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Abstract

We characterize p-harmonic functions including p = 1 and p = ∞ by using
mean value properties extending classical results of Privaloff from the linear
case p = 2 to all p′s. We describe a class of random tug-of-war games whose
value functions approach p-harmonic functions as the step goes to zero for the
full range 1 < p <∞.

Résumé

On charactérise les fonctions p-harmoniques, y compris les cas p = 1 at p =∞,
en utilisant des propriétés de la moyenne. Ces résultats prolongenent le cas
classique linéaire (p=2) du à Privaloff, à toutes les valeurs de p. Pour tout p
dans l’intervalle (1,∞), on décrit une classe de jeux aléatoires de type “tug-of-
war” dont les fonctions valeur approchent le fonctions p-harmoniques lorsque
le pas tend vers zero.
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1. Introduction

In this article we study solutions to a class of non-linear equations that can
be characterized by mean value properties. The quintessential example is the
characterization of harmonic functions by the property

u(x) = −
∫
Bε(x)

u(y) dy. (1)
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Privaloff [24] proved that an upper semicontinuous function u is subharmonic
if and only if

lim sup
ε→0

1

ε2

[
−
∫
Bε(x)

u(y) dy − u(x)

]
≥ 0. (2)

A similar statement for spherical means was obtained by Blasche [1].

If we replace the Laplace equation ∆u = 0 by a linear elliptic equation
with constant coefficients Lu =

∑
i,j aijuxixj = 0 then mean value formulas

now hold for appropriate ellipsoids instead of balls. This is true also in the
subelliptic case. See Chapter 5 in the recent book [3] and the paper [2] for
updated discussion of mean value properties for solutions of linear equations.

We are interested in understanding mean value properties in the nonlinear
case. We start by observing that in order to characterize continuous harmonic
functions it is enough to ask that the mean value property (1) holds in an
asymptotic sense

u(x) = −
∫
Bε(x)

u(y) dy + o(ε2) as ε→ 0. (3)

In fact, even a weaker viscosity notion suffices. An upper semicontinuous
function u : Ω ⊂ Rn → R is subharmonic in Ω if for every x ∈ Ω and test
function φ ∈ C2(Ω) that touches u from above at x we have that

φ(x) ≤ −
∫
Bε(x)

φ(y) dy + o(ε2) as ε→ 0. (4)

Notice that the characterization (4) implies a simple proof of one half of Pri-
valoff’s characterization. Similarly, solutions to the p-Laplace equation are
characterized by

u(x) =
p− 2

2(p+ n)

{
max
Bε(x)

u+ min
Bε(x)

u

}
+
n+ 2

p+ n
−
∫
Bε(x)

u(y) dy + o(ε2) (5)

in the viscosity sense, for p in the range 1 < p ≤ ∞. These facts are proven
in [19]. That is, we have the analogue of Privaloff’s characterization for p-
subharmonic functions by replacing the regular solid average with the nonlinear
average in (5) and using expansions in the viscosity sense. For a related evo-
lution problem see [7] as well as [20], and for general discussion of p-Laplacian
problems including p = 1 and p =∞ see [13].

In [22], Peres and Sheffield showed that p-harmonic functions are limits of
value functions of certain tug-of-war games with noise as the step size tends to
zero. These games were modified in [21] so that their value function uε, with
step size ε > 0, was uniquely defined, and satisfied a dynamic programming
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principle of the form

uε(x) =
p− 2

2(p+ n)

{
max
Bε(x)

uε + min
Bε(x)

uε

}
+
n+ 2

p+ n
−
∫
Bε(x)

uε(y) dy,

when p ≥ 2. See also [15, 16] and [23].

The objectives of this paper are to consider the limit case p = 1, to char-
acterize the 1-harmonic functions in the spirit of (5), and to obtain a dynamic
programming principle valid for all p > 1 for the corresponding tug-of-war
game. Theorem 9 below states that 1-harmonic subsolutions are characterized
by

u(x) =

∫
B
πνmin
ε

u(x+ h) dLn−1(h) + o(ε2),

where u(x+ενmin) = miny∈Bε(x) u(y), and B
πνmin
ε is the (n−1)-dimensional ball

centered at zero in the hyperplane πνmin
, which is perpendicular to νmin. Both

definitions are to be understood in the viscosity sense. In Theorems 11 and 13,
we extend this formula to the whole p-range by interpolating between the 1-
Laplacian and the infinity Laplacian. Finally, we state the dynamic program-
ming principle in Lemma 14.

In Section §2 we review the various definitions of viscosity solutions for
the p-Laplacian. In Section §3 we study the limit case p = 1. The results
of this section are used in §4, where we consider p-harmonic functions in the
sense of averages for all p > 1. The corresponding asymptotic mean value
characterization is derived in Section §5. Finally in §6 we describe a tug of
war game whose value function satisfies an appropriate dynamic programming
principle.

