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Introduction by the Organisers

The problem of finding sharp constants in geometric and functional inequalities
is an issue of recognized importance in modern analysis. Prototypical instances
of this kind of problems include isoperimetric inequalities, spectral estimates in
mathematical physics, Sobolev and Hardy inequalities. Knowledge of the opti-
mal form of the relevant inequalities and of the corresponding extremals not only
provides deeper insight into the inequalities themselves, but is often crucial for
applications to related partial differential equations and problems of the calculus
of variations, as witnessed, for example, by the solution to the Yamabe problem.

Following classical results with their origins in the work of Steiner, Schwarz,
Pólya, and Szegö, the proof of the isoperimetric inequality in the Euclidean space
by De Giorgi was a breakthrough which paved the way to fundamental contri-
butions to the study of optimal constants in the sixties and seventies of the last
century by Federer, Maz’ya, Talenti, Aubin, Moser. Recent years have seen a re-
newed interest in investigations on these topics, which have benefited both from



326 Oberwolfach Report 08/2010

developments in classical methods such as symmetrizations and rearrangements,
and also from new techniques, including scaling techniques and optimal mass trans-
portation.

It was the aim of the proposed workshop to bring together mathematicians
who work on various aspects of functional inequalities from spectral theory, shape
optimization, probability, partial differential equations and related fields.

The workshop was attended by participants from various scientific communi-
ties including mathematical physics, nonlinear PDE, spectral theory, calculus of
variations, optimal transportation and functional analysis. The common tie was
the use of optimal estimates in different contexts. It came as a surprise even to
the organizers how rich the theory of Sobolev and related inequalities is, and how
varied the methods are. There were several contributions about the characteri-
zation of functions that provide sharp estimates, discussing qualitative properties
such as symmetry or lack of symmetry, as well as quantitative aspects involving
remainder terms in classical inequalities. To give an example, several talks dealt
with inequalities like the Hardy-Sobolev inequality in the form

∫

Ω

|∇u|p dx ≥ C0

∫

Ω

|u(x)|p
d(x,M)p

dx+

(
∫

Ω

V (d(x,M))|u(x)|qdx
)

p
q

,

where M is a submanifold of the open set Ω ⊂ Rn fulfilling suitable assump-
tions, C0 is the optimal constant, and V is a one-dimensional function with an
appropriate singularity at 0.

Some contributions were concerned with topics that at first sight appeared to
be outside the central focus of the workshop, but then it turned out that they
were indeed related and of great interest to the participants. Apart from the
traditional presentations there were numerous informal discussion groups and an
open problem session.

We made sure that all of the young participants could present their work. In
particular, the three young postdocs that were supported as Oberwolfach Leibniz
Graduate Students (OWLG) gave lectures on Monday and Tuesday. As it is often
the case in Oberwolfach, there was a lot of interaction and a pleasant atmosphere,
in which we shared information and brought each other up to the state of the
art on particular questions. Of course the friendly and professional help from the
Oberwolfach staff helped making the workshop a success.
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Abstracts

Continuing an eikonal past a caustic

Giorgio Talenti

A principle (proposed by Felsen, Kravtsov, Ludwig and others) claims that any
solution w to

(1)

(

∂w

∂x

)2

+

(

∂w

∂y

)2

= n2(x, y)

can be continued past the relevant caustic if a suitable complex-valued eikonal

u+ iv

is called into play, i.e. the following system

(2)

{

u2x + u2y − v2x − v2y = n2(x, y)
uxvx + uyvy = 0

is solved under suitable initial conditions. In this talk, several properties of (2)
are discussed.

On the distance between homotopy classes of S
m-valued maps

Itai Shafrir

It is well known that for p ≥ m the degree of maps in W 1,p(Sm, Sm) is well
defined and one has the following decomposition of this space as a disjoint union
of homotopy classes, W 1,p(Sm, Sm) =

⋃

d∈Z

Ed. It is natural then to study the

distance δp(d1, d2) between each pair of distinct homotopy classes Ed1 and Ed2 ,
defined by

δpp(d1, d2) = inf
{

∫

Sm

|∇(u1 − u2)|p : u1 ∈ Ed1 , u2 ∈ Ed2

}

.

In the one dimensional case (m = 1) we find that the distance is given explicitly

by the formula δp(d1, d2) = 21+1/p|d2−d1|

π1−1/p .
In higher dimension, m ≥ 2, it turns out that in the limiting case p = m the

distance between the homotopy classes is always zero. On the other hand, when
p > m, for d1 6= d2, the distance is positive, but independent of d1 and d2, i.e.,
δp = c(m, p), where c(m, p) is a positive number, that was computed explicitly
before by Talenti (for m = 2) and Cianchi (for any m) in the context of Sobolev-
type inequalities on spheres.

We also studied the distance between homotopy classes for S1-valued maps
defined on a multiply connected, smooth and bounded domain D in R2. In this
case, the space H1(D,S1) can be written as a disjoint union of homotopy classes

H1(D,S1) =
⋃

~d∈Zn

E~d ,
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where ~d = (d1, . . . , dn) is a vector of prescribed degrees on the boundaries of the n
holes and E~d consists of all the maps in H1(D,S1) having these prescribed degrees.

As above, we studied the distance δ2(~d1, ~d2) for ~d1 6= ~d2 and showed that

(1) δ22(E~d(1) , E~d(2)) ≥
( 2

π

)2

I(~d(1) − ~d(2)) ,

where

I(~d) = inf{
∫

D

|∇u|2 : u ∈ E~d} ,

a quantity that was studied in the book [1]. We gave a necessary condition for

an equality to hold in (1) (which includes the case of a strict inequality ~d2 > ~d1,
component-wise) but we also showed by an example that a strict equality may
occur in (1).

