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Abstract

We investigate sharp conditions for boundary and interior gradient es-
timates of continuous viscosity solutions to fully nonlinear, uniformly ellip-
tic equations under Dirichlet boundary conditions. When these conditions
are violated, there can be blow up of the gradient in the interior or on
the boundary of the domain. In particular we derive sharp results on lo-
cal and global Lipschitz continuity of continuous viscosity solutions under
more general growth conditions than before. Lipschitz regularity near the
boundary allows us to predict when the Dirichlet condition is satisfied in
a classical and not just in a viscosity sense, where detachment can occur.
Another consequence is this: if interior gradient blow up occurs, Perron-
type solutions can in general become discontinuous, so that the Dirichlet
problem can become unsolvable in the class of continuous viscosity solu-
tions.
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1 Introduction

In the theory of viscosity solutions for fully nonlinear elliptic Dirichlet problems

F (x, u,Du,D2u) = 0 in Ω, (1.1)

u = ψ(x) on ∂Ω, (1.2)

introduced by Crandall and Lions [17], the main issues are existence, uniqueness
and stability of viscosity solutions in C(Ω). Here Ω ⊂ Rn is a bounded domain
and F ∈ C(Ω×R×Rn×Sn), and Sn is the space of all symmetric n×n matrices.
The theory of viscosity solution was systematically developped under very weak
structural assumptions on F , such as degenerate ellipticity

F (x, r, p,X) ≤ F (x, r, p.Y ) (1.3)

for any x ∈ Ω, r ∈ R, p ∈ Rn, X, Y ∈ Sn with X ≥ Y ,

and strict monotonicity: there exists a constant c0 > 0 such that

c0(r − s) ≤ F (x, r, p,X)− F (x, s, p.X)) (1.4)

for any x ∈ Ω, r ≥ s ∈ R, p ∈ Rn and X ∈ Sn, in [18, 35, 36, 37, 39, 40, 41, 62]
and [70], see the references in [18]. As for higher regularity of viscosity solu-
tions of the equation F (D2u, x) = f(x), interior C1,α, C2 and local W 2,p esti-
mates were proved by Caffarelli [14]. In subsequent developments [73, 56, 61]
interior Cα and C1,α estimates were derived for viscosity solutions of more gen-
eral fully nonlinear uniformly elliptic and parabolic equations, however under
the assumption that F (x, r, p, 0) has at most quadratic growth in |p|. In [71]
Trudinger proved interior Cα and C1,α estimates for viscosity solutions of uni-
formly elliptic equations (1.1) (1.2) under quadratic growth with respect to |p|
for the lower order term F (x, r, p, 0) and under additional structure conditions
for the growth of |F (x, r, p,X) − F (x, t, q, Y )| in p, q,X and Y . In all these pa-
pers Lipschitz estimates were obtained by interpolation. We should also mention
Lp-viscosity solutions and their equivalence with other weak notions of solutions,
see [16, 19, 20]. For Lp viscosity solutions interior W 1,p estimates were derived
in [65, 47] and global W 1,p estimates in [75] for uniformly elliptic equations with
at most quadratic growth of F (x, r, p, 0) in |p|. In contrast to all these papers we
allow for superquadratic growth in |p|.

The aim of this paper is to identify sharp structural conditions that seperate
the possibility for gradient estimates from that of gradient blow up for viscosity
solutions of (1.1) (1.2). Our motivation to study this question is the crucial role
that gradient estimates play in existence proofs. Gradient estimates guarantee
that the Dirichlet condition is satisfied in the classical sense, while their violation
means that (1.2) is merely satisfied in the viscosity sense, see Def. 2.2. If interior
gradient blow up occurs, we conjecture that Perron’s solutions should (in general)
be discontinuous and that the comparison princple for semicontinuous viscosity
subsolutions fails (see Example 2.14).
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In fact, even for classical solutions the theory of gradient estimates is far from
its final state, in particular for quasilinear and fully nonlinear equations. For lin-
ear, uniformly elliptic equations the classical solvability of the Dirichlet problem
is well known to depend only on the smoothness of its coefficients, on the under-
lying domain Ω and the data of the problem. For nonlinear equations, however,
boundary gradient estimates are an essential step in proving the existence a) of
classical solutions via Schauder’s fixed point theorem, and b) of continuous vis-
cosity solutions in C(Ω) and their Lipschitz and C1,α regularity when they satisfy
the Dirichlet condition in the classical sense, see [15, 31, 48]. In the beginning
of the 20th century it became clear from Hilbert’s 19th and 20th problem that
such estimates are indispensable. At this time Bernstein [9, 10] derived gradient
estimates for nonlinear equations in plane domains in his fundamental papers
[9, 10].

Half a century later Serrin extended Bernstein’s results in his elegant paper
[59] to quasilinear equations in higher dimensions and clarified the important role
of the geometry of ∂Ω in this context. The present state of the art on gradient
estimates of classical solutions to quasilinear equations seems to be contained
in results of Ladyshenskaya and Ural’tseva [49, 50], Gilbarg and Trudinger [31],
Krylov [48], Evans [22], Caffarelli and Cabré [15] and others, see the references
therein. Let us also mention the paper of Barles [6] where the classical Bernstein
method was applied and extended to viscosity solutions of (1.1). Moreover, Barles
simplified some of the sufficient conditions for gradient estimates.

Bernstein also observed that his barrier functions can sometimes be used to
derive nonexistence results for classical solutions of Dirichlet problems. It is only
now, that we have the theory of viscosity solutions at our disposal, that we can
explain these phenomena as a “detachment” from the given Dirichlet data that
can be reconciled with the notion of “Dirichlet condition in the viscosity sense”.
In this respect our results revisit Bernstein’s method for viscosity solutions.

In particular we derive sharp conditions for Lipschitz estimates of continuous
viscosity solutions to (1.1) (1.2). To be specific, for estimates near the boundary,
these conditions involve the exact growth rate of F (x, r, p, 0) at infinite p. If this
growth is of order |p|2 ln(1+|p|), the superquadratic growth must be compensated
by suitable boundary behaviour as explained in Section 4. Otherwise there can
be gradient blow up. Our results (in particular Theorem 2.3) not only recover
but also improve Theorem 4.1 and Remark 4.3 of [38], because we do not require
strict convexity of Ω

There have also been detailed studies on nonexistence of classical solutions for
Dirichlet problems involving the mean curvature operator [28, 32, 60, 74]. We
wish to point out, that this operator is of divergence type and not uniformly
elliptic. In contrast to the mean curvature operator our operators have in general
no variational structure and are assumed uniformly elliptic.

In the present paper we consider uniformly elliptic equations, i.e. we assume
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that there exist positive constants c1 and c2 such that

c1 tr(X − Y ) ≤ F (x, r, p, Y )− F (x, r, p.X) ≤ c2 tr(X − Y ). (1.5)

for any x ∈ Ω, r ∈ R, p ∈ Rn, X, Y ∈ Sn with X ≥ Y . Moreover we assume that
F (x, r, p,X) is locally Lipschitz-continuous in the gradient variable p, i.e. for any
K ≥ 0 there exists a constant CK ≥ 0 such that

|F (x, r, p,X)− F (x, r, q,X)| ≤ CK |p− q| (1.6)

for any x ∈ Ω, r ∈ R, p ∈ Rn, X ∈ Sn with |r|, |p|, |q| and ||X|| ≤ K. Because
of the strong ellipticity we can weaken assumption 1.4 and allow c0 = 0 so that
F (x, r, p,X) is monotone nondecreasing in r, i.e. (1.4) holds with c0 = 0:

F (x, r, p,X) ≤ F (x, s, p.X) for any x ∈ Ω, r ≤ s ∈ R, p ∈ Rn, X ∈ Sn. (1.7)

As shown in [43], conditions (1.5), (1.6) and (1.7) guarantee the validity of
a strong interior and boundary maximum principle for semicontinuous viscosity
subsolutions, and of a comparison principle between viscosity sub- and superso-
lutions, provided one of them is a classical one. One can even weaken (1.5) to
condition (8) in [43], i.e. c1 and c2 can depend on K. So once we can construct
suitable and explicit C2 functions that are viscosity sub- and supersolutions, the
comparison principle Theorems 1 to 3 in [43] can provide barriers and leads to
gradient estimates for continuous viscosity solutions of (1.1) in the interior and
on the boundary.

Our paper is organized as follows. In Section 2 we give definitions and present
our main results. In Section 3 we put our paper the context of related results and
comment on those. Section 4 contains proofs of the boundary estimates and deals
with gradient blow-up on the boundary, while Section 5 treats interior estimates
and interior gradient blow-up.

Our results for gradient a priori estimates and gradient blow up seem to cover
all previous results, which are basically for equations with natural growth condi-
tions of the lower order term, i.e., quadratic growth with respect to the gradient
variables or β = 0 in (2.7)–(2.9). Moreover, for equations with superquadratic
growth in the lower order term and β > 0 in (2.8),(2.9) we show the important
role of the geometry of the domain and the boundary data. Such type of boundary
gradient estimates are well-known only for geometric equations, Monge-Ampere
type equations (Minkowski problem) and mean curvature type equations (see
[23, 29, 31, 28, 32, 59, 72]) but not for general elliptic equations. Our results are
sharp in the refined power-log scale of the nonlinearities of the equations. The
threshhold between the gradient estimates and gradient blow up of the viscosity
solutions has now been clarified via clear and explicit criteria. In contrast to
previous papers on blow up, which are incidental and for some special equations,
we suggest a general theory that explains gradient blow up phenomena from a
different viewpoint.
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2 Definitions and Main Results

Throughout the paper we use the notation and definitions from [18].