2. Viscosity solutions of the normalized p-Laplacian

Let u be a real valued function of class C2 with non-vanishing gradient.
For p ∈ [1,∞) the normalized version of the p-Laplace operator acting on u is

∆N
p u =

1

p
|∇u|2−p∆pu =

1

p
|∇u|2−p div(|∇u|p−2∇u)

while for p =∞ we set

∆N
∞u = |∇u|−2∆∞u = |∇u|−2 〈D2u∇u,∇u〉

After a calculation we see that

div(|∇u|p−2∇u) = |∇u|p−2
(
(p− 2) |∇u|−2 〈D2u∇u,∇u〉+ ∆u

)
= |∇u|p−2

(
(p− 2)∆N

∞ + ∆u
)

= |∇u|p−2
(
(p− 1)∆N

∞u+ (∆u−∆N
∞u)

)
= |∇u|p−2

(
(p− 1)∆N

∞u+ ∆N
1 u
)
,

(6)
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and thus

∆N
p u =

1

p
∆N

1 u+
1

q
∆N
∞, (7)

where q is the Hölder conjugate of p, 1/p+ 1/q = 1. Note that ∆N
2 = (1/2)∆u

and that
∆u = ∆N

1 + ∆N
∞.

As the name viscosity solution suggests, one of their origins lies in adding an
artificial viscosity term ε∆u to a degenerate elliptic equation and sending ε to
zero. For the normalized 1-Laplacian this amounts to studying equations like
ε∆uε+∆N

1 uε = 0 and this equation can be rewritten as (2ε+1)∆N
pεuε = 0 with

pε = 1+ ε
1+ε

. Notice that pε → 1 as ε→ 0. In fact, it is known that a sequence
of p-harmonic functions converges to a 1-harmonic function as p → 1; see [6]
and also the discussion before Theorem 6. Moreover, a special 1-harmonic
limit is chosen. It is a function of least gradient as pointed out by Juutinen in
[10, Remark 3.3].

To deal with the case of non-smooth functions, we define Fp(η,X) for η ∈
Rn \ {0} and for symmetric n× n matrices X as

Fp(η,X) =
n∑
i,j

(
1

p
δij +

(p− 2)

p

ηiηj
|η|2

)
Xij

and for p =∞ as

F∞(η,X) =
n∑
i,j

(
ηiηj
|η|2

)
Xij,

so that we always have

Fp(η,X) =
1

p
F1(η,X) +

1

q
F∞(η,X).

These functions are used to define viscosity solutions to the nonhomogeneous
problem for the p-Laplace operator in non-divergence form

∆N
p u(x) =

[
1

p
|∇u|2−p div(|∇u|p−2∇u)

]
(x)

= Fp(∇u(x), D2u(x)) = g(x).

(8)

To define a viscosity solution to the equation

Fp(∇u,D2u) = g(x) (9)

with g ∈ C(Ω), g > 0 (or g < 0), we need to compute Fp(∇φ(x), D2φ(x)) for
C2-smooth test functions touching u from above or below at the test point x ∈
Ω. Unfortunately, except for p = 2, the functions Fp(η,X) are discontinuous
when η = 0. There are several ways in the literature, see for example [6], [9],
and [23], to resolve this difficulty.
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1. We can modify our requirements when ∇φ(x) = 0,

2. we can restrict the class of test functions so that Fp(∇φ(x), D2φ(x)) is
uniquely defined also when ∇φ(x) = 0 by limη→0 Fp(η,D2φ(x)), and

3. we can extend the domain of Fp(η,X) by using semicontinuous exten-
sions.

Let us start with the first approach.

Definition 1. A continuous function v is a viscosity solution to the equation

Fp(∇v,D2v) = g(x)

at x, if and only if every C2-function φ that touches v from below in x satisfies

Fp(η,D2φ(x)) ≤ g(x)

{
for η = ∇φ(x) if ∇φ(x) 6= 0,

for some η ⊂ B1(0) \ {0} if ∇φ(x) = 0

and every C2-function φ that touches u from above at x satisfies

Fp(η,D2φ(x)) ≥ g(x)

{
for η = ∇φ(x) if ∇φ(x) 6= 0,

for some η ⊂ B1(0) \ {0} if ∇φ(x) = 0.

By saying that φ touches u from below at x0, we mean

i) u(x0) = φ(x0),

ii) u(x) > φ(x) for x ∈ Ω, x 6= x0.

Alternatively, we could require that u − φ has a strict local minimum at x0.
If no such test function exists, nothing is required. The lower semicontinuous
functions satisfying the first half of the definition are called supersolutions,
and the upper semicontinuous functions satisfying the second half are called
subsolutions.

Given a point x ∈ Ω we consider the class of good test functions

A(x) =
{
φ ∈ C2 with ∇φ(x) 6= 0 or D2φ(x) = 0

}
.

When φ ∈ A(x) we can always uniquely define F(∇φ(x), D2φ(x)). When
∇φ(x) = 0 we set

∆N
p φ(x) = lim

η→0
Fp(η,0) = 0. (10)
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Definition 2. A continuous function v is a viscosity solution to the equation

Fp(∇v,D2v) = g(x)

at x, if and only if every C2-function φ ∈ A(x) that touches v from below in x
satisfies

Fp(∇φ(x), D2φ(x)) ≤ g(x)

and every C2-function φ ∈ A(x) that touches u from above at x satisfies

Fp(∇φ(x), D2φ(x)) ≥ g(x).