Our report is based on a joint work with Jacob Rubinstein [3] and on a work
in progress with Shay Levy [2].
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Extremal functions and symmetry breaking in
Caffarelli-Kohn-Nirenberg inequalities

Jean Dolbeault

(joint work with Maria Esteban, Michael Loss, Gabriella Tarantello, Achilles
Tertikas)

We consider the extremal functions for the interpolation inequalities introduced
by Caffarelli, Kohn and Nirenberg in [1], that can be written as

(1)

(
∫

Rd

|u|p
|x|bp dx

)
2
p

≤ CCKN(θ, a, b)

(
∫

Rd

|∇u|2
|x|2a dx

)θ (∫

Rd

|u|2
|x|2(a+1)

dx

)1−θ

where u is a smooth function with compact support in Rd\{0} and the parameters
are in the range: b ∈ (a + 1/2, a + 1] if d = 1, b ∈ (a, a + 1] if d = 2 and
b ∈ [a, a+ 1] if d ≥ 3, a 6= (d− 2)/2 =: ac, p = 2d

d−2+2(b−a) and θ ∈ [ϑ(p, d), 1] with

ϑ(p, d) := d (p− 2)/(2 p).
We also consider weighted logarithmic Hardy inequalities, introduced in [4],

which correspond to the limit θ = γ (p− 2), p→ 2+ and read as

(2)

∫

Rd

|u|2
|x|2(a+1)

log
(

|x|d−2−2a |u|2
)

dx ≤ 2γ log

[

CGLH(γ, a)

∫

Rd

|∇u|2
|x|2a dx

]

for any smooth function u such that ‖|x|−(a+1)|u‖L2(C) = 1, with compact support

in Rd \ {0}. The parameters are such that a < ac, γ ≥ d/4 and γ > 1/2 if d = 2.
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Inequalities (1) and (2) can be extended to the larger space D1,2
a (Rd) obtained by

completion with respect to the norm u 7→
∫

Rd |x|−2a |∇u|2 dx. Extremal functions
are such that the inequalities, written with their optimal constants, become equal-
ities. We shall assume that CCKN(θ, p, a) and CGLH(γ, a) are optimal, i.e. take
their lowest possible value. By a Kelvin transformation (see [7]), the case a > ac
can be reduced to the case a < ac. For simplicity, we shall assume that a < ac.

The case θ = 1, p ∈ [2, 2∗] and d ≥ 3 has been widely discussed in the literature.
Existence of extremal functions for (1) has been studied in various papers in case
θ = 1: see [2] and references therein for details. Radial symmetry of the extremal
functions is an important issue, which has been established in a number of cases:
see [3, 6, 7, 10, 11, 6]. Extremal functions are then entirely determined and the
value of the optimal constants is known. On the other hand, symmetry breaking,
which means that extremal functions are not radially symmetric, holds for

(3) d ≥ 2 , b <
1

2
(a− ac)

[

2 − d
√

(a− ac)2 + d− 1

]

,

as it has been established in [2, 7, 9]. Moreover, according to [6], a continuous
curve p 7→ a(p) with values in the region a < 0, b < a+ 1 separates the symmetry
breaking region from the region where radial symmetry holds.

The case θ < 1 of Inequality (1) has been much less considered. Symmetry
breaking has been established in [4] in a region which extends the one found in
[7, 9]. If either d = 1 or d ≥ 2 but for radial functions, existence of extremal
functions for (1) has been proved in [4] for any θ > ϑ(p, d). However, the best
constant is not achieved if θ = ϑ(p, d) and d = 1. Existence of extremal functions
without symmetry assumption and some results of radial symmetry have also been
obtained in [5, 8].

A symmetry breaking result for (2) has been established in [4] when

(4) d ≥ 2 , a < −1/2 and γ <
1

4
+

(a− ac)
2

d− 1
.

It is very convenient to reformulate Inequalities (1) and (2) in cylindrical vari-
ables as in [2]. By means of the Emden-Fowler transformation

t = log |x| ∈ R , ω =
x

|x| ∈ S
d−1 , y = (t, ω) , v(y) = |x|ac−a u(x) ,

Inequality (1) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on
the cylinder C := R× Sd−1: for any v ∈ H1(C),
(
∫

C

|v|p dy
)

2
p

≤ CCKN(θ, p, a)

(
∫

C

|∇v|2 dy + Λ

∫

C

|v|2 dy
)θ ( ∫

C

|v|2 dy
)1−θ

with Λ := (ac − a)2. Similarly, with w(y) = |x|ac−a u(x), (2) is equivalent to
∫

C

|w|2 log |w|2 dy ≤ 2 γ log
[

CWLH(γ, a)
(

∫

C

|∇w|2 dy + Λ
)]

for any w ∈ H1(C) such that ‖w‖L2(C) = 1. We shall denote by C
∗
CKN(θ, p, a)

and C
∗
WLH(γ, a) the optimal constants for (1) and (2) respectively, when the set
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of functions is restricted to the radially symmetric ones. From [4], we know that

CCKN(θ, p, a) ≥ C
∗
CKN(θ, p, a) = C

∗
CKN(θ, p, ac − 1) Λ

p−2
2p −θ

CWLH(γ, a) ≥ C
∗
WLH(γ, a) = C

∗
WLH(γ, ac − 1) Λ−1+1/(4γ)

where Λ = (a − ac)
2. Symmetry breaking means that the above inequalities are

strict. Finding extremal functions amounts to minimize the functionals

E [v] :=
(

‖∇v‖2L2(C)+ Λ ‖v‖2L2(C)

)θ

‖v‖2(1−θ)
L2(C) / ‖v‖2Lp(C) ,

F [w] :=
‖∇w‖2

L2(C)
+Λ ‖w‖2

L2(C)

‖w‖2
L2(C)

exp
[

− 1
2γ

∫

C
|w|2

‖w‖2
L2(C)

log
(

|w|2

‖w‖2
L2(C)

)

dy
]

.