Definition 2.1. Suppose that F ∈ C(Ω×R×Rn× Sn) satisfies (1.3) (1.7). An
upper semicontinuous function u ∈ USC(Ω) is a viscosity subsolution of (1.1)
if F (x0, u(x0), p,X) ≤ 0 for every x0 ∈ Ω and for every (p,X) ∈ J 2,+

Ω (u(x0)).
Here the second order superjet J 2,+

Ω (u(x0)) is defined as the set of those (p,X) ∈
Rn × Sn for which

u(x) ≤ u(x0) + 〈p, x− x0〉+
1

2
〈X(x− x0), x− x0〉+ o(|x− xo|2) (2.1)

as x→ x0.

Analogously we define lower semicontinuous viscosity supersolutions v ∈ LSC(Ω)
of (1.1) by means of the reverse inequality F (y0, v(y0), q, Y ) ≥ 0 for every y0 ∈ Ω
and for every (q, Y ) ∈ J 2,−

Ω (v(y0)), where J 2,−
Ω (v(y0)) = J 2,+

Ω (−v(y0)).

Finally, we call a continuous function u : Ω → R a viscosity solution of (1.1) if
it is both a viscosity sub- and supersolution.

Throughout the paper we consider only Dirichlet boundary condtions (1.2)
on C2-smooth domains and with data ψ that are traces of C2-functions. We
should explain why we make these smoothness assumptions. It is well known
that even classical solutions of linear elliptic equations are in general not Lipschitz
continuous on ∂Ω when the Dirichlet data are only of class C1, see [52], or when
∂Ω is not smooth. In this paper we want to investigate only gradient blow up
phenomena caused by the nonlinearity of the equation and the geometry of the
domain, but not by the lack of smoothness of ψ or ∂Ω. We say that the Dirichlet
condition is satisfied in the classical sense, if u ∈ C(Ω) and if u(x) = ψ(x) for every
x ∈ ∂Ω. Unfortunately the classical Dirichlet problem is not stable under small
perturbations of the differential equation, see Section 7 in [18] or [42]. Therefore
one has to weaken condition (1.2) so that it can accomodate small perturbations.
We recall Definition 7.4 in [18].

Definition 2.2. Suppose F ∈ C(Ω × R × Rn × Sn) satisfies (1.3) (1.7). An
upper semicontinuous function u ∈ USC(Ω) is called a viscosity subsolution of
the Dirichlet problem (1.1) (1.2) if u is a viscosity subsolution of the differential
equation (1.1) in Ω and if min{F (x0, u(x0), p,X), u(x0) − ψ(x0)} ≤ 0 for every
x0 ∈ ∂Ω and (p,X) ∈ J 2,+

Ω
(u(x0)).

Similarly u ∈ LSC(Ω) is called a viscosity supersolution of the Dirichlet problem
(1.1) (1.2) if u is a viscosity supersolution of the differential equation (1.1) in Ω
and if max{F (y0, u(y0), p,X), u(y0)−ψ(v0)} ≥ 0 for every x0 ∈ ∂Ω and (p,X) ∈
J 2,−

Ω
(u(y0)).

Finally, a function u ∈ C(Ω) is called a viscosity solution of the Dirichlet problem
(1.1) (1.2), if u is a viscosity sub- and supersolution of the Dirichlet problem (1.1)
(1.2).
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In order to formulate our results we denote by ϕ and φ continuous functions
from [0,∞) to [0,∞), which are nondecrasing, positive on (0,∞) and satisfy∫ ∞

1

dt

tϕ(t)
=∞ (2.2)

and ∫ ∞
1

dt

tφ(t)
<∞. (2.3)

Examples are given by ϕ(t) = ln(1 + t) and φ(t) = ln1+ε(1 + t) with ε > 0.

Let us denote by d(x) the distance function to the boundary d(x) := dist(x, ∂Ω).
Since ∂Ω is of class C2, d is of class C2(Ω0) in a sufficiently small neighborhood
Ω0 := {x ∈ Ω; d(x) < d0} of the boundary, i.e. for a small positive constant d0.
Without loss of generality we can assume that the boundary datum ψ(x) from
(1.2) extends into Ω in a way that close to the boundary (i.e. in Ω0) it is constant
along normals. Since d0 can be chosen sufficiently small and ∂Ω is assumed to be
of class C2, for every x ∈ Ω0 there exists a unique closest point y(x) on ∂Ω. We
shall then denote the interior unit normal to ∂Ω at y(x) by ν(x).

The following condition provides Lipschitz continuity on the boundary of con-
tinuous viscosity solutions u to the Dirichlet problem (1.1)(1.2).

There exist nonnegative constants M and β and a function ϕ satisfying (2.2)
such that

F (x, ψ(x), Dψ(x)− tν, 0) sign(t) ≤ dβ(x) ϕ1+β(|t|) |t|2+β (2.4)

for every x ∈ Ω0 and |t| ≥M .

Theorem 2.3. (Global boundary gradient estimate for β ≥ 0)

Suppose that (1.5)–(1.7) and (2.4) hold and that ψ and ∂Ω are of class C2. Then
every viscosity solution u ∈ C(Ω) of the Dirichlet problem (1.1)(1.2) is Lipschitz
continuous up to the boundary. More precisely, there exists a positive constant
b ≤ d0 and a nonnegative function h ∈ C2[0, b] with h(0) = 0 and

|u(x)− ψ(x)| ≤ h(d(x)) (2.5)

for every x ∈ Ωb := {x ∈ Ω; d(x) < b}, provided one of the following conditions
holds:

i) β = 0 in (2.4), or

ii) β > 0 in (2.4), ∂Ω is convex and ∂Ω is strictly mean-convex with respect
to the interior unit normal to ∂Ω, or

iii) β > 0 in (2.4), ∂Ω is convex and there is a nontrivial subset γ of ∂Ω where
∂Ω may be just convex and only ∂Ω\γ is strictly mean-convex with respect to the
interior unit normal to ∂Ω, but then

D2ψ(x) ≤ 0 for every x ∈ Nγ ∩ Ω in a neigbourhood Nγ of γ. (2.6)
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Let us recall that in a canonical coordinate system with xn pointing in normal
direction into Ω, the boundary can be parametrized as xn = g(x1, . . . , xn−1).
Then ∂Ω is called convex at x ∈ ∂Ω if the Hessian matrix D2g(x) ≥ 0 and
mean convex if trace[D2g(x)] ≥ 0. This means that all principal curvatures are
nonnegative (for convex surfaces) and that their sum is positive (for mean convex
surfaces).

Notice that by the triangle inequality and by (2.5) we have |u(x) − u(z)| ≤
|u(x)−u(y(x))|+|u(y(x))−u(z)| for x ∈ Ωb and z ∈ ∂Ω. If y(x) denotes the closest
point to x on ∂Ω, one can conlude that |u(x)−u(z)| ≤ h(d(x))+|ψ(z)−ψ(y(x))| ≤
K1|x − z|. Therefore u is locally Lipschitz continuous on ∂Ω. As an immediate
consequence of (2.5) we obtain

Corollary 2.4.

Under the assumptions of Theorem 2.3 every viscosity solution of the viscosity
Dirichlet problem (1.1)(1.2) satisfies the Dirichlet condition in a classical sense.

The statement of Corollary 2.4 follows immediately from estimate (2.5).

In the case that (2.4) is not satisfied everywhere in Ω0, Theorem 2.3 does
not apply. Nevertheless we can still prove local Lipschitz regularity and local
estimates like (2.5) at every point z ∈ ∂Ω if we replace (2.4) by the slightly
stronger condition, that there exist a function ϕ satisfying (2.2) and nonnegative
constants M and β that may depend on z, such that

|F (x, ψ(x), p, 0)| ≤ dβ(x) ϕ1+β(|p|) |p|2+β (2.7)

for every x ∈ B(z, R) ∩ Ω ⊂ Ω0 and |p| ≥M .

Theorem 2.5. (Local boundary gradient estimate for β ≥ 0)

Suppose (1.5)–(1.7) and (2.7) hold and ψ and ∂Ω are of class C2.

Then every viscosity solution u(x) ∈ C(Ω) of the Dirichlet problem (1.1) (1.2)
is Lipschitz continuous on ∂Ω ∩ B(z,R/2), and the estimate (2.5) is satisfied
for every x ∈ B(z,R/2) ∩ Ω and some nonnegative function h ∈ C2[0, b] with
h(0) = 0, provided at least one of the following conditions i) – iii) holds:

i) β = 0 in (2.7), or

ii) β > 0 in (2.7) and B(z,R) ∩ ∂Ω is convex and strictly mean convex with
respect to the interior unit normal ν to ∂Ω; or

iii) β > 0 in (2.7) and B(z, R)∩∂Ω is convex with respect to ν but not strictly
mean convex and the inequality (2.6) is satisfied for every x ∈ B(z,R) ∩ Ω.