To state our third definition we need the semicontinuous extensions of Fp.
For a symmetric matrix X we denote by λmin(X) and λmax(X) the smallest
and largest eigenvalues of X respectively. For p > 2 the upper-semicontinuous
extension is given by

F∗p(0, X) = lim sup
η→0

Fp(η,X) =
1

p
trace(X) +

(p− 2)

p
λmax(X)

and the lower-semicontinuous extension by

F∗,p(0, X) = lim inf
η→0

Fp(η,X) =
1

p
trace(X) +

(p− 2)

p
λmin(X).

Otherwise, we define F∗p = F∗,p = Fp. For p < 2 we need to exchange λmin(X)
and λmax(X). Observe that

−∞ < F∗,p(0, X) ≤ F∗p(0, X) <∞

and that for φ ∈ A(x) we have

F∗,p(∇φ(x), D2φ(x)) = F∗p(∇φ(x), D2φ(x)).

Definition 3. A continuous function v is a viscosity solution to the equation

Fp(∇v,D2v) = g(x)

at x, if and only if every C2-function φ that touches v from below in x satisfies

F∗,p(∇φ(x), D2φ(x)) ≤ g(x)

and every C2-function φ that touches u from above at x satisfies

F∗p(∇φ(x), D2φ(x)) ≥ g(x).
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The above definitions are equivalent. The proof of this fact is based on the
well-known fourth order perturbation argument, cf. [4], [8] or [11].

Proposition 4. Definitions 1, 2, and 3 are equivalent for 1 ≤ p ≤ ∞ and
g ∈ C(Ω), g > 0 (or g < 0).

Proof. We restrict ourselves to the case of finite p, since the case p = ∞
follows by a simple modification. Clearly Definitions 1 and 3 are equivalent,
and we can focus attention on showing that we can restrict the class of test
functions as in Definition 2. We show directly that if Definition 3 fails, then
also Definition 2 fails. To this end, we suppose that there is φ ∈ C2(Ω) and
x0 ∈ Ω such that

i) u(x0) = φ(x0),

ii) u(x) > φ(x) for x ∈ Ω, x 6= x0,

for which ∇φ(x0) = 0 and

p g(x0) < λmin((p− 2)D2φ(x0)) + ∆φ(x0). (11)

We then go on showing that there exists a test function φ with either∇φ(x) 6= 0
or ∇φ(x) = 0, D2φ(x) = 0, for which the definition of a viscosity solution fails.

Let δ > 0 be small, and set

wj(x, y) = (1− δ)u(x)−
(
φ(y)− j

4
|x− y|4

)
and denote by (xj, yj) the minimum point of wj in Ω× Ω. Since x0 is a strict
local minimum for u−φ there exists a strict local minimum xδ0 for (1− δ)u−φ
and small enough δ > 0 such that xδ0 → x0 as δ → 0. By first choosing a small
enough δ > 0 and then large enough j, we have xj, yj ∈ Ω, and

xj, yj → xδ0, as j →∞.

We observe that

φ(y)− j

4
|xj − y|4 ,

has a local maximum at yj. By (11) and continuity of

x 7→ λmin((p− 2)D2φ(x)) + ∆φ(x),

and g, we have

p g(yj) < λmin((p− 2)D2φ(yj)) + ∆φ(yj) (12)
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for small enough δ > 0 and large enough j. We denote ϕ = j
4
|xj − y|4, and

observe that D2φ(yj) ≤ D2ϕ(yj). Thus by (12) we have

p g(yj) < λmin((p− 2)D2ϕ(yj)) + ∆ϕ(yj). (13)

This also holds when p < 2, because

λmin((p− 2)D2φ(yj)) + ∆φ(yj) = (p− 2)λmax(D2φ(yj)) + trace(D2φ(yj))

= (p− 1)λmax(D2φ(yj)) +
∑

λi 6=λmax

λi(D
2φ(yj))

≤ (p− 1)λmax(D2ϕ(yj)) +
∑

λi 6=λmax

λi(D
2ϕ(yj)).

We consider the two cases: either xj 6= yj for all j large enough or xj = yj
infinitely often. First, let yj 6= xj. We use the theorem of sums for wj, see [5]
and also [6]. It implies that there exists symmetric matrices Xj, Yj such that
Xj − Yj is positive semidefinite and(

j |xj − yj|2 (xj − yj), Yj
)
∈ J2,+

φ(yj)(
j |xj − yj|2 (xj − yj), Xj

)
∈ J2,−

uδ(xj),

where we denoted uδ = (1−δ)u. Using this fact, inequality (12), the continuity
of g, and the fact that g > 0 in Ω, we get for large enough j that

(1− δ)p g(xj) < p g(yj)

< (p− 2)〈Yj
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Yj)

≤ (p− 2)〈Xj
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Xj)

so that the definition of the viscosity solution fails already for (j |xj − yj|2 (xj−
yj), Xj) ∈ J

2,−
uδ(xj) with nonvanishing j |xj − yj|2 (xj−yj). In the case g < 0

in Ω we need to replace 1− δ by 1 + δ throughout the argument. If p < 2, the
last inequality follows from the calculation

(p− 2)〈(Yj −Xj)
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Yj −Xj)

≤ (p− 2)λmin +
n∑
i=1

λi

= (p− 1)λmin +
∑

λi 6=λmin

λi

≤ 0,
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where λi, λmin, and λmax denote the eigenvalues of Yj −Xj.