Radial symmetry for (1) and (2) means that there are minimizers of E and F
which depend only on t.

The method of [2, 9, 4] for proving symmetry breaking goes as follows. In case
of Inequality (1), consider a symmetric minimizer v∗ of E , depending only on t.
Up to a scaling and a multiplication by a constant, v∗(t) = (cosh t)−2/(p−2) solves

(p− 2)2 v′′ − 4 v + 2 p |v|p−2 v = 0 .

An expansion of E [v] at order two around v∗ involves the operator L := −∆ +
κw∗

p−2 + µ for some κ and µ which are explicit in terms of θ, p and d. Eigen-
functions are characterized in terms of Legendre’s polynomials and spherical har-
monic functions. The eigenspace of L corresponding to the lowest eigenfunction is
generated by w∗ (after a multiplication by a constant and a scaling). The eigen-
function λ1,0 associated to the first non trivial spherical harmonic function is not
radially symmetric. Condition (3) is determined by requiring that λ1,0 < 0, which
implies that CCKN(θ, p, a) > C

∗
CKN(θ, p, a). In case of Inequality (2), a similar

analysis can be done. The radial minimizer is a Gaussian function in t and the
operator L is the Schrödinger operator with harmonic potential.

Symmetry results in [6, 8] also involves some spectral analysis. By considering
sequences (vn)n∈N of minimizers of E appropriately normalized by the condition
‖vn‖2Lp(C) = 1, one proves that ‖∇vn‖2L2(C) is bounded when either b = bn con-

verges to a + 1, or a = an → 0− if θ = 1, or a = an → ac− if θ < 1. Minimizers
being solutions of an elliptic PDE, the convergence to a limit actually holds locally
uniformly, which allows to write a linear equation for Dωvn, where Dω denotes
an appropriate derivative with respect to ω. By spectral gap considerations, we
conclude that Dωvn ≡ 0 for n large enough: vn depends only on t.

Using scaling properties, it has been proved in [6, 8] that there is a curve sepa-
rating the region of symmetry for (3) from the region of symmetry breaking. The
same property holds for (2). However, in both cases, no quantitative estimates are
known about the position of the curve in the region a < 0. It is an open question
to decide whether it coincides with the region defined by (3) and (4) or not.

Acknowlegments. This work has been partially supported by the project EVOL of the

French National Research Agency (ANR).
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The shape of constrained minimizers of variational problems related
to Sobolev type inequalities

Tobias Weth

(joint work with Pedro Girão)

We study the family of Poincaré-Sobolev type inequalities

(1)

(
∫

Ω

|u− uΩ|q dx
)

p
q

≤ C(p, q,Ω)

∫

Ω

|∇u|p dx, u ∈W 1,p(Ω),

where Ω is a smooth bounded domain in RN , uΩ = 1
|Ω|

∫

Ω u dx is the average of u

on Ω, p > 1 and

1 ≤ q ≤ pN

N − p
if N > p, 1 < q <∞ if N ≤ p.

Of interest are the best constants C = C(p, q,Ω) and extremal functions which
give rise to equality in (1). It is easy to see that C(p, q,Ω) is the inverse of the
number

(2) Lp,q(Ω) = inf
{

∫

Ω

|∇u|p dx : u ∈ W 1,p(Ω),

∫

Ω

u = 0,

∫

Ω

|u|q = 1
}

.
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Concerning the existence of minimizers for the minimization problem defined by
(2), we quote the following result which follows by a standard compactness argu-
ment for subcritical q and is due to Demyanov and Nazarov in the critical case,
see [2, Theorem 7.3].

Theorem 1. There exists β > 0 such that the infimum in (2) is attained under
each of the following assumptions.

• p ≥ N
• p < N and 1 ≤ q < pN

N−p

• p < N+1
2 + β and q = pN

N−p

For the special case of a radial bounded domain, we now study the shape of
minimizers for (2). Via spherical symmetrization, it is standard to see that, under
the assumptions of Theorem 1, there exists a foliated Schwarz symmetric minimizer
u of (2). By ’foliated Schwarz symmetric’ we mean that u is axially symmetric
with respect to an axis Re, where e ∈ RN is a unit vector, and u is nonincreasing
in the angle θ := arccos

(

x
|x| · e

)

. In fact, in the semilinear case p = 2 one can show

that all minimizers must have this symmetry and further monotonicity properties.
More precisely, we prove the following in [3].

Theorem 2. Let p = 2, q ≥ 2, and let u be a minimizer of (2). Then u is foliated
Schwarz symmetric with respect to some unit vector e, i.e., u = u(r, θ) with r = |x|
and θ = arccos

(

x
|x| · e

)

. Moreover:

i) u is strictly decreasing in θ ∈ (0, π).
ii) If q is sufficiently close to 2, then u is odd with respect to the reflection at

the hyperplane T (e) := {x ∈ RN : x · e = 0}.
If Ω is the unit ball, then we have in addition:

iii) ∂eu > 0 on Ω \ {±e}. If τ is another unit vector in RN orthogonal to
e, then ∂τu has precisely four nodal domains. Here ∂e and ∂τ denote the
directional derivatives in the direction of e and τ , respectively.

iv) If N = 2, the function u is not antisymmetric with respect to the reflection
at T (e) when q is sufficiently large.