In the following theorem we will show that the assumptions in Theorem 2.3 and
2.5 are sharp for the Lipschitz regularity of the continuous solutions of (1.1), (1.2).
For this purpose let us formulate the supergrowth conditions for the lower order
term F (x, r, p, 0) for large values of |p|, which are complementary to conditions
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(2.4), (2.7) in Theorems 2.3 and 2.5, and lead to boundary gradient blow up of
the viscosity solutions when the boundary data ψ(x) have large enough gradient.

Suppose that for some z ∈ ∂Ω either the estimates (2.8) or (2.9) hold for every
r ∈ R, t ≥ M , |p| ≥ M and for some nonnegative constants M,β and some
function φ satisfying (2.3){

(i) F (x, r, tν, 0) ≤ −dβ(x)φ1+β(t) t2+β for x ∈ B(z,R) ∩ Ω,

(ii) F (x, r, p, 0) ≤ 0 for x ∈ Ω,
(2.8)

{
(i) F (x, r,−tν, 0) ≥ dβ(x)φ1+β(t) t2+β for x ∈ B(z,R) ∩ Ω,

(ii) F (x, r, p, 0) ≥ 0 for x ∈ Ω,
(2.9)

Here B(z, R) ∩ Ω is a one-sided neighborhhod of z. Conditions (2.8) (ii) and
(2.9) (ii) will be used to coerce the solution into developing a large slope when
the datum ψ has large variations near z ∈ Ω.

Theorem 2.6. (Local gradient blow up on the boundary for β ≥ 0)

Suppose (1.5)–(1.7) hold and ∂Ω ∈ C2. Moreover, assume that for some z ∈ ∂Ω
condition (2.8) is satisfied with

β = 0 or (2.10)

β > 0 and B(z, R) ∩ ∂Ω is concave wrt the interior normal ν to ∂Ω. (2.11)

Then there exist data ψ0(x) ∈ C∞(Ω), ψ0(z) = 0, ψ0(x) ≥ 0 such that every
viscosity solution u(x) ∈ C(Ω) of the Dirichlet problem (1.1) with data ψ0(x) has
infinite positive derivative ∂u

∂ν
in at least one point z∗ ∈ ∂Ω∩B(z, ε) in the sense

that

lim sup
t→0+

u(z∗ + tν(z∗))− u(z∗)

t
=∞.

Analogously, if (2.9) holds as well as (2.10) or (2.11), then every viscosity
solution u(x) ∈ C(Ω) of the Dirichlet problem (1.1), (1.2) with data −ψ0(x) has
infinite negative derivative ∂u

∂ν
in at least one point z∗ ∈ ∂Ω∩B(z, ε) in the sense

that

lim inf
t→0+

u(z∗ + tν(z∗))− u(z∗)

t
= −∞.

Theorem 2.6 shows that for larger choices of the boundary datum |ψ| > |ψ0|
a viscosity solution u must fail to satisfy the Dirichlet condition in the classical
sense. Instead it satisfies the boundary condition in the viscosity sense, i.e. the
differential equation holds in boundary points in viscosity sense.

The assumptions of Theorem 2.6 can be simplified if F (x, r, p,X) satisfies the
strict monotonicity condition (1.4). Then part (ii) of the assumptions (2.8) and
(2.9) become superfluous because (1.4) guarantees large slope of the viscosity
solutions of (1.1) when the data have the same properties.
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Corollary 2.7.

Suppose (1.4) - (1.6) hold and ∂Ω ∈ C2. Moreover, assume that for some z ∈ ∂Ω
condition (2.8) (i) is satisfied as well as (2.10) or (2.12)

Then there exist data ψ0(x) ∈ C∞(∂Ω), ψ0(z) = 0, ψ0(x) ≥ 0 such that every
viscosity solution u(x) ∈ C(Ω) of the Dirichlet problem (1.1) with data ψ0(x) has
infinite positive derivative ∂u

∂ν
in at least one point z∗ ∈ ∂Ω ∩B(z, ε).

Analogously, if (2.9) (i) holds as well as (2.10) or (2.12), then every viscosity
solution u(x) ∈ C(Ω) of the Dirichlet problem (1.1), (1.2) with data −ψ0(x) ∈
C∞(Ω) has infinite negative derivative ∂u

∂ν
in at least one point z∗ ∈ ∂Ω∩B(z, ε).

While the previous theorems make statements about the gradient on the
boundary ∂Ω, the following results describe our investigations on the behaviour of
the gradient in the interior of the domain. It turns out that the one–dimensional
case is considerably easier to study than the multi–dmensional case. Therefore we
first present our results in one dimension. In the one–dimensional situation the
local interior gradient estimates for the continuous viscosity solutions of (1.1) hold
essentially under the same growth conditions for the lower order term F (x, r, p, 0)
as in the case of the local boundary gradient estimates in Theorem 2.5. More
precisely, we assume that for some z ∈ Ω there exist nonnegative constants K0,
β and M and a function ϕ(t) satisfying (2.2) such that

|F (x, r, p, 0)| ≤ |x− z|βϕ1+β(|p|) |p|2+β (2.12)

holds for every x ∈ B(z,R) ∩ Ω and every |r| ≤ K0 and p ∈ Rn, |p| ≥M .

Theorem 2.8. (Interior gradient estimates for β ≥ 0, n = 1)

Suppose that Ω = (−l, l), β ≥ 0 and that (1.5)–(1.7) and (2.12) hold. Then every
viscosity solution u(x) ∈ C(−l, l) of (1.1) with |u(x)| ≤ K0 for x ∈ (−l, l), is
Lipschitz continuous at z ∈ (−l, l) and the estimate

|u(x)− u(z)| ≤ C3|x− z| (2.13)

is true for every x ∈ (−l, l), with a constant C3 depending only on M,K0, β, ϕ
and dist (z,±l).

In order to show the sharpness of the conditions in Theorem 2.8 we have to
construct “interior boundaries” for viscosity solutions of (1.1) (1.2) under suitable
choice of the boundary data. Without loss of generality, we place the singulaity
at 0 ∈ (−l, l). Let us first list our results in the case β > 0.

For this purpose we assume that there exist constants M , β > 0 and a function
φ satisfying (2.3) such that

sign(x) F (x, r, t, 0) ≤ −|x|βφ1+β(t)t2+β in (−l, l), (2.14)

for r ∈ R, t ≥M
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Theorem 2.9. (Interior gradient blow up for β > 0, n = 1)

Suppose (1.5)–(1.7) and (2.14) hold, and that β > 0 and Ω = (−l, l). Then
there exists a critical value M∗ > 0 such that a viscosity solution u ∈ C(Ω) of
the Dirichlet problem (1.1) (1.2) with Dirichlet datum ψ1(±l) = ±M∗ will have
infinite gradient at the origin. Moreover, u(0) = 0.

Remark 2.10. From the proof of Theorem 2.9 it follows that there are no contin-
uous viscosity solutions when the Dirichlet data ψ satisfy (−1)iψ((−1)il) > M∗ fir
i = 1, 2. Instead the solutions will be discontinuous at 0, but they have (different)
continous extensions from (−l, 0) and (0, l) to 0. Since there is no satisfactory
theory of discontinuos viscosity solutions, while there is a theory that can acco-
modate detachment of viscosity solutions from Dirichlet data on the boundary, we
like to think of 0 in this case as a new boundary and of the restrictions of u to
(−l, 0) and (0, l) as viscosity solutions to separate Dirichlet problems in (−l, 0)
and (0, l) with vanishing Dirichlet data at 0. In this context we speak of 0 as an
interior boundary. Roughly speaking, transition layers are then interpreted as
boundary layers. An example of such behaviour is given by Example 1 in [46].

In the case β = 0, condition (2.14) contradicts the continuity of F , because
F (x, r,−tν, 0) would have to be strictly positive in (−l, 0) and simultaneously
strictly negative in (0, l). If u is monotone increasing in (−l.l) then an interior
gradient blow up requires that it has an inflection point where it switches from
convex to concave. Therefore we cannot expect any interior gradient blow up in
the case β = 0, n = 1. In fact, if F happens to be independent of x, one can find
a proof of interior Lipschitz regularity for β = 0 and general n ≥ 1 in Theorem 5
of [45].

Let us now present our results on the multi–dimensional case. For β = 0,
conditions (2.12) are the so–called natural growth conditions for Lipschitz regu-
larity, see [31, 37, 50, 54, 70]. In view of the one–dimensional situation it seems
natural to conjecture that analogues of Theorems 2.8 and 2.9 hold for general
β ≥ 0. However, a priori estimates in higher dimensions are much more delicate.
A counterexample of Safonov [58] seems to suggest that we can only expect such
estimates (without imposing additional structural assumptions on F ) in the au-
tonomous case where F (u,Du,D2u) does not depend on x. In what follows we
assume

F (x, u, p,X) in (1.1) is independent of x ∈ Ω. (2.15)

Theorem 2.11. (Global Lipschitz estimates for β ≥ 0, n ≥ 1)

Suppose that (1.5)–(1.7) and (2.4), (2.15) hold. Then every viscosity solution
u(x) ∈ C(Ω) of (1.1) is Lipschitz continuous at z ∈ Ω and the estimate

|u(x)− u(z)| ≤ C4|x− z| (2.16)

is true for every x, z ∈ Ω, with a constant C4 depending only on M,ϕ β, Ω and
boundary data ψ.
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Using Theorem 2.9 one can construct situations in higher dimensions, where
the gradient of u blows up in the interior along a flat level surface of u for β > 0
and n > 1. Suppose for simplicity that Ω ⊂ Rn is Steiner-symmetric, i.e. convex
in direction xn and reflection symmetric about the plane {xn = 0}. We define
Ω+ := Ω ∩ {xn > 0} and Ω− := Ω ∩ {xn < 0} and E := Ω ∩ {xn = 0}. If there
exist constants M and β > 0 and a function φ satisfying (2.3) such that

F (x, r, ten, 0) ≥ |xn|βφ1+β(t)t2+β in Ω−, (2.17)

F (x, r,−ten, 0) ≤ −|xn|βφ1+β(t)t2+β in Ω+, (2.18)

for r ∈ R, t ≥ M and en = (0, . . . , 0, 1) ∈ Rn, then E can become an “iinterior
boundary” under suitably chosen Dirichlet data.