Let then xj = yj. The fact D2ϕ(yj) = D2
(
j
4
|xj − yj|4

)
= 0 together

with (13) shows that this case cannot happen. If g were negative instead of
positive, this case would show that there exists a test function with ∇ϕ(yj) =
0, D2ϕ(yj) = 0 for which Definition 2 fails.

A similar argument also provides comparison principle and uniqueness, see
also Lu and Wang [17, 18]. Notice that Theorem 5 below is only stated for
g > 0. In fact, for p = 1 and g ≡ 0, there is a counterexample in [25], see also
[13] and [14].

Theorem 5. Let Ω be a bounded domain, u lower semicontinuous and v upper
semicontinuous. Suppose that v is a subsolution, and u a supersolution to (9)
with g ∈ C(Ω), g > 0 and 1 ≤ p ≤ ∞. Further, suppose that v ≤ u on ∂Ω in
the sense that

lim sup
x→z

v(x) ≤ lim inf
x→z

u(z) (14)

for all z ∈ ∂Ω, where both sides are not simultaneously −∞ or ∞. Then

v ≤ u in Ω.

Proof. We consider first the case 2 ≤ p < ∞. We argue by contradiction and
assume that u− v has a strict interior minimum, that is,

u(x0)− v(x0) = inf
Ω

(u− v) < inf
∂Ω

(u− v).

Let δ ∈ (0, 1), and set

wj(x, y) = (1− δ)u(x)−
(
v(y)− j

4
|x− y|4

)
and denote by (xj, yj) the minimum point of wj in Ω× Ω. Since x0 is a local
minimum for u−v, there exists a strict local minimum xδ0 for (1− δ)u−v such
that xδ0 → x0 as δ → 0. Further

xj, yj → xδ0, as j →∞

and xj, yj ∈ Ω for all large j. It follows that

y 7→ v(y)− j

4
|xj − y|4 ,

has a local maximum at yj, and

x 7→ (1− δ)u(x) +
j

4
|x− yj|4 ,
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a local minimum at xj.

Observe that if yj = xj, then ∇ϕ(yj) = 0, D2ϕ(yj) = 0, which immediately
contradicts with the subsolution property of v since g > 0. Thus we may
concentrate on the case xj 6= yj. Again, theorem of sums for wj implies that
there exists symmetric matrices Xj, Yj such that Xj−Yj is positive semidefinite
and (

j |xj − yj|2 (xj − yj), Yj
)
∈ J2,+

v(yj)(
j |xj − yj|2 (xj − yj), Xj

)
∈ J2,−

uδ(xj),

where we denoted uδ = (1 − δ)u so that uδ satisfies (1 − δ)g ≥ ∆N
p uδ in the

viscosity sense i.e.

(1− δ)p g(xj) ≥ (p− 2)〈Xj
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Xj).

Using this and the corresponding inequality for v, we get for large enough j
that

0 < p g(yj)− (1− δ)p g(xj)

≤ (p− 2)〈Yj
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Yj)

− (p− 2)〈Xj
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉 − trace(Xj)

= (p− 2)〈(Yj −Xj)
(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉+ trace(Yj −Xj)

≤ 0,

because Yj −Xj is negative semidefinite. In the first inequality we used conti-
nuity of g. This provides the desired contradiction. The cases 1 ≤ p < 2 and
p =∞ can be treated in a similar fashion as above.

According to [12], when 1 < p < ∞ and g ≡ 0, it is enough to test using
test functions with ∇φ(x) 6= 0. This definition still guarantees the uniqueness.
We observe that the proof of Proposition 4 shows that in the case g ≡ 0 and
1 ≤ p ≤ ∞, Definition 3 is equivalent to a definition where we only use test
functions with ∇φ(x) 6= 0.

Theorem 6. A continuous function v is a viscosity solution to the equation

Fp(∇v,D2v) = 0, 1 ≤ p ≤ ∞
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at x, if and only if every C2-function φ with ∇φ(x) 6= 0 that touches v from
below in x satisfies

Fp(∇φ(x), D2φ(x)) ≤ 0

and every C2-function φ, ∇φ(x) 6= 0 that touches u from above at x satisfies

Fp(∇φ(x), D2φ(x)) ≥ 0.

3. 1-harmonic functions in the sense of averages

Given a unit vector ν ∈ Rn consider the (n− 1)-dimensional hyperplane

π = ν⊥ = {x ∈ Rn : 〈x, ν〉 = 0}.

For small ε > 0 we denote by Bπ
ε the (n− 1)-dimensional ball in π centered at

0 with radius ε
Bπ
ε = Bε(0) ∩ π.