We point out that if Ω is a ball, properties i) and ii) imply that u takes its max-
imum and minimum precisely at the two antipodal points {±e} on the boundary
of Ω, and u has precisely two nodal domains. Moreover, in the case where u is odd
with respect to the hyperplane T (e), the four nodal domains of ∂τu considered
in ii) are precisely the four quadrants in Ω cut off by the hyperplanes T (e) and
T (τ). This holds in particular for q close to 2. We also note that in case q = 2,
minimizers of (2) are precisely the eigenfunctions of the Neumann-Laplacian on
Ω corresponding to the first nonzero eigenvalue. These eigenfunctions are of the
form u(r, θ) = g(r) cos θ, and properties i)-iii) can be verified easily.

We briefly comment on the proof of Theorem 2. The most difficult parts are the
strict inequality in i) and property ii), see [3, Section 5]. For both parts we need
to carefully study the boundary values of the directional derivatives ∂eu and ∂τu
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for τ perpendicular to e. In a first step, we show that ∂eu is positive on ∂Ω\ {±e}
and on the hyperplane T (e) defined above. In a second step, we show that ∂eu
can have at most two nodal domains. It then follows that ∂eu must be positive
in one of the half balls cut off by the hyperplane T (e). With this information, we
then can conclude the proof of ii) by a moving plane argument. This is one of few
examples where the moving plane method is applied to a problem with Neumann
boundary conditions.

For general p 6= 2, we still conjecture that all minimizers of (2) are foliated
Schwarz symmetric. However, the methods outlined above do not work, and up
to now not much is known about the shape of minimizers. An application of a
recent symmetry result by Maris [4], based on completely different methods, shows
that for N ≥ 4 minimizers u of (2) are radial with respect to a two-dimensional
subspace V , so u(x) only depends on the distance from x to V and the projection of
x onto V . Moreover, by adjusting an approach which was introduced by Brock [1]
in a different context, we can show that minimizers have a local type of symmetry.
More precisely, the intersection of any superlevel set uc := {x ∈ Ω : u(x) ≥ c}
with any sphere S contained in Ω (centered at zero) is a geodesic ball in S.
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Positivity preserving property for the hinged plate

Enea Parini

(joint work with Athanasios Stylianou)

A thin, vertically loaded, hinged plate can be modeled via the Kirchhoff-Love
energy functional

Iσ(v) :=

∫

Ω

(

(∆v)2

2
+ (1 − σ)(v2xy − vxxvyy) − fv

)

.

Here Ω ⊂ R2 describes the shape of the plate, v represents the deflection when
the load density f ∈ L2(Ω) is applied and σ is the Poisson ratio of the plate.
Although physical constraints impose that −1 < σ < 1

2 , we will consider the
more general case −1 < σ < 1. A minimizer of the functional Iσ on the space
H0(Ω) := W 2,2(Ω) ∩W 1,2

0 (Ω) is a weak solution of the equation

(1)







∆2v = f in Ω,
v = 0 on ∂Ω,

∆v − (1 − σ)κvn = 0 on ∂Ω,
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where ∆2 is the biharmonic operator, κ is the curvature of the boundary (with
the convention that κ ≥ 0 on convex parts) and vn the exterior normal derivative.
Since a maximum principle for fourth-order operators is not available, the following
question is highly nontrivial:

does f ≥ 0 imply v ≥ 0?

The answer to this question is in general negative, since it strongly depends on
the geometry of the domain. In fact, there exist nonconvex domains where the
solution to (1) is sign-changing for some positive f (see [1]).
For a convex, planar domain with boundary of class C2,1, we are able to prove the
following result.

Theorem 1 ([3], Theorem 3.1). Assume that Ω ⊂ R2 is bounded and convex with
∂Ω ∈ C2,1. Let −1 < σ < 1 and f ∈ L2(Ω). Then the minimizer vσ of Iσ is the
unique weak solution in H0(Ω) of (1). If moreover f ≥ 0 and f 6≡ 0, then there
exists a positive constant cf such that

vσ(x) > cfd(x, ∂Ω),

where d( · , ∂Ω) is the distance to the boundary.

The proof follows easily from [2, Theorem 4.1], once one verifies that

0 ≤ (1 − σ)κ ≤ δ1,κκ,

(1 − σ)κ 6≡ δ1,κκ,

where

δ1,κ := inf
v∈H0(Ω)

∫

Ω(∆v)2
∫

Ω
κv2n

.

Exploiting the property that
∫

Ω

(v2xy − vxxvyy) = −1

2

∫

∂Ω

κv2n

(see [3, Lemma 2.5]), one can easily prove that

δ1,κ ≥ 2.