Corollary 2.12. (Interior gradient blow up for β > 0, n > 1)

Suppose (1.5)–(1.7) and (2.17), (2.18) hold, and that β > 0 and Ω is Steiner-
symmetric in xn and has boundary ∂Ω of class C2. Then there exists critical data
ψ∗(x) such that a viscosity solution u ∈ C(Ω) of the Dirichlet problem (1.1) (1.2)
with Dirichlet datum ψ∗(x) = h∗(xn) has infinite slope in direction xn along E.
Here h∗ depends only on xn and is defined in the proof. Moreover, u(x) = 0 on
E.

Our proof shows that Steiner symmetry of Ω is not essential. In fact simi-
lar examples can be constructed for any bounded domain of class C2 and any
intersecting hyperplane.

Finally let us remind the reader that for β = 0 we do not expect interior
gradient blow up, because, as explained above, at least for n = 1 blow up can
only occur on the boundary.

The following examples illustrate the sharpness of our results when β > 0.

Example 2.13. Consider

−u′′(x)− sign(x)|x|βϕ1+β(|u′(x)|) |u′(x)|2+β = 0, in (−b, b) (2.19)

u(−b) = −B, u(b) = B,

where b, B, β are positive constants and ϕ(t) satisfies (2.2). Problem (2.19) has
a unique classical and odd solution u(x) ∈ C2[−b, b], given by u(x) = h(x) for
x ∈ [0, b], and u(x) = −h(−x) for x ∈ [−b, 0). For positive t the function h(t)
is explicitly defined in Corollary 4.2 as a solution of equation (4.1) in (0, b) with
boundary data h(0) = 0, h(b) = B. For negative t it can be continued as an odd
function.

Example 2.14. In contrast, consider now

−u′′(x)− sign(x)|x|βφ1+β(|u′(x)|) |u′(x)|2+β = 0 in (−b, b), (2.20)

u(−b) = −B, u(b) = B,
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where b, B, β are positive constants and φ(t) satisfies (2.3). For every b > 0 there
exists a critical value K∗, depending on b, β and φ (see Corollary 4.4) such that
for all B < K∗ problem (2.20) has a unique classical and odd solution u(x) ∈
C2[−b, b]

u(x) =

{
h(x) for x ∈ [0, b]

−h(−x) for x ∈ [−b, 0)
(2.21)

where the function h(x) ∈ C2[0, b] is defined in Corollary 4.4 as a solution of
equation (4.6) with h(0) = 0, h(b) = B. When B = K∗, then (2.20) has a unique
continuous viscosity solution h∗ given by (2.21) with the function h∗(x), h∗(0) =
0, h∗(b) = K∗ defined in (4.8)(4.9). The solution is classical except at the origin,
i.e. u ∈ C2([−b, b] \ {0}) ∩ C[−b, b], but u(x) is not Lipschitz continuous at
zero because u′(0) = ∞. Finally, when B > K∗, then (2.20) has no continuous
viscosity solution.

A piecewise solution can be constructed via the Perron method [18] and is
given by u(x) = h∗(x) + B − K∗ for x ∈ [0, b], u(x) = −h∗(−x) − B + K∗ for
x ∈ [−b, 0]. Observe that now u ∈ C2([−b, b] \ {0}) ∩ C[0, b] ∩ C[−b, 0] and that
u is jump discontinuous at the origin.

There are similar examples for β = 0 on the half-interval (0, b) with u(0) = 0
and u(b) = B. For φ(t) = tq−2 and q > 2 the critical boundary value K∗ was
explicitly calculated in [1].

3 Discussion of Results

The assumptions for the boundary and interior Lipschitz regularity of the con-
tinuous viscosity solutions of (1.1), (1.2) in Section 2 are optimal and sharp, as
Example 2.14 and our blow up results Theorem 2.6, Corollary 2.7, Theorem 2.9
and Corollary 2.12 show. If the assumptions for Lipschitz regularity fail, then
there exist smooth Dirichlet data ψ(x) with large enough gradient such that either
(1.1), (1.2) has no viscosity solution in C(Ω), i.e. Perron’s solutions are discon-
tinuous, or the corresponding viscosity solution is not Lipschitz continuous in the
interior or on the boundary of Ω. Our assumptions depend on the growth of the
lower order term F (x, r, p, 0) for large values of |p|, which can be so strong that
the solution can become discontinuous. In that sense it then resembles a nonlin-
ear hyperbolic equation. At the same time the strongly elliptic principal term has
a smoothing effect on the solutions. The competition between these two effects
is reflected in conditions (2.7) and (2.8), (2.9) in the sense that the smoothing
effect wins and viscosity solutions have bounded gradients when (2.7) holds with
ϕ satisfying (2.2), whereas the blow up effect wins and viscosity solutions have
unbounded gradient when (2.8), (2.9) holds with φ satisfying (2.3).

In some cases, when β > 0 in (2.4) or (2.7), the conditions for boundary gra-
dient estimates in Theorem 2.3 and 2.5 depend on the geometry of the boundary
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∂Ω and the choice of the boundary data. As far as we can tell, this observation
appears to be new for uniformly elliptic equations. For β = 0 there is no such
restriction on the geometry of ∂Ω.

As for the interior Lipschitz regularity, we conjecture that the interior gradient
estimates remain true under the general condition (2.12) with β ≥ 0. However,
our proof cannot be extended to this general case because we have no information
on the geometry of the level line of the solution through some interior point of
Ω. In fact, interior gradient estimates were proved in [37], [6], [7], [68] with
different methods and under different additional structure assumptions on F . Let
us explicitly point out that our idea for the proof of the interior and boundary
estimates differs from [37], [6], [7], [68], because we use only classical barrier
functions and a very weak formulation of the comparison principle, Theorem 3 in
[43], in which one of the viscosity sub- or supersolutions is a classical one, whereas
the method of proof in [37], [6], [7] is based on the idea of doubling variables and
follows [18]. Other gradient estimates which are mentioned in the introduction
were obtained by interpolation from C1,α estimates. Therefore they provide only
sufficient, but not necessary conditions for gradient bounds.

Note also that the boundary estimates in Theorem 2.3 and 2.5 give not only
the Lipschitz regularity of the continuous viscosity solutions but also shed light
on the problem when the Dirichlet condition is satisfied in classical sense and
when it is only satisfied in the viscosity sense. In the latter case the solution may
detach from the given Dirichlet data and instead solves the differential equation
on some part of the boundary.

For more details on the notion of boundary conditions in classical or viscosity
sense we recommend Section 7 in [18]. It is curious to mention that even classical
solutions of the equation can violate boundary conditions if the equation is rather
degenerate (see Example 7.8 in [18]). In Proposition 7.11 in [18] one can find a
sufficient condition under which smooth sub- or supersolutions in C2(Ω̄) satisfy
the boundary data in classical sense. The result in [18] is extended in [34] to
continuous viscosity sub- or supersolutions in C(Ω̄) of fully nonlinear degenerate
elliptic equations under the “natural growth” conditions. Roughly speaking, for
uniformly elliptic equations “natural growth” means quadratic growth in partic-
uar of the lower order term F (x, r, p, 0) (but also Fx, Fu etc.) with respect to
the gradient variables p. In fact, the result in [34] is sharp in the power scale
of the nonlinearities, but in the refined power-log scale of the nonlinearities our
results in Theorem 2.3 and 2.5 in the present paper are slightly more general than
those in [34] and are the best possible ones (see Example 1 in [46]). Moreover,
we show that not only the nonlinearity of the equation, but also the geometry of
the domain and the choice of the boundary data is crucial for the validity of the
classical Dirichlet condition.

