and consider the following two-player zero-sum-game. At the
beginning, a token is placed at a point zy € €. First players fix their possible
moves vy and vyp with |vg|, [y| < e, and toss a fair coin. If Player I wins the
toss, then she tosses a biased coin. If she gets heads (with probability a > 0),
the token is placed at x; = xg + ;. If she gets tails (with probability g > 0),
then the token is placed at a random point in #; € BZ" (x). Similarly if Player
IT wins the toss, then he tosses a biased coin. If he gets heads (with probability
«), the token is placed at 1 = x¢ + vy1. If he gets tails (with probability ),
then the token is placed at a random point in z; € BZ""(zy). The game is
played until the token hits

I'.={xeR"\Q : dist(z,00) < e}.

This procedure yields a possibly infinite sequence of game states xg, 1, . ..
where every x; is a random variable. We denote by z, € I'. the first point in
. in the sequence, where 7 is the hitting time. The payoff is F(x,), where
F :T. — R is a given measurable payoff function. Player I earns F(z,) while
Player II earns —F'(z,).

A history of a game up to step k is a vector of the first k + 1 game states
and k steps, for example, (xg,v1, 21, ...,k Tg). A strategy Sy for Player I is
a Borel function defined on the space of all histories that gives the next step
for Player I
V1€+17 ‘V1£+1‘ <e€
given a history h if Player I wins the toss. Similarly Player II plays according
to a strategy St
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Using the Kolmogorov construction the fixed starting point xy and the
strategies St and Sy determine a unique probability measure P g .

The expected payoff, when starting from zy and using the strategies Sy, Sir,
is

B o (o) = [ Fla(w) P, 31

where we integrate over all histories H>.
The wvalue of the game for Player I is given by

ui(xg) = supinf EY ¢ [F(x,)]
i Su 1,511

while the value of the game for Player II is given by

ugy(zo) = infsup EQ ¢ [F(x,)].
S5 ’

If the chosen strategies result in a game that does not end almost surely
we set the expected pay-off for Player I to be —oo and for Player II to be +o0.
The values uf(x¢) and uf(xg) are intuitively the best expected outcomes each
player can guarantee when the game starts at x.

We start by the statement of the Dynamic Programming Principle (DPP)
applied to our game.

Lemma 14 (DPP). For a > 0 and 8 > 0 (which corresponds to 1 < p < o0)
the value function for Player I satisfies

up(z) =

1
~ sup {aui(w +ve) + ﬁ][ ui(x+h) dﬁ"l(h)}
2 o<pyi<1 ™

(35)

1.
+3 0<1|Ir}\f§1 {aui(x +ve)+ 3

wi(x + h) dcnl(h)}

v
€

for each xy € Q and
ui(zo) = F(xo), for xy € I'..
The value function for Player II, u%;, satisfies the same equation.

An intuitive explanation for DPP can be obtained by considering the dif-
ferent outcomes of a single game round with the corresponding probabilities.

It turns out that the values of the game satisfy a comparison principle,
the values are unique, uy = uy with fixed boundary values and any function
satisfying (35) is a game value. In a smooth domain with regular boundary
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data, the values converge to a unique p-harmonic function as the step size
tends to zero. The proofs are similar to those in [21] and [22].
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