Remarking that κ ≥ 0, κ 6≡ 0, Theorem 1 follows. Observe that the bound δ1,κ ≥ 2
is optimal, since for a disc one has δ1,κ = 2 (see [4]).
It remains open to verify whether the assumptions on the domain Ω are optimal.
In fact, Theorem 4.1 in [2] requires the boundary of Ω to be of class C2, while the
slightly stronger condition ∂Ω ∈ C2,1 seems to be only a technical assumption and
is used only in the preliminary lemma [3, Lemma 2.5]. Therefore it makes sense
to wonder whether and how the result in Theorem 1 can be improved.
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The Buckling Problem and the Krein Laplacian

Mark S. Ashbaugh

(joint work with Fritz Gesztesy, Marius Mitrea, Roman Shterenberg, Gerald
Teschl)

Recent developments on the buckling problem and the Krein Laplacian in which
the author has been involved were discussed, including connections between these
two problems, analysis of their spectral asymptotics, and inequalities for their
eigenvalues. In particular, we note that the buckling problem is intimately related
to the Krein Laplacian, and that, in fact, there is a unitary equivalence between
the two problems if one considers the Krein Laplacian on the space orthogonal to
its kernel (which turns out to be the space of harmonic functions on the domain
considered). Old conjectures concerning the eigenvalues of the buckling problem
were also discussed, including the Polya-Szegő conjecture for the first eigenvalue
(which would be the Faber-Krahn result for this problem) and Payne’s conjecture
comparing the buckling eigenvalues to those of the Dirichlet Laplacian on the same
domain.

The Krein Laplacian was first discussed by von Neumann around 1930 in the
context of extensions of operators (see[6]), though perhaps without a full under-
standing of its significance. Later, in two long papers in 1947 [4, 5], Krein made
an extensive investigation of it, presenting its most important properties and elu-
cidating its place among the possible self-adjoint extensions of the Laplacian. It
turns out that the Krein-von Neumann extension of the Laplacian (which we refer
to briefly as the Krein Laplacian) is the minimal nonnegative self-adjoint exten-
sion of the Laplacian. This is to be contrasted with the fact that the Friedrichs
extension is the maximal such extension. Because of this, the Krein-von Neumann
extension is often referred to as the “soft” extension, while the Friedrichs extension
is referred to as the “hard” extension. In fact, Krein’s work dealt not just with
the Laplacian, but with all densely defined, semi-bounded, symmetric operators.

Somewhat surprisingly, in light of the minimal property of the Krein Lapla-
cian, its nonzero eigenvalues (which, due to the unitary equivalence, are also the
eigenvalues of the buckling problem, multiplicities included) dominate the corre-
sponding eigenvalues of the Dirichlet Laplacian. That is,

λK,m(Ω) ≥ λD,m(Ω) for all m ≥ 1,

where λK,m(Ω) denotes the mth nonzero eigenvalue of the Krein Laplacian on
Ω (counted with multiplicity), and similarly for the Dirichlet eigenvalues, a result
which was well-known in the context of the buckling problem (via a simple Cauchy-
Schwarz argument).
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As an example of our results, we give the counting function asymptotics for the
nonzero eigenvalues of the Krein Laplacian

NK,Ω(λ) = (2π)−n vn |Ω|λn/2 +O(λ(n−1/2)/2)

as λ → ∞, where vn = πn/2/Γ(n/2 + 1) denotes the volume of the ball of unit
radius in Rn and where Ω is in the class of quasi-convex domains. To illustrate,
this class includes (among other things)

1) all bounded (geometrically) convex domains;
2) all bounded Lipschitz domains satisfying a uniform exterior ball condition

(no inward-pointing spikes);
3) all open sets which are the image of a domain as in 1) or 2) under a

C1,1-diffeomorphism; and
4) all bounded domains of class C1,r for some r > 1/2.

For the ball Bn(R) of radius R in Rn we obtain the more detailed asymptotics

NK,Bn(R)(λ) = (2π)−n v2n R
n λn/2 − (2π)−(n−1) vn−1

[n

4
vn + vn−1

]

Rn−1 λ(n−1)/2

+O(λ(n−2)/2)

as λ→ ∞. This is to be contrasted with the counting function asymptotics of the
Dirichlet Laplacian (=Friedrichs extension) which behaves as

ND,Bn(R)(λ) = (2π)−n v2n R
n λn/2 − (2π)−(n−1) vn−1

n

4
vn R

n−1 λ(n−1)/2

+O(λ(n−2)/2).

Note that the two counting functions agree at leading order, but that the counting
function for the Krein Laplacian is less at the next order (in fact, the eigenvalue
comparison mentioned earlier implies that for any domain Ω, NK,Ω(λ) ≤ ND,Ω(λ)
for all λ). The proof relies on the inequalities

NK,Bn−1(R)(λ) ≤ ND,Bn(R) −NK,Bn(R)(λ) ≤ ND,Bn−1(R)(λ),

which can be proved based on the fact that both the Krein and Dirichlet problems
for the ball admit solution via separation of variables leading to the determination
of the nonzero eigenvalues in terms of Bessel function zeros (with multiplicities
determined as the dimensions of the corresponding spaces of spherical harmonics).

Other results for eigenvalues for domains Ω ⊂ Rn include (here “D” stands for
“Dirichlet,” “K” for “Krein”)

λD,2(Ω) ≤ λK,1(Ω),

λK,2(Ω) ≤ n2 + 8n+ 20

(n+ 2)2
λK,1(Ω),

n
∑

j=1

λK,j+1(Ω) < (n+ 4)λK,1(Ω) − 4

n+ 4
(λK,2(Ω) − λK,1(Ω)) ≤ (n+ 4)λK,1(Ω),

m
∑

j=1

(λK,m+1(Ω) − λK,j(Ω))2 ≤ 4(n+ 2)

n2

m
∑

j=1

(λK,m+1(Ω) − λK,j(Ω))λK,j(Ω)
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for all m ≥ 1, and

1 ≤ λK,1(Ω)

λD,1(Ω)
≤ 4,

the last holding for domains Ω such that the boundary ∂Ω is everywhere of
nonnnegative mean curvature (and with all the other inequalities holding for gen-
eral quasi-convex domains). These inequalities are the “Krein Laplacian formu-
lations” of eigenvalue inequalities for the buckling problem associated with the
names of (in order of appearance) Payne, Hile and Yeh, Ashbaugh, Cheng and
Yang, and Payne (for the upper bound 4; the lower bound is elementary).