Necessary conditions for the violation of the classical Dirichlet problem are
the assumptions in Theorem 2.6 and Corollary 2.7 that guarantee boundary gra-
dient blow-up. For the time being, the boundary and interior gradient blow up
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phenomena are not well understood even for classical solutions. The results in
[1, 2, 3, 4, 12, 13, 21, 25, 26, 30, 45, 53, 55, 57, 63, 64, 66, 67] are basically
applied to classical solutions of quasilinear parabolic equations whose first space
derivatives blow up after finite time. While the blow up on the boundary leads
to detachment of the solution from the data and to solutions of the viscosity
Dirichlet problem (1.1), 1.2), the interior gradient blow up produces solutions
that are discontinuous in the interior of Ω. Unfortunately, the theory of discon-
tinuous viscosity solutions is still not developed. Only indirectly, after a suitable
regularization of the equation and after passing to the viscosity limit, or by the
Perron method or numerically [55] one can see the resulting discontinuous solu-
tions. Coincidentally, the conditions for boundary and interior gradient estimates
in Section 2 are almost identical in the one–dimensional case. That is why our
main conjecture is that viscosity solutions, as well as classical ones, have gradient
blow up only at the “boundary”. Here “boundary” means not the topological
one but that part of the boundary of the corresponding boundary value problem,
where the data should be prescribed. From the notion of viscosity solutions to
the Dirichlet problem (1.1) (1.2), Definition 2.2, it is clear that a part of the topo-
logical boundary may be free from boundary data and these points are “interior”
points in the sense that the equation is satisfied rather than the data. A simple
example of Fichera

−y2uxx + 2xyuxy − x2uyy + 2xux + 2yuy = 0 in B(0, 1) (3.1)

u = ψ(x, y) on ∂B(0, 1)

illustrates that the unit sphere ∂B(0, 1) in R2 is irrelevant for boundary data. At
the same time elementary calculations show that prescribing u at the center of
the ball determines u uniquely in the entire ball. In this example the origin can
be interpreted as an “interior boundary” of boundary value problem (3.1). In
fact, in terms of polar coordinates (3.1) can be rewritten as a parabolic equation

rur − uθθ = 0 for (r, θ) ∈ (0, 1)× (0, 2π)

with periodic boundary conditions on θ = 0 and θ = 2π and initial data at
r = 0, i.e. at the center of the disc. By the way, the notion of the “boundary”
as a beginning of some diffusion process for degenerate elliptic equations is also
perceived and maybe better understood in the context of probability theory (see
[27]). However, the question when and where the viscosity solutions form “interior
boundaries” or equivalently have “an interior boundary- or transition layer” is
still essentially unanswered. It is clear from [45] that for autonomous strictly
elliptic fully nonlinear equations with locally Lipschitz coefficients in the sense of
(1.6) the interior blow up phenomenon does not occur. We show in Example 2.14
explicit viscosity solutions which have interior gradient blow up at zero.

In Theorem 2.9 we construct “interior boundaries”in the one–dimensional case,
choosing suitable Dirichlet data. At the same time there is no gradient blow up
of the viscosity solutions on the boundary. This follows from simple concavity-
convexity properties of the solutions near the boundary.
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4 Boundary gradient estimates and boundary

blow up

We start this section with some auxiliary results for special nonlinear ordinary
differential equations. In the PDE-setting, suitable barrier functions will satisfy
similar equations along normals to the boundary. Therefore the investigation
of the ODEs is essential for the proofs of our results in the multidimensional
case, i.e. Theorems 2.3, 2.5, 2.6 and Corollary 2.7, but also Theorems 2.8 and
2.9. Moreover, these ODEs illustrate our results in the one-dimensional case by
providing explicit solutions that display the essential features of gradient blow
up.

A fully nonlinear ordinary differential equation F (t, u, u′, u′′) = 0 that is
strongly elliptic in the sense of (1.5) can always be transformed into explicit
form −u′′ − f(t, u, u′) = 0. For our purposes it will suffice to study lower or-
der terms f(t, u, u′) which are independent of u and which are the product of
a power of t and a function of u′. In this case we can explicitly integrate the
ordinary differential equation. Let us remark in passing that gradient blow up in
the autonomous case −εu′′ − f(u) = 0 has been treated to some extent in [44].

Lemma 4.1.

For all constants m,K, β ≥ 0, b0 > 0 and function ϕ(t) satisfying (2.2), there
exists a positive constant b = b(m,K, β, b0, ϕ) ≤ b0 and a nonnegative function
h ∈ C2[0, b] such that

−h′′(t)− tβϕ1+β(|h′(t)|)|h′(t)|2+β = 0 in (0, b) (4.1)

h(0) = 0, h(b) ≥ K, and h′(t) ≥ m in [0, b]

Proof. We choose positive constants L > L1 ≥ m such that∫ L

L1

ds

sϕ(s)
≥ K,

∫ L

L1

ds

s2+βϕ1+β(s)
<

bβ+1
0

β + 1

from the divergence of the first integral and the convergence of the second one.

Setting b :=
[
(1 + β)

∫ L
L1

ds
s2+βϕ1+β(s)

]1/(1+β)

≤ b0 and

H(z) :=

∫ L

z

ds

s2+βϕ1+β(s)
, H(z) : [L1, L]→ [0, b]

the function h(t) :=
∫ t

0
H−1(s1+β/(1 + β))ds turns out to be the desired solution.

In fact
h′(t) = H−1(t1+β/(1 + β)) ≥ L1 ≥ m, h(0) = 0
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and

h(b) =

∫ b

0

H−1

(
s1+β

1 + β

)
ds

= −
∫ L1

L

t dt

t2+βϕ1+β(t)[(1 + β)H(t)]β/(1+β)

after the change s1+β = (1 + β)H(t). Simple computations give us from the
monotonicity of ϕ(s) the following chain of inequalities

h(b) ≥ (1 + β)−
β

1+β

∫ L

L1

dt

t1+βϕ(t)[
∫ L
t
ds/s2+β] β

1+β

= Lβ
∫ L

L1

dt

tϕ(t)(L1+β − t1+β)β/(1+β
≥
∫ L

L1

dt

tϕ(t)
≥ K.

Corollary 4.2.

For any b > 0, K ≥ 0, β ≥ 0 and ϕ satisfying (2.2), the two point boundary
value problem

−h′′(t)− tβϕ1+β(|h′(t)|) |h′(t)|2+β = 0 in (0, b) (4.2)

h(0) = 0 and h(b) = K (4.3)

has a unique classical solution h ∈ C2([0, b]).

In fact, this solution is explicitly constructed in the proof of Lemma 4.1

Lemma 4.3.

For all constants m,β ≥ 0, b0 > 0 and function φ(t) satisfying (2.3), there
exist a positive constant b = b(m,β, b0, φ) ≤ b0 and a nonnegative function h ∈
C2(0, b] ∩ C[0, b] such that

−h′′(t)− tβφ1+β(|h′(t)|) |h′(t)|2+β = 0 in (0, b), (4.4)

h(0) = 0, h′(t) ≥ m, and h′(0) =∞.

Proof. We choose a positive constant L ≥ m sufficiently large such that∫ ∞
L

ds

s2+βφ1+β(s)
≤ b1+β

0

1 + β

from the convergence of the integral and b :=
[
(1 + β)

∫∞
L

ds
s2+βφ1+β(s)

]1/(1+β)

≤ b0.

The function h(t) =
∫ t

0
H−1

(
s1+β

1+β

)
ds, where

H(z) =

∫ ∞
z

ds

s2+βφ1+β(s)
, H(z) : [L,∞]→ [0, b]
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has the desired properties. We will check only the boundedness of h(t). After
the change of the variables s1+β = (1 + β)H(τ) simple computations give us the
chain of inequalities

h(b) = −(1 + β)
1

1+β

∫ ∞
L

τd(H
1

1+β )

= −(1 + β)
1

1+β τ

(∫ ∞
τ

ds

s2+βφ1+β(s)

) 1
1+β
∣∣∣∣∞
L

+ (1 + β)
1

1+β

∫ ∞
L

(∫ ∞
τ

ds

s2+βφ1+β(s)

) 1
1+β

dτ

≤ (1 + β)
1

1+βL

(∫ ∞
L

ds

s2+βφ1+β(s)

) 1
1+β

+ (1 + β)
1

1+β

∫ ∞
L

(∫ ∞
τ

ds

s2φ(s)

) 1
1+β dτ

(τφ(τ))β/(1+β)

≤ (1 + β)
1

1+βL

(∫ ∞
L

ds

s2+βφ1+β(s)

) 1
1+β

+ (1 + β)
1

1+β

(∫ ∞
L

dτ

τφ(τ)

) β
1+β
(∫ ∞

L

(∫ ∞
τ

ds

s2φ(s)

)
dτ

) 1
1+β

= (1 + β)
1

1+β

[
L

(∫ ∞
L

ds

s2+βφ1+β(s)

) 1
1+β

+

∫ ∞
L

dτ

τφ(τ)

]

≤ (1 + β)
1

1+β

[(∫ ∞
m

ds

sφ1+β(s)

) 1
1+β

+

∫ ∞
m

ds

sφ(s)

]
=: K1

i.e. from the monotonicity of h(t)

h(t) ≤ h(b) =: K∗ ≤ K1 for t ∈ [0, b]. (4.5)

In the above estimates we used the fact that lim
τ→∞

τ 1+β
∫∞
τ

ds
s2+βφ1+β(s)

= 0, that

φ is monotone, so that sβφβ(s) can be estimated from below and pulled out of
the double integral, the Cauchy-Schwarz inequality, and in the last equality we
changed the order of integration. Moreover we used the fact that m < L < s in
the last inequality.

Corollary 4.4.

For any b > 0 and K ≥ 0 the two point boundary problem

−h′′(t)− tβφ1+β(|h′(t)|) |h′(t)|2+β = 0 in (0, b) (4.6)

h(0) = 0 and h(b) = K (4.7)

has a unique classical solution h ∈ C([0, b])∩C2((0, b]) if and only if K ≤ K∗(b),
where K∗(b) is the value of h∗(b) and h∗ solves the initial value problem

−h∗′′(t)− tβφ1+β(|h∗′(t)|) |h∗′(t)|2+β = 0 in (0, b) (4.8)

h∗(0) = 0 and h∗′(0) =∞. (4.9)
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Moreover, for K < K∗(b) we have h′(0) <∞ and h ∈ C2[0, b].