Let Ω ⊂ Rn be an open set and u : Ω→ R be a C2-function.

Averaging the Taylor expansion

u(x+ h) = u(x) + 〈∇u(x), h〉+
1

2
〈D2u(x)h, h〉+ o(|h|2), (15)

over Bπ
ε we obtain∫

Bπε

u(x+ h) dLn−1(h) = u(x) + ε2 · 1

2(n+ 1)
∆πu(x) + o(ε2), (16)

where ∆π denotes the Laplace operator on the plane x + π. To see this, we
use the orthonormal basis made up of ν and an orthonormal basis for π, and
observe that

1

2

∫
Bπε

〈D2u(x)h, h〉 dLn−1(h) = ε2 · 1

2(n+ 1)
∆πu(x),

cf. [19]. We denote by D2
ννu(x) = 〈D2u(x)ν, ν〉 the second derivative of u at x

in the direction ν. Note that

∆u(x) = trace(D2u(x)) = ∆πu(x) +D2
ννu(x)

= ∆πu(x) + 〈D2u(x)ν, ν〉.

Thus we get a formula for ∆π

∆πu(x) = ∆u(x)− 〈D2u(x)ν, ν〉. (17)
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Suppose that ∇u(x) 6= 0 and write

ν = − ∇u(x)

|∇u(x)|
.

The vector ν is the exterior normal to the level set

S = {y ∈ Rn : u(y) ≥ u(x)}.

Whenever ∇u(x) is nonzero, the mean curvature H(x) of S is given by

H(x) =
1

n− 1
div(−ν),

so that we can rewrite ∆πu(x) as

∆πu(x) = ∆N
1 u(x) = |∇u(x)| div

(
∇u
|∇u|

)
(x)

= (n− 1)H(x) |∇u(x)|.
(18)

Here ∆N
1 refers to the notation introduced in (8).

Equation (16) immediately implies a characterization of harmonic functions
on the hyperplane in a sense of averages.

Proposition 7. Let u ∈ C2(Ω), ν ∈ Rn be a unit vector, and π the (n − 1)-
dimensional hyperplane defined by ν. Then∫

Bπε

u(x+ h) dLn−1(h) = u(x) + o(ε2)

if and only if ∆πu(x) = 0.

We define unit vectors νmin and νmax by requiring that

u(x+ ενmin) = min
y∈Bε(x)

u(y)

u(x+ ενmax) = max
y∈Bε(x)

u(y).
(19)

Observe that whenever∇u(x) 6= 0, then νmin and νmax converge to the uniquely
defined directions

− ∇u(x)

|∇u(x)|
and

∇u(x)

|∇u(x)|
respectively even if those vectors themselves may not be unique.
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Definition 8. A continuous function u is 1-harmonic in the sense of averages
if

u(x) =

∫
Bπνε

u(x+ h) dLn−1(h) + o(ε2) as ε→ 0, (20)

in the viscosity sense i.e.

1. if for every φ ∈ C2 such that φ touches u at x ∈ Ω from below, we have

φ(x) ≥
∫
B
πνmax
ε

φ(x+ h) dLn−1(h) + o(ε2),

for any νmax in (19) as ε→ 0.

2. if for every φ ∈ C2 such that φ touches u at x ∈ Ω from above, we have

φ(x) ≤
∫
B
πνmin
ε

φ(x+ h) dLn−1(h) + o(ε2),

for any νmin in (19) as ε→ 0.

Theorem 9. A continuous function u in a domain Ω ⊂ Rn is 1-harmonic in
the sense of averages if and only if

∆N
1 u = 0

in the viscosity sense.

Proof. For a smooth φ∫
Bπνε

φ(x+ h) dLn−1(h) = φ(x) +
ε2

2(n+ 1)
∆πνφ(x) + o(ε2), (21)

holds for any ν 6= 0. If ∇φ 6= 0, then

νmin → −∇φ/ |∇φ| = ν as ε→ 0. (22)

We choose φ ∈ C2, ∇φ 6= 0 such that φ touches u at x ∈ Ω from below, and
suppose that u is a viscosity solution to ∆u−∆N

∞u = ∆πνu = 0. In particular,
∆πνφ(x) ≤ 0. This, (21), (22), and the continuity of the second derivatives
imply ∫

B
πνmin
ε

φ(x+ h) dLn−1(h) ≤ φ(x) + o(ε2).

The second half of the definition of a viscosity solution follows similarly.
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Suppose then that u is 1-harmonic in the sense of averages, i.e. for the
above φ we have

φ(x) ≥
∫
B
πνmin
ε

φ(x+ h) dLn−1(h) + o(ε2).

Combining this together with (21) we obtain

0 ≥ ε2

2(n+ 1)
∆πνmin

φ(x) + o(ε2).

Dividing this by ε2, passing to a limit with ε, and using (22), we see that u
satisfies the condition for the viscosity supersolution with this φ. The proof
for the second half is analogous.