Much of the recent work presented in the talk represents joint work with Fritz
Gesztesy, Marius Mitrea, Roman Shterenberg, and/or Gerald Teschl (see [2], [3]).
In these papers we also present results for a “generalized buckling problem” gotten
by replacing the Laplacian by a Schrödinger operator, −∆ + V, where V is a
nonnegative potential. Our initial motivation for these studies came from [1], but
as we delved more deeply into the subject we learned of important related work by
Grubb, Birman and Solomjak, Kozlov, and others. And on the buckling problem
side of things, the key prior works are those of Payne and Payne, Pólya, and
Weinberger (followed later by Hile and Yeh, Ashbaugh, and Cheng and Yang).
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Some applications of optimal constants for nonlinear PDEs on
manifolds

Farid Madani

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Denote by Rg,
∆g the scalar curvature and the Laplacian of g respectively. Let us consider the
following equation:

∆gψ +
n− 2

4(n− 1)
Rgψ = µψ

n+2
n−2

with µ ∈ R. Positive smooth solutions of this equation give solutions for the
Yamabe problem [6]. The best constant in Sobolev inequalities was introduced
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by T. Aubin [1] and G. Talenti [5]. Probably, the principal motivation for which
T. Aubin introduced it, is to solve the Yamabe problem. We show how the optimal
constants help to find the principal assumption to solve this problem. We discuss
the existence of solutions, when the metric g belongs to W 2,p with p > n/2.
This result is proven by the author [4]. Afterwards, we consider the equivariant
Yamabe problem (in the presence of the isometry group), which generalizes the
Yamabe problem and was introduced by E. Hebey and M. Vaugon [3]. We give the
optimal constants in Sobolev inequalities for G−invariant functions, computed by
Z. Faget [2], where G is a subgroup of the isometry group.
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Eigenvalue Problem for the 1-Laplace Operator

Zoja Milbers

(joint work with Friedemann Schuricht)

We consider the eigenvalue problem associated to the 1-Laplace operator, which
formally has the form

∆1u := div

(

Du

|Du|

)

.

The problem is also of purely theoretical interest, since it can be obtained from
the well-known eigenvalue problem for the p-Laplace operator

∆pu := div
(

|Du|p−2Du
)

by considering the limit p→ 1. Such problems are often studied by means of an as-
sociated variational problem. In the case p ∈ (1,∞) we consider the minimization
of

(1) Ep(u) :=

∫

Ω

|Du|p dx→ Min!, u ∈W 1,p
0 (Ω)

under the constraint

(2) Gp(u) :=

∫

Ω

|u|p dx− 1 = 0
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for a suitable domain Ω ⊂ R
n. The eigenvalue equation for the p-Laplace operator

is the corresponding Euler-Lagrange equation given by

(3) − div
(

|Du|p−2Du
)

= λ|u|p−2u on Ω, u = 0 on ∂Ω ,

which can be obtained for a minimizer of this problem by classical methods of the
calculus of variations. In the case p = 1 it is reasonable to consider

(4) E(u) :=

∫

Ω

d|Du| +

∫

∂Ω

|u| dHn−1 → Min! , u ∈ BV (Ω)

under the constraint

(5) G(u) :=

∫

Ω

|u| dx− 1 = 0 .

It is known that a minimizer of this variational problem exists in BV (Ω), but in
contrast to the case p ∈ (1,∞) it is not necessarily unique and it might change sign
in Ω. It is known that a suitable multiple of the characteristic function u = χC

of the Cheeger set C of Ω is a minimizer of (4) under the constraint (5), where,
roughly speaking, a Cheeger set is a subset of Ω which minimizes the quotient
|∂D|/|D| among all sets D ⊂ Ω.

The derivation of an Euler-Lagrange equation for a minimizer of (4), (5) is
a difficult task, since both E and G are nonsmooth functionals. We obtain the
Euler-Lagrange equation by a direct treatment of the variational problem (4), (5)
with methods of nonsmooth analysis. For any measurable selection s of the set-
valued sign function Sgn (u(x)) there exists a vector field z : Ω → B1(0) ⊂ Rn,
which depends on the choice of s, such that

(6) − div z(x) = λ s(x) on Ω .

The vector field z can be identified with Du/|Du| if |Du| is nonzero and is otherwise
a suitable substitute for this expression. A measurable selection s replaces u/|u|
by some value in [−1, 1] at points where u vanishes. Hence, it turns out that
for minimizers u ∈ BV (Ω) of (4), (5) infinitely many Euler-Lagrange equations
have to be satisfied in general. We call this equation with many s the multiple
Euler-Lagrange equation.

Moreover, we study higher eigensolutions of the eigenvalue problem related to
the 1-Laplace operator. By taking a closer look at the derivation of (6) we see
that as a first condition we obtain equation (6) just for one measurable selection
s. We call this equation with one s the single Euler-Lagrange equation. We define
higher eigensolutions as critical points of E under the constraint (5) by means of
the weak slope, which is defined for continuous and even some classes of lower
semicontinuous functions. Then we use the nonsmooth critical point theory in
order to obtain the existence of a sequence of critical points. Moreover, using
a suitable nonsmooth version of the Lagrange multiplier theorem, we show that
critical points have to satisfy the single Euler-Lagrange equation.