This follows from the explicit construction of h in the proof of Lemma 4.3.

Proof of Theorem 2.3. We want to apply Lemma 4.1 and choose m larger
than M , 1, and the following quantities that depend on assumptions i) through
iii). In case i) m must also exceed

c2

ϕ(1)

(
n sup
x∈∂Ω
|ki(x)|+ sup

x∈Ω

∣∣ trace
[
D2ψ(x)

] ∣∣) ,
in case ii), respectively iii), it should also be larger than

c2

c1

sup
x∈Ω

| trace [D2ψ(x)] |

inf
x∈Ω

n−1∑
i=1

ki(x)

resp.
c2

c1

sup
x∈Ω

| trace [D2ψ(x)] |

inf
x∈∂Ω\Nγ

n−1∑
i=1

ki(x)

.

Here ki(x) are the principal curvatures of ∂Ω. Lemma 4.1 also calls for K =
supx∈Ω(|u(x)| + |ψ(x)|), β and b0 as well as for a function ϕ satisfying (2.2).
Some ϕ is already defined through condition (2.4), but it still satisfies (2.2) if it

is replaced by (2/c1)
1

1+βϕ.

So according to Lemma 4.1 there exists a constant 0 < b ≤ b0 and a nonnega-
tive function h(t) ∈ C2[0, b] satisfying

−h′′(t)− 2

c1

tβϕ1+β(|h′(t)|)|h′(t)|2+β = 0 in (0, b) (4.10)

h(0) = 0, h(b) ≥ sup
x∈Ω

(|u(x)|+ |ψ(x)|) = K, and h′(t) ≥ m in [0, b]

We will show that the function

v(x) = ψ(x) + h(d(x)), v(x) ∈ C2(Ωb) ∩ C0(Ω̄b), Ωb = {x ∈ Ω; d(x) < b}

is a classical supersolution of (1.1), (1.2).

It is clear that v(x) = ψ(x) on ∂Ω and v(x) = h(b) + ψ(x) ≥ u(x) on ∂Ω ∩
∂Ωb from the choice of h(t). Moreover, from (1.5), (1.7), (2.4) and (2.6) simple
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computations give us the following chain of inequalities.

F (x, v(x), Dv(x), D2v(x))) (4.11)

= F (x, ψ(x) + h(d), Dψ(x) + h′(d) ν,D2ψ(x) + h′(d)D2d+ h′′(d)ν ⊗ ν)

≥ F (x, ψ,Dψ + h′ν,D2ψ + h′D2d− 2

c1

dβ(x)ϕ1+β(h′) (h′)2+β ν ⊗ ν)

≥ 2dβϕ1+β(h′)(h′)2+β + F (x, ψ,Dψ + h′ν, 0)

+ c1h
′
n−1∑
i=1

(ki)+ + c2h
′
n−1∑
i=1

(ki)− − c1 trace {(D2ψ)−} − c2 trace {(D2ψ)+}

≥ dβϕ1+β(h′)(h′)2+β + c1h
′
n−1∑
i=1

(ki)+ − c2h
′
n−1∑
i=1

|(ki)−|+ c1| trace {(D2ψ)−)}|

−c2 trace {(D2ψ)+} ≥ 0

from the choice of h. Here (ki)+ = max(ki, 0), (ki)− = min(ki, 0), {D2ψ} =
{(D2ψ)+} + {(D2ψ)−}, {(D2ψ)+} is a nonnegative matrix, {(D2ψ)−} is a non-
positive one. Moreover, the following identities were used in a principal coordi-
nate system of the unit inner normal ν(x) to ∂Ω and the principal directions λi,
i = 1, 2, . . . , n− 1 of ∂Ω at the point y(x) ∈ ∂Ω nearest to x ∈ Ωb ,{

D2d(x)
}

= −diag

{
k1

1− k1d
, . . . ,

kn−1

1− kn−1, d
, 0

}
ki

1− kid
= ki +

k2
i d

1− kid
.

(see [31] or [59]).

If u(x) ∈ C(Ω) is a viscosity solution of the Dirichlet problem for (1.1), which
happens to satisfy the boundary condition u(x) = ψ(x) on ∂Ω in the classical
sense, then from the comparison principle, Theorem 3 in [43], for viscosity sub-
and supersolutions such that at least one of them is C2(Ω) ∩ C(Ω) smooth we
get the right inequality of (2.5). Note that the assumptions of Theorem 3 in [43]
are satisfied with Lipschitz modulus of ellipticity and continuity of F w1(s) =
w2(s) = s.

However, we are considering viscosity solutions u(x) ∈ C(Ω) that satisfy the
Dirichlet condition only in the viscosity sense (see Definition 2.2), and so we
need a more elaborate proof. Therefore we consider the following boundary value
problem

f(x,w,Dw,D2w) := (4.12)

= F (x, v(x) + w,Dv(x) +Dw,D2v(x) +D2w) = 0 in Ωb,

w = u(x)− v(x) ≤ 0 on ∂Ωb ∩ Ω,

w = 0 on ∂Ωb ∩ ∂Ω. .

It is clear that f satisfies conditions (1.5), (1.6), (1.7), and from (4.11) we have
that f(x, 0, 0, 0) = F (x, v(x), Dv(x), D2v(x)) ≥ 0 in Ωb. Moreover, w(x) = u(x)−
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v(x) is a viscosity subsolution of (4.12) in Ωb. In fact, from Remark 2.7 (ii) in
[18] it follows that J 2,+

Ωb
w(x) = (p−Dv(x), X −D2v(x)) with (p,X) ∈ J 2,+

Ωb
u(x)

so that f(x,w(x), p,X) = F (x, u(x), p,X) ≤ 0 according to Definition 2.1. From
the strong interior maximum principle, Theorem 1 in [43], if w(x) attains its
positive maximum at some interior point x0 ∈ Ωb, then w(x) ≡ w(x0) > 0 for
every x ∈ Ωb which is impossible on ∂Ωb ∩ Ω.

If w(x) attains its positive maximum at some boundary point x0 ∈ ∂Ωb ∩ ∂Ω
then (0, 0) ∈ J 2,+

Ω̄b
w(x0). From Remark 2.7 in [18] it follows that

(λν(x0), µν(x0)⊗ ν(x0)) ∈ J 2,+

Ω̄b
w(x0)

for every λ > 0 and µ ∈ R. Since w(x0) > 0, according to Definition 2.2,
w(x), as a viscosity subsolution of the differential equation (4.12), satisfies the
equation and not the Dirichlet data at x0, i.e. f(x0, w(x0), q, Y ) ≤ 0 for every
(q, Y ) ∈ J 2,+

Ω̄b
w(x0).

But for q = λν(x0) and Y = µν(x0) ⊗ ν(x0) with fixed λ > 0 and for a real
number µ→ −∞ the above inequality is impossible because

0 ≥ f(x0, w(x0), λν(x0), µν(x0)⊗ ν(x0)) ≥ f(x0, w(x0), λν(x0), 0) + c1|µ| → ∞ .

Thus we proved that w(x) = u(x)− v(x) ≤ 0 in Ωb, i.e. u(x) ≤ ψ(x) + h(d(x)) in
Ωb for every viscosity solution of the Dirichlet problem (1.1), (1.2).

Analogously one can prove that

u(x)− ψ(x) + h(d(x)) ≥ 0 in Ωb .

Proof of Theorem 2.5. The proof of Theorem 2.5 is essentially the same as
the proof of Theorem 2.3. The only difference is that we consider a new domain
G ⊃ Ω, with boundary ∂G of class C2, which coincides with ∂Ω only in B(z, R/2).

If %(x) = dist(x, ∂G), then Ωb = {x ∈ Ω; %(x) < b} ⊂ B(z,R) when b is
sufficiently small and %(x) ∈ C2(Ωb). One observes that

%(x) ≥ d(x) = dist (x, ∂Ω) for all x ∈ Ωb

and %(x) = d(x) when the point y(x) ∈ ∂G nearest to x belongs to B(z, R/2)∩∂Ω.
Then the rest of the proof is the same as the proof of Theorem 2.3, using barrier
functions h(%(x)) depending on the distance %(x) to ∂G instead of the distance
d(x) to ∂Ω.

Proof of Theorem 2.6. Let B0 = B(z0, R0) be the ball with center z0 and
radius R0 so that B0 ∩ Ω = z. If b0 > 0 is sufficiently small, then Ω0 = {x ∈
Ω; |x− z0| < R0 + b0} ⊂ B(z,R), d(x) ∈ C2(Ω0) and the estimates

sup
∂Ω∩B(z,R)

|ki(x)| ≤ 1

2b0

, i = 1, 2, . . . , n− 1 (4.13)
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hold, where ki, i = 1, 2, . . . , n− 1, are the principal curvatures of ∂Ω.

We want to apply Lemma 4.3 and choose the constants appropriately. We pick
m := max{M , 2nc2/(b0φ(M))}, β ≥ 0 and b0 > 0 defined by (4.13). Arguing
as in the proof of Theorem 2.3, we can replace the function φ that is given
through (2.8)(2.9) by φ(t)/(2c2)1/(1+β). It will still satisfy (2.3). Hence there
exist a positive constant b = b(m,β, b0, φ, c2) ≤ b0 and a nonnegative function
h(t) ∈ C2(0, b] ∩ C[0, b] such that

−h′′(t)− 1

2c2

tβφ1+β(|h′(t)|)|h′(t)|2+β = 0 in (0, b) (4.14)

h(0) = 0, h′(0) =∞, h′(t) ≥ m .