We are left with the case ∇φ(x) = 0. Suppose that φ ∈ C2 such that
φ touches u at x ∈ Ω from below with ∇φ(x) = 0, and suppose that u is a
viscosity solution so that

−λmax(D2φ(x)) + ∆φ(x) ≤ 0.

Observing that now

〈D2φ νmax, νmax〉 → λmax(D2φ(x)) (23)

as ε → 0, and combining this with (21), we see that u is 1-harmonic in the
sense of averages.

Suppose then that u is 1-harmonic in the sense of averages, i.e. for the
above φ we have

φ(x) ≥
∫
B
πνmax
ε

φ(x+ h) dLn−1(h) + o(ε2).

Combining this together with (21) and (23), dividing by ε2 and passing to a
limit with ε, we see that u satisfies the first half of a definition of a viscosity
solution. The second half is again analogous.

4. p-harmonic functions in the sense of averages

We start with a formal calculation assuming that u is smooth and ∇u 6= 0.
The gradient direction is almost the maximizing direction for a smooth function
whenever the gradient does not vanish. We insert h = ±∇u/ |∇u| in (15) and

14



sum up the two resulting expansions to get rid of the first order terms

u(x)− 1

2

{
max
Bε(x)

u+ min
Bε(x)

u

}
≈ u(x)− 1

2

{
u

(
x+ ε

∇u(x)

|∇u(x)|

)
+ u

(
x− ε ∇u(x)

|∇u(x)|

)}
= −ε

2

2
∆N
∞u(x) + o(ε2).

(24)

Next we multiply (24) and (16) by the constants α = p−1
p+n

and β = n+1
p+n

satisfying α+ β = 1 and add up the formulas so that we have the operator in
(6) on the right hand side. We get

n+ 1

p+ n

∫
B
πνmin
ε

u(x+ h) dLn−1(h) +

(
p− 1

p+ n

)
maxBε(x) u+ minBε(x) u

2

≈ u(x) +
ε2

2(p+ n)
((p− 1)∆N

∞u+ ∆N
1 u(x)) + o(ε2).

This motivates the following definition which we only formulate in the case
1 ≤ p ≤ 2. In the case p > 2 the definition is almost identical, except that νmin

and νmax should be interchanged. This only plays a role when ∇φ vanishes.
In that case

〈D2φνmax, νmax〉 → λmax(D2φ(x)) and 〈D2φνmin, νmin〉 → λmin(D2φ(x))

see also (23).

Definition 10. A continuous function u is p-harmonic, 1 ≤ p ≤ 2, in the
sense of averages if it satisfies

u(x) =
n+ 1

p+ n

∫
Bπνε

u(x+ h) dLn−1(h) +

(
p− 1

p+ n

)
maxBε(x) u+ minBε(x) u

2

+ o(ε2),

(25)

as ε→ 0 in the viscosity sense, that is,

1. for every φ ∈ C2 such that φ touches u at x ∈ Ω from below, we have

φ(x) ≥n+ 1

p+ n

∫
B
πνmax
ε

φ(x+ h) dLn−1(h) +

(
p− 1

p+ n

)
maxBε(x) φ+ minBε(x) φ

2

+ o(ε2),

for any νmax in (19) as ε→ 0,
2. for every φ ∈ C2 such that φ touches u at x ∈ Ω from above, we have

φ(x) ≤n+ 1

p+ n

∫
B
πνmin
ε

φ(x+ h) dLn−1(h) +

(
p− 1

p+ n

)
maxBε(x) φ+ minBε(x) φ

2

+ o(ε2),
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for any νmin in (19) as ε→ 0.

Unfortunately, using test functions in the above definition instead of u itself
seems to be necessary to obtain the next theorem as indicated by the known
counterexample in the case p =∞ (see [19] for an example).

For p = 1, Theorem 11 follows from Theorem 9, for p = ∞, the proof
follows from (5), cf. Theorem 2 in [19], and for p ∈ (1,∞) it is analogous to
the proof of Theorem 13 below, so we omit it here.

Theorem 11. Let 1 ≤ p ≤ ∞. A continuous function u in a domain Ω ⊂ Rn

is p-harmonic in the sense of averages according to Definition 10 if and only
if

∆N
p u(x) = 0

in the viscosity sense.

5. Mean value formula for a tug-of-war game

We already defined p-harmonic functions in the sense of averages in the
previous section. In this section, we derive another mean value formula. It
appears to be more complicated, but in the context of the tug-of-war game
similar to that in [22] it turns out to be quite natural. Below

α =
p− 1

p+ n
β =

n+ 1

p+ n
,

and Bπν
ε is the (n − 1)-dimensional ball of radius ε centered at zero in the

hyperplane πν .

Definition 12. A continuous function u satisfies

u(x) =
1

2
sup

0<|ν|≤1

{
αu(x+ νε) + β

∫
Bπνε

u(x+ h) dLn−1(h)

}
+

1

2
inf

0<|ν|≤1

{
αu(x+ νε) + β

∫
Bπνε

u(x+ h) dLn−1(h)

}
+ o(ε2),

(26)

as ε→ 0 in the sense of averages if

1. for every φ ∈ C2 such that φ touches u at x ∈ Ω from below with ∇φ(x) 6=
0, we have

φ(x) ≥1

2
sup

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
+

1

2
inf

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
+ o(ε2).
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2. for every φ ∈ C2 such that φ touches u at x ∈ Ω from above with ∇φ(x) 6=
0, we have

φ(x) ≤1

2
sup

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
+

1

2
inf

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
+ o(ε2).