The situation is however not satisfactory, since it seems that not all of the
functions satisfying the single Euler-Lagrange equation are critical points of (4),
(5). One possibility to resolve this problem is to diminish the number of possible
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solutions by the derivation of a different necessary condition for critical points of
(4), (5). We deduce a further necessary condition for critical points of (4), (5) by
means of inner variations. For that purpose, we consider variations of the domain
Ω instead of those of a minimizer u as in the derivation of the Euler-Lagrange
equation. In the classical calculus of variations such an approach turns out to
be useful if the minimizer is less regular than being in C2, i. e. inner variations
might produce an additional necessary condition which is different from the Euler-
Lagrange equation. We adapt this method and use a suitable Lagrange multiplier
rule which is applicable to our nonsmooth setting. It turns out that the new
necessary condition is truly different from the single Euler-Lagrange equation, as
we demonstrate on a model example. Moreover, in the scalar case n = 1 we are
able to determine all eigenfunctions.
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Sharp quantitative isoperimetric inequalities in the plane

Vincenzo Ferone

(joint work with Angelo Alvino, Carlo Nitsch)

The classical isoperimetric inequality in the plane states that, among all the subsets
of R2 of prescribed finite measure, the disk has the smallest perimeter, namely

P (E) ≥ (4π|E|) 1
2 , with equality if and only if E is a disk.

Here |E| and P (E) denote, as usual, the measure and the perimeter of the set
E ⊂ R2.

In [3, 4] Bonnesen introduced some remarkable inequalities which imply the
isoperimetric one. For example, we recall that for bounded convex planar sets he
proved that

P (E)2 − 4π|E| ≥ 4πd2.

Here d is the thickness of the minimal annulus containing the boundary of E and we
remark that the constant 4π and the exponent 2 on the right hand side are optimal.
Later Bonnesen’s work led to the study of a wider class of inequalities nowadays
known as Bonnesen–style isoperimetric inequalities. Following Osserman [9] we
say that a Bonnesen–style isoperimetric inequality can be written in the form

P (E)2 − 4π|E| ≥ F (E),

where the function F is nonnegative, vanishes only on the disks, and somehow
measures how much E deviates from a disk. There are many different kinds of
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functions F satisfying these properties, and each one leads to a different refinement
of the standard isoperimetric inequality.

We discuss the situations where the function F depends on the set E through
the so–called Fraenkel asymmetry index or through the Hausdorff distance from a
ball (see, e.g., [5, 7, 8, 6]). The Fraenkel asymmetry index α(E) is defined as

α(E) = min
x∈R2

|E \DR(x)|
|E| ,

where DR(x) is the disk centered at x with |DR(x)| = |E|. If dH(A,B) denotes the
Hausdorff distance between the sets A, B ⊂ R2, the Hausdorff asymmetry index
δ(E) is defined as the translative Hausdorff distance of E from a disk DR having
the same measure,

δ(E) = min
x∈R2

dH(E,DR(x)).

In order to state the main results we need to define two classes of convex sets.
We say that a convex set S belongs to S if it satisfies the following properties:

• S is symmetric with respect to two orthogonal axes (2-symmetric);
• S has a smooth C1 boundary made of four circular arcs {ai}1≤i≤4, two of

which can possibly degenerate into parallel segments;

• α(S) = |S\D|
|D| , D being the disk having the same measure of S and centered

at the intersection of the axes of symmetry of S;
• whenever ai is a proper circular arc (for some 1 ≤ i ≤ 4) then it does not

cross ∂D, namely either ai ⊂ D or ai ⊂ R2 \D.
A convex set Y belongs to Y if it is symmetric with respect to a straight line

such that the part of it which stays on one side of the line coincides with a circular
segment (the smallest part of a disk cut by a chord).

Theorem 1. For every convex set E ∈ R2, the set S ∈ S, such that α(S) = α(E)
and |S| = |E|, satisfies the inequality

P (S) ≥ P (Y ),

equality holding if and only if E = S, up to translations.

Theorem 2. For every convex set E ∈ R2, the set Y ∈ Y, such that δ(Y ) = δ(E)
and |Y | = |E|, satisfies the inequality

P (E) ≥ P (Y ),

equality holding if and only if E = Y , up to translations.

As a consequence of the above results we have, for example, that for a convex
set E ∈ R2 the following inequalities with sharp constants hold true:

P (E) − 2
√

π|E|
2
√

π|E|α(E)2
≥ π

2(4 − π)
− π3(16 − 5π)(14 − 3π)

24(4 − π)4(π − 2)
α(E)2 +O

(

α(E)4
)

,

P (E)2 − 4π|E| ≥ δ(E)2(4π2 −O(δ(E)).

The results discussed here are contained in [1, 2].
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On best constants of Hardy-Sobolev-Maz’ya inequalities

Achilles Tertikas

(joint work with Stathis Filippas and Jesper Tidblom)

For n ≥ 3 we write Rn = Rk × Rn−k, with 1 ≤ k ≤ n. We also introduce the
codimension k affine subspace

Sk := {x = (x1, . . . xk, . . . xn) ∈ R
n : x1 = . . . = xk = 0}.

The Euclidean distance of a point x ∈ Rn from Sk is then given by

d(x) = d(x, Sk) = |Xk|, where Xk := (x1, . . . , xk, 0, . . . , 0).

The classical Hardy inequality in Rn when distance is taken from Sk, reads

(1)

∫

Rn

|∇u|2dx ≥
(

k − 2

2

)2 ∫

Rn

u2

|Xk|2
dx, u ∈ C∞

0 (Rn \ Sk),

where the constant (k−2)2

4 is the optimal one.
Maz’ya, in his book, combined both inequalities when 1 ≤ k ≤ n−1, establishing

that for any u ∈ C∞
0 (Rn \ Sk)

(2)

∫

Rn

|∇u|2dx ≥
(

k − 2

2

)2 ∫

Rn

u2

|Xk|2
dx+ ck,Q

(
∫

Rn

|Xk|
Q−2

2 n−Q |u|Qdx
)

2
Q

,

for 2 < Q ≤ 2∗ = 2n
n−2 ; cf. [8], Section 2.1.6/3. Concerning the best constant ck,Q,

it was shown in [10] that ck,2∗ < Sn for 3 ≤ k ≤ n− 1, n ≥ 4 or k = 1 and n ≥ 4.
Surprisingly, in the case k = 1 and n = 3 Benguria Frank and Loss [2] (see also
Mancini and Sandeep [7]) established that c1,6 = S3 = 3(π/2)4/3! Maz’ya and
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Shaposhnikova [9] have recently computed the best constant in the case k = 1 and

Q = 2(n+1)
n−1 . These are the only cases where the best constant ck,Q is known.

In case k = n, that is, when distance is taken from the origin, inequality (2)
fails. Brezis and Vazquez [3] considered a bounded domain containing the origin
and improved the Hardy inequality by adding a subcritical Sobolev term. It turns
out that in a bounded domain one can have the critical Sobolev exponent at the
expense however of adding a logarithmic weight. More specifically let

X(t) = (1 − ln t)−1, 0 < t < 1.

Then the Hardy-Sobolev inequality in the case of a bounded domain Ω containing
the origin, reads:
(3)
∫

Ω

|∇u|2dx−
(

n− 2

2

)2 ∫

Ω

u2

|x|2 dx ≥ Cn(Ω)

(
∫

Ω

X
2(n−1)
n−2

( |x|
D

)

|u| 2n
n−2 dx

)

n−2
n

,

where u ∈ C∞
0 (Ω) and D = supx∈Ω |x|; cf [4]. The best constant in (3) was recently

computed in [1] and is given by

Cn(Ω) = (n− 2)−
2(n−1)

n Sn.

It is worth noticing that in the case n = 3 once again one has C3(Ω) = S3 =
3(π/2)4/3!

We initially consider the case where distances are taken from different codimen-
sion subspaces Sk ⊂ Rn, which are placed in the interior of the domain Rn. We
consider the cases k = 3, . . . , n since there is no positive Hardy constant in case
k = 2 (cf (1)).

To state our next results we define

β3 = −α2
3 +

1

4
, βm = −α2

m +

(

αm−1 −
1

2

)2

, m = 4, . . . , n.(4)

Theorem A (Interior singularities)
Suppose n ≥ 3.
i) Inequality

∫

Rn

|∇u|2dx ≥
∫

Rn

(

β3
|X3|2

+ . . .+
βn

|Xn|2
)

u2dx,

holds true for some real numbers β3, β4 . . . , βn and any u ∈ C∞
0 (Rn), if and only

if there exists nonpositive constants α3, . . . , αn, such that the β3, . . . , βn are given
by (4).
ii) Suppose that α3, α4 . . . , αn are nonpositive numbers and define β3, . . . , βn by
the recursive relation (4). Then, if αn < 0 there exists a positive constant C such
that for any u ∈ C∞

0 (Rn) there holds
(5)
∫

Rn

|∇u|2dx ≥
∫

Rn

(

β3
|X3|2

+ . . .+
βn

|Xn|2
)

u2dx+C

(
∫

Rn

|X2|
Q−2

2 n−Q|u|Qdx
)

2
Q

,
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for any 2 < Q ≤ 2n
n−2 .

If αn = 0 then there is no positive constant C such that (5) holds.

Actually a much stronger interpolation inequality can be established using the

stronger singular potential, |x1|
Q−2

2 n−Q. For this we have to restrict ourselves so

that |x1|
Q−2

2 n−Q ∈ L1
loc(R

n) and this amounts into supposing 2(n−1)
n−2 < Q. In

particular we have

Theorem B (Interior singularities)
Let α3, α4, . . . , αn, n ≥ 3, be arbitrary nonpositive real numbers and β3, . . . , βn are
given by (4). Then, if αn < 0 there exists a positive constant C such that for any
u ∈ C∞

0 (Rn) there holds
(6)
∫

Rn

|∇u|2dx ≥
∫

Rn

(

β3
|X3|2

+ . . .+
βn

|Xn|2
)

u2dx+C

(
∫

Rn

|x1|
Q−2

2 n−Q|u|Qdx
)

2
Q

,

for any 2(n−1)
n−2 < Q ≤ 2n

n−2 .

If αn = 0 then there is no positive constant C such that (6) holds.

If on the other hand the singularities are placed on the boundary, our results
do not take a much different form. This time we define

β1 = −α2
1 +

1

4
, βm = −α2

m +

(

αm−1 −
1

2

)2

, m = 2, . . . , n.(7)

Theorem C (Boundary singularities)
Suppose n ≥ 3.
i) Inequality

∫

Rn
+

|∇u|2dx ≥
∫

Rn
+

(

β1
|X1|2

+ . . .+
βn

|Xn|2
)

u2dx,

holds true for some real numbers β1, β2 . . . , βn and any u ∈ C∞
0 (Rn

+), if and only
if there exists nonpositive constants α1, . . . , αn, such that the β1, . . . , βn are given
by (7).
ii) Suppose that α1, α2 . . . , αn are nonpositive numbers and define β1, . . . , βn by
the recursive relation (7).
Then, if αn < 0 there exists a positive constant C such that for any u ∈ C∞

0 (Rn
+)

there holds
(8)
∫

Rn