Moreover, as in the proof of Lemma 4.3, the estimate

h(t) ≤ h(b) = K∗ ≤ [2c2(1 + β)]
1

1+β

[(∫ ∞
M

ds

sφ1+β(s)

) 1
1+β

+

∫ ∞
M

ds

sφ(s)

]
(4.15)

holds, where the constant factor that was added to φ has been accomodated.

Let us choose

ψ0(x) = N(|x− z0|2 −R2
0) , where N =

K∗
2bR0 + b2

, (4.16)

and note that ψ0(x) ∈ C∞(Ω), ψ0(x) ≥ 0, ψ0(z) = 0 and ψ0(x) = K∗ for
|x − z0| = R0 + b. Suppose that conditions (2.8) of Theorem 2.6 are satisfied.
Since

F (x, ψ0(x), Dψ0(x), D2ψ0(x))

= F (x, ψ0(x), 2N(x− z0), 2NI) ≤ F (x, ψ0(x), 2N(x− z0), 0)− 2Nnc1 ≤ 0
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in Ω it follows that ψ0(x) is a classical subsolution of (1.1), (1.2).

If u(x) ∈ C(Ω) is a viscosity solution of the Dirichlet problem (1.1) that
happens to satisfy the Dirichlet condition (1.2) in the classical sense, then from
the comparison principle, Theorem 3 in [43] we get

ψ0(x) ≤ u(x) in Ω . (4.17)

If, however u(x) ∈ C(Ω) is a viscosity solution of the Dirichlet problem (1.1), (1.2)
(see Definition 2.2) that satisfies the boundary condition only in the viscosity
sense, we have to argue as follows. Suppose that u(x) − ψ0(x) has a negative
minimum at some boundary point x0 ∈ ∂Ω, then (0, 0) ∈ J 2,−

Ω
(u(x0) − ψ0(x0)).

From Remark 2.7 in [18] it follows that

(Dψ(x0), D2ψ0(x0)) ∈ J 2,−
Ω

u(x0)

as well as

(Dψ0(x0) + λν(x0), D2ψ0(x0) + µν(x0)⊗ ν(x0)) ∈ J 2,−
Ω

u(x0)

for fixed λ < 0 and arbitrary µ ∈ R.

Since u(x0) < ψ0(x0) then from Definition 2.2 u(x) is a viscosity supersolution
of (1.1) at x0, i.e.,

F (x0, u(x0), Dψ0(x0) + λν(x0), D2ψ(x0) + µν(x0)⊗ ν(x0) ≥ 0

which is impossible for λ < 0 fixed and µ→∞ because from (1.5)

0 ≤ F (x0, u(x0), Dψ0(x0) + λν(x0), D2ψ0(x0) + µν(x0)⊗ ν(x0))

≤ F (x0, u(x0), Dψ0(x0) + λν(x0), D2ψ0(x0))− c1µ→ −∞.

Hence (4.17) holds for every viscosity solution u(x) ∈ C(Ω) of (1.1), (1.2).
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We consider the function h(d(x)), h defined in (4.14), in the domain Ωb =
{x ∈ Ω; |x− z0| < R0 + b} . Simple computations give us from (1.5), (1.7), (2.8),
(4.13) and (4.14) the following chain of inequalities, using the same notation as
in the proof of Theorem 2.3

F (x, h(d(x)), Dh(d), D2h(d)) (4.18)

= F (x, h, h′ν, h′′ν ⊗ ν + h′D2d)

= F

(
x, h, h′ν,− 1

2c2

dβ(x)φ1+β(h′)(h′)2+βν ⊗ ν + h′D2d

)
≤ F (x, h, h′ν, 0)

+
1

2
dβ(x)φ1+β(h′)(h′)2+β + c2h

′
n−1∑
i=1

(ki)+

1− kid
+ c1h

′
n−1∑
i=1

(ki)−
1− kid

≤

{
−1

2
φ(h′)(h′)2 + b−1

0 nc2h
′ − c1h

′∑n−1
i=1 |(ki)−| ≤ 0, if β = 0.

−1
2
dβ(x).φ1+β(h′)(h′)2+β − c1h

′∑n−1
i=1 |(ki)−| ≤ 0, if β > 0.

Notice that for β > 0 the terms involving (ki)+ are zero by assumption. Con-
sequently h(d(x)) is a C2(Ωb) ∩ C(Ω̄b) smooth subsolution of equation (1.1) in
Ωb and from (4.14) – (4.17) we conclude that h(d(x)) = 0 ≤ ψ0(x) ≤ u(x) on
∂Ω ∩ ∂Ωb and h(d(x)) ≤ K∗ ≤ ψ0(x) ≤ u(x) on Ω ∩ ∂Ωb.

Since u(x) ≥ ψ0(x) ≥ h(d(x)) on all of ∂Ωb then it follows from the compar-
ison principle, Theorem 3 in [43], that u(x) ≥ h(d(x)) in Ωb. Now we have to
distinguish two cases. When u(z) = ψ(z) = 0, since u(x) ≥ h(d(x)), h(0) = 0 and
h′(0) has an infinite positive gradient in the direction of the interior unit normal
ν(z), the statement of Theorem 2.6 is proved. If u does not satisfy the Dirichlet
condition in z in the classical sense, then u(x) > ψ0(x) in D := ∂Ω ∩ B(z, ε).
Therefore u is a viscosity subsolution of (1.1) in these points of detachment. Let
us show that this can only happen if ∇u is unbounded, To see this we first show
that J 2,+

Ω
u(x) = ∅ in D. Otherwise there exist a y ∈ D such that J 2,+

Ω
u(y) 6= ∅,

and therefore there exist (q, Y ) ∈ J 2,+

Ω
u(y). Then it follows from Remark 2.7

in [18] that also (q + λν(y), Y + µν(y)⊗ ν(y)) ∈ J 2,+

Ω
u(y) for every λ > 0 and

µ ∈ R. From Definition 2.1 and (1.5) we obtain for fixed λ > 0 and µ→ −∞ the
following absurd chain of inequalities

0 ≥ F (y, u(y), q + λν(y), Y + µν(y)⊗ ν(y))

≥ F (y, u(y), q + λν(y), Y )− µc1 → +∞.

Therefore J 2,+

Ω
u(x) = ∅ in D. But this is possible only when u(x) has an infinite

∂u
∂ν

at some point z∗ belonging to D. In fact, if uν were bounded everywhere in D,
at some z∗ one could construct an element (p,X) belonging to the (empty) set
J 2,+

Ω
u(z∗). Here is the construction of (p,X): First we find a function g ∈ C2(∂Ω)

such that g(x) ≥ u(x) in D, and g(z∗) = u(z∗) for some z∗ ∈ D. Using the alleged
boundedness of uν(x) from above, we can extend the function g as a C2 function
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into Ω with large enough gradient, so that it stays above u in a neighbourhood
of z∗. But then p := Dg(z∗) and X := D2g(z∗) belong to J 2,+

Ω
u(z∗).

This completes the proof of Theorem 2.6 under assumption (2.8). The proof
under assumption (2.9) is essentially the same, using similar estimates for u(x)
from above.

Proof of Corollary 2.7: The idea of the proof uses similar critical data ψ0 as
in (4.16), except that suitable constants N1 are added or subtracted to make sure
that ψ0 ∓N1 is a sub- or supersolution. Let us consider only the case (2.8)(i) in
Corollary 2.7. The case (2.9)(i) is symmetric.

We will use the same notation as in the proof of Theorem 2.6 and we define
essentially the same critical data ψ1(x) := ψ0(x)−N1 = N(|x− z0|2 − R2

0)−N1

where ψ0 and N are given in (4.16) and N1 > 0 is chosen sufficiently large so
that, observing (1.4),

F (x, ψ0(x)−N1, Dψ0(x), D2ψ0(x)) ≤ −c0N1 +F (x, ψ0(x), Dψ0(x), D2ψ0(x)) ≤ 0.

Hence, arguing as in the proof of (4.17), if u(x) ∈ C(Ω) is a viscosity solution
of (1.1) with data ψ0(x)−N1 then from the comparison principle

ψ0(x)−N1 ≤ u(x) in Ω .

The rest of the proof is identical with the proof of Theorem 2.6 using the barrier
functions h(d(x))−N1 in the domain Ωb.

5 Interior gradient estimates and interior gra-

dient blow-up

5.1 The one-dimensional case

In this subsection we give first proofs of the regularity Theorem 2.8 and the blow
up result Theorem 2.9. The idea of the proof of the interior gradient estimates is to
compare the continuous viscosity solution of (1.1) with suitable barrier functions.
The barrier functions are classical sub- and supersolutions of (1.1) so that the
technique of the doubling the number of the independent variables as in [18] is
not necessary. In fact only the strong interior maximum principle from [43] is
used.

Proof of Theorem 2.8. Suppose u(x) ∈ C(−l, l) is a viscosity solution of (1.1).
Without loss of generality we assume that z = 0 and u(0) = 0. Thus we will prove
Lipschitz continuity of u(x) at the point 0 with a Lipschitz constant depending
on ci, i = 1, 2, ϕ, sup

x∈(−l/2,l/2)

|u(x)|,M and l.

We intend to apply Lemma 4.1 and set m := max{M, 1, c2/ϕ(1)}, K =
sup

x∈(−l/2,l/2)

|u(x)|, β ≥ 0 and b0 = l/2. Without loss of generality we replace
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ϕ(t) from condition (2.12) by c
−1/(1+β)
1 ϕ(t); then it still satisfies (2.2). So ac-

cording to Lemma 4.1 there exists some b ∈ (0, b0] and a function h(t) ∈ C2[0, b]
solving

h′′(t) +
tβ

c1

(ϕ(h′(t))
1+β

(h′(t))2+β = 0 in (0, b)

In the interval I = (−b, b) ⊂ (−l, l) we consider its even extension h1(x) = h(|x|).
Since h ∈ C2[0, b] and h(0) = 0, it is enough to prove the estimate

−h(|x|) ≤ u(x) ≤ h(|x|) in I. (5.1)

If, for example, the right inequality in (5.1) fails, then the function v(x) = u(x)−
h(|x|) has a positive maximum at some point y ∈ I, y 6= 0, i.e. max

I
v(x) = v(y) =

M1 > 0. From the choice of h(t) it follows that y is an interior point of I and
y 6= 0. Without loss of generality suppose that y ∈ (0, b), the other case is similar.

Therefore the function v(x) = u(x)−h1(x) has a positive maximum M1 at the
interior point y ∈ (0, b). We will show that v(x) is a viscosity subsolution of the
equation

f(x, v,Dv,D2v) (5.2)

= F (x, v + h1(x), Dv +Dh1(x), D2v +D2h1(x)) = 0 in (0, b).

Since u ∈ C([0, b]) and h1 ∈ C2([0, b]), it follows from Remark 2.7 in [18] that for
every (p,X) ∈ J 2,+

[0,b]v(x) we get (p+Dh1(x), X +D2h1(x)) ∈ J 2,+
[0,b]u(x). Hence

f(x, v(x), p,X) = F (x, u(x), p+Dh1(x), X +D2h1(x)) ≤ 0

and according to Definition 2.1 v(x) is a viscosity subsolution of equation (5.2).

Let us now check that f(x, 0, 0, 0) ≥ 0 in (0, b). In fact, this inequality holds
because h1(x) is a classical supersolution of (1.1). From (1.5), (1.7), (2.2), (2.12)
and the choice of h(t) we get the following chain of inequalities.

f(x, 0, 0, 0) = F (x, h1, Dh1, D
2h1)

≥ F (x, 0, h′1(x), h′′1(x))

= F
(
x, 0, h′1(x),−c−1

1 |x|β (ϕ(h′1(x)))
1+β

((h′1(x))
2+β
)

≥ |x|β (ϕ(h′1(x)))
1+β

((h′1(x))
2+β

+ F (x, 0, h′1(x), 0) ≥ 0 ,

Since all assumptions of the strong interior maximum principle, Theorem 1 in [43],
are satisfied in (0, b) we obtain that v(x) ≡ M1 > 0 in [0, b] which is impossible
at the endpoints 0 and b.

Proof of Theorem 2.9. We will apply the second part of Corollary 4.4 and

choose b = l, β > 0, and the function φ(t)/(c2)
1

1+β satisfying (2.3). Then there
exists a nonnegative function h∗(t) with the properties (4.8) (4.9) satisfying

h∗(t) ≤ h∗(l) = K∗ in [0, l] . (5.3)
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Let us call M∗ := K∗ a critical boundary datum in Theorem 2.9. From (1.5),
(1.7) and (2.14) it follows that h∗ is a classical subsolution of (1.1) in (0, l). In
fact,

F (x, h∗, h∗′, h∗′′) = F
(
x, h∗, h∗′,−c−1

2 xβ(ϕ(h∗′))1+β
(
h∗′
)2+β

)
≤ xβ(ϕ(h∗′))1+β

(
h∗′
)2+β

+ F (x, h∗, h∗′, 0) ≤ 0 .

Let us assume that u(x) is Lipschitz continuous at 0, i.e. there exists a constant
C such that

|u(x)− u(0)| ≤ C|x| . (5.4)

We will show that u(x) ≥ h∗(x) under the assumption (5.4). If not, then
sup
x∈[0,l]

v(x) = sup
x∈[0,l]

(h∗(x) − u(x)) = v(x0) > 0 for some x0 ∈ [0, l]. From the

strong interior maximum principle, Theorem 1 in [43] we know that x0 cannot lie
in (0, l), because v(x) is a viscosity subsolution of (5.5) in (0.l).

f(x, v, v′, v′′) = −F (x, h∗(x))− v, h∗′(x)− v′, h∗′′(x)− v′′) = 0. (5.5)

In fact, for every (p,X) ∈ J 2,+
(0,l)v(x) it follows that (−p+ h∗′(x),−X + h∗′′(x)) ∈

J 2,−
(0,l)u(x) and hence

f(x, v(x), p,X) = −F (x, u(x), h∗′ − p, h∗′′ −X) ≤ 0 .

Moreover, f(x, 0, 0, 0) = −F (x, h∗, h∗′, h∗′′) ≥ 0 and the conditions of Theorem 1
and 2 in [43] are satisfied.

If v(x) attains a positive maximum at 0, then from the strong boundary max-
imum principle we get

lim sup
x→+0

v(x)− v(0)

x
= lim sup

x→+0

[
h∗(x)

x
− u(x)− u(0)

x

]
< 0,

which contradicts (5.4) and the choice of h∗(x), with h∗′(0) = ∞. On the other
hand, if v(x) attains a positive maximum at l, then u(l) < M∗ and u(x) is a
viscosity supersolution of (1.1) at l. Note that (0, 0) ∈ J 2,+

[0,l] v(l) and h∗ is of class

C2 near l, we can conclude from Remark 2.7 in [18] that (h∗′(l), h∗′′(l)) ∈ J 2,−
[0,l]u(l)

as well as (h∗′(l) + λ, h∗′′(l) + µ) ∈ J 2,−
[0,l]u(l) for any λ < 0 and any µ ∈ R. For

negative and fixed λ and µ→∞ we obtain from (1.5) the following contradiction.

0 ≤ F (l, u(l), h∗′(l) + λ, h∗′′(l) + µ) ≤ F (l, u(l), h∗′(l) + λ, h∗′′(l))− c1µ→ −∞
Thus v(x) ≤ 0 in [0, l], i.e.

h∗(x) ≤ u(x) in [0, l] (5.6)

and in particular u(0) ≥ 0. In the same way one can prove the estimate

u(x) ≤ −h∗(−x) in [−l, 0] (5.7)

and in particular u(0) ≤ 0. Combining (5.6) and (5.7) we get the continuity
of u across 0. But h′(0) = ∞ and this contradicts our assumption that u(x) is
Lipschitz continuous at the origin.
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5.2 The multi–dimensional case

Proof of Theorem 2.11. According to Theorem 2.3 the viscosity solution of
(1.1) (1.2) is globally Lipschitz continuous on the boundary and satisfies (1.2) in
the classical sense. This implies through (2.5) that there exists a constant C5

such that

|u(x)− u(y)| ≤ C5 |x− y| for any x ∈ Ω and y ∈ ∂Ω.

i.e. for (x, y) ∈ ∂(Ω × Ω). But now global Lipschitz continuity follows from
Theorem 5 in [45] or (alternatively) from Theorem VII.1 in [37]. Incidentally,
assumption (7.4) in the local regularity result Theorem VII.2 of [37], has been
weakened to condition (3.12) in [7], but neither one of those needs to hold for our
result on the autonomous situation.

The proof of Corollary 2.12 follows the same ideas as the proof of Theorem
2.9. The critical datum ψ∗(x) depends only on one variable xn and h∗(xn) is the
odd extension of h∗ from Corollary 4.4. Note that in this case the data ψ∗ are
not of class C2 in ∂Ω ∩ {xn = 0}. There they are merely continuous and have
infinite gradient in tangential direction. Everywhere else on ∂Ω they are of class
C2.
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[15] L.A. Caffarelli, X,. Cabré, Fully nonlinear elliptic equations. American Math-
ematical Society Colloquium Publications, 43. American Mathematical Soci-
ety, Providence, RI, 1995.

[16] L. Caffarelli, M.G. Crandall, M. Kocan, A. Świech, A. On viscosity solutions
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2, Birkhäuser Boston, Boston, MA, 1989.

[72] J. Urbas, The equation of prescribed Gauss curvature without boundary
conditions. J. Diff. Geometry 20 (1984), 311–327.

[73] L. Wang, On the regularity theory of fully nonlinear parabolic equations. I,
II and III. Commun. Pure Appl. Math. 45 (1992), 27–76, 141–178, 255–262.

[74] G.A. Williams, The Dirichlet problem for the minimal surface equation with
Lipschitz continuous boundary data. J. Reine Angew. Math. 354 (1984), 123–
140.

[75] N. Winter, W 2,p and W 1,p-estimates at the boundary for solutions of fully
nonlinear, uniformly elliptic equations. Z. Anal. Anwend. 28 (2009), 129–164.

32



corresponding author: kawohl@mi.uni-koeln.de

33