The case p = ∞ is already considered in [19], and thus we concentrate on
the case 1 < p <∞.

Theorem 13. Let 1 < p <∞. A continuous function u in a domain Ω ⊂ Rn

satisfies Definition 12 if and only if

∆N
p u(x) = 0

in the viscosity sense.

Proof. First we recall a calculation from [19] leading to an asymptotic expan-
sion involving the infinity Laplacian. Choose a point x ∈ Ω and a C2-function
φ defined in a neighborhood of x. Let νmin be a vector giving

inf
0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
.

Later we check that the infimum is not obtained when ν → 0 so that νmin

really exists. Similarly, let νmax be a vector giving

sup
0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
.

Consider the Taylor expansion of the second order of φ

φ(x+ ν) = φ(x) +∇φ(x) · ν +
1

2
〈D2φ(x)ν, ν〉+ o(|ν|2)

as |ν| → 0. Evaluating this Taylor expansion of φ at the point x with ν = νminε,
and ν = −νminε we get

φ(x+ νminε) = φ(x) +∇φ(x) · νminε+
1

2
〈D2φ(x)νminε, νminε〉+ o(ε2), (27)

φ(x− νminε) = φ(x)−∇φ(x) · νminε+
1

2
〈D2φ(x)νminε, νminε〉+ o(ε2) (28)

as ε→ 0. Adding the expressions, we obtain

φ(x− νminε) + φ(x+ νminε)− 2φ(x) = ε2〈D2φ(x)νmin, νmin〉+ o(ε2). (29)
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We also have∫
Bπνε

φ(x+ h) dLn−1(h) = φ(x) +
ε2

2(n+ 1)
∆πνφ(x) + o(ε2), (30)

for any nonzero ν. We choose ν = νmin and ν = −νmin in (30), multiply by
α/2 and sum up the results with (29) multiplied by β/2. Then we use the
definition of νmax and estimate φ(x− νminε) +

∫
B
π−νmin
ε

φ(x+h) dLn−1(h) from

above, as well as observe that ∆πνmin
= ∆π−νmin

, and obtain

1

2
sup

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
+

1

2
inf

0<|ν|≤1

{
αφ(x+ νε) + β

∫
Bπνε

φ(x+ h) dLn−1(h)

}
≥ φ(x)

+
βε2

2(n+ 1)

(
(p− 1)〈D2φ(x)νmin, νmin〉+ ∆πνmin

φ(x)
)

+ o(ε2),

(31)

which holds for any smooth function for which νmin 6= 0.

Suppose then that ∇φ(x) 6= 0. By considering the lowest order terms in
the sum of (27) and (30)

αφ(x+ νminε) + β

∫
B
πνmin
ε

φ(x+ h) dLn−1(h) = φ(x) + α∇φ(x) · νminε

+ α
1

2
〈D2φ(x)νminε, νminε〉+ β

ε2

2(n+ 1)
∆πνmin

φ(x) + o(ε2),

we see that

νmin → −∇φ/ |∇φ| (32)

as ε→ 0 because p 6= 1 i.e. α > 0.

Suppose that function u satisfies Definition 12. Consider a smooth φ, ∇φ 6=
0 which touches u at x from below. Combining Definition 12 together with
(31), we obtain

0 ≥ βε2

2(n+ 1)

(
(p− 1)〈D2φ(x)νmin, νmin〉+ ∆πνmin

φ(x)
)

+ o(ε2).

Dividing this by ε2 and recalling (32), and passing to a limit, we obtain the
condition in the definition for the viscosity supersolution because with ν =
∇φ/ |∇φ| we have ∆N

1 φ(x) = ∆πνφ = ∆φ−∆N
∞φ.
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To prove the reverse implication, assume that u is a viscosity solution. In
particular u is a subsolution. Let φ be a smooth test function touching u at
x ∈ Ω from above. If ∇φ(x) 6= 0 and we set ν = ∇φ/ |∇φ|, it follows that

0 ≤ (p− 2)∆N
∞φ(x) + ∆φ(x) = (p− 1)∆N

∞φ(x) + (∆φ(x)−∆N
∞φ(x))

= (p− 1)∆N
∞φ(x) + ∆πνφ(x).

(33)

This together with (31) and (32) shows that φ satisfies the second half in
Definition 12. The other cases are similar. According to Theorem 6, we only
need to test with the test functions with nonvanishing gradients, and thus the
proof is complete.

6. Tug-of-war with noise

The asymptotic expansion in the previous section is related to the tug-of-
war game with noise which is quite similar to that in [22].

Fix ε > 0 and consider the following two-player zero-sum-game. At the
beginning, a token is placed at a point x0 ∈ Ω. First players fix their possible
moves νI and νII with |νI | , |νII| ≤ ε, and toss a fair coin. If Player I wins the
toss, then she tosses a biased coin. If she gets heads (with probability α > 0),
the token is placed at x1 = x0 + νI. If she gets tails (with probability β > 0),
then the token is placed at a random point in x1 ∈ B

πνI
ε (x0). Similarly if Player

II wins the toss, then he tosses a biased coin. If he gets heads (with probability
α), the token is placed at x1 = x0 + νII. If he gets tails (with probability β),
then the token is placed at a random point in x1 ∈ B

πνII
ε (x0). The game is

played until the token hits

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.

This procedure yields a possibly infinite sequence of game states x0, x1, . . .
where every xk is a random variable. We denote by xτ ∈ Γε the first point in
Γε in the sequence, where τ is the hitting time. The payoff is F (xτ ), where
F : Γε → R is a given measurable payoff function. Player I earns F (xτ ) while
Player II earns −F (xτ ).

A history of a game up to step k is a vector of the first k + 1 game states
and k steps, for example, (x0, ν1, x1, . . . , νk, xk). A strategy SI for Player I is
a Borel function defined on the space of all histories that gives the next step
for Player I

νIk+1,
∣∣νIk+1

∣∣ ≤ ε

given a history h if Player I wins the toss. Similarly Player II plays according
to a strategy SII
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Using the Kolmogorov construction the fixed starting point x0 and the
strategies SI and SII determine a unique probability measure Px0

SI ,SII
.

The expected payoff, when starting from x0 and using the strategies SI, SII,
is

Ex0
SI,SII

[F (xτ )] =

∫
H∞

F (xτ (ω)) dPx0
SI,SII

(ω) (34)

where we integrate over all histories H∞.

The value of the game for Player I is given by

uεI(x0) = sup
SI

inf
SII

Ex0
SI,SII

[F (xτ )]

while the value of the game for Player II is given by

uεII(x0) = inf
SII

sup
SI

Ex0
SI,SII

[F (xτ )].

If the chosen strategies result in a game that does not end almost surely
we set the expected pay-off for Player I to be −∞ and for Player II to be +∞.
The values uεI(x0) and uεII(x0) are intuitively the best expected outcomes each
player can guarantee when the game starts at x0.

We start by the statement of the Dynamic Programming Principle (DPP)
applied to our game.

Lemma 14 (DPP). For α > 0 and β > 0 (which corresponds to 1 < p <∞)
the value function for Player I satisfies

uεI(x) =
1

2
sup

0<|ν|≤1

{
αuεI(x+ νε) + β

∫
Bπνε

uεI(x+ h) dLn−1(h)

}
+

1

2
inf

0<|ν|≤1

{
αuεI(x+ νε) + β

∫
Bπνε

uεI(x+ h) dLn−1(h)

} (35)

for each x0 ∈ Ω and

uεI(x0) = F (x0), for x0 ∈ Γε.

The value function for Player II, uεII, satisfies the same equation.

An intuitive explanation for DPP can be obtained by considering the dif-
ferent outcomes of a single game round with the corresponding probabilities.

It turns out that the values of the game satisfy a comparison principle,
the values are unique, uI = uII with fixed boundary values and any function
satisfying (35) is a game value. In a smooth domain with regular boundary
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data, the values converge to a unique p-harmonic function as the step size
tends to zero. The proofs are similar to those in [21] and [22].

Acknowledgement: This collaboration started in the fall of 2008 during a
visit of BK to the University of Pittsburgh, where he enjoyed activities in the
Analysis seminar. MP would like to thank for the hospitality during his visits
to Cologne and Pittsburgh. JM research is partially supported by NSF award
DMS-1001179, and MP by Academy of Finland. The authors would like to
thank Petri Juutinen for useful comments.

References

[1] W. Blaschke, Ein Mittelwertsatz und eine kennzeichenende Eigenschaft
des logarithmischen Potentials, Leipz. Ber. 68:3–7, 1916.

[2] A. Bonfiglioli and E. Lanconelli, Subharmonic Functions in sub-Riemann-
ian Settings, J. Europ. Math. Soc., to appear.

[3] A. Bonfiglioli, E. Lanconelli, and F.Uguzzoni. Stratified Lie groups and
potential theory for their sub-Laplacians, Springer, 2007.

[4] Y. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solu-
tions of generalized mean curvature flow equations. J. Differential Geom.,
33:749–786, 1991.

[5] M. Crandall, and H. Ishii. The maximum principle for semicontinuous
functions. Differential Integral Equations., 3(6):1001–1014, 1990.

[6] M. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of
second order partial differential equations. Bull. Amer. Math. Soc., 27:1–
67, 1992.

[7] K. Does, An evolution equation involving the normalized p-Laplacian
Comm. Pure Appl. Anal. 10:361–396, 2011. Dissertation under the same
title, University of Cologne, 2009.

[8] L. C. Evans and J. Spruck, Motion of leves sets by mean curvature I, J.
Differential Geom., 33:635–681, 1991.

[9] Y. Giga. Surface evolution equations, A level set approach. Vol. 99 of
Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006.
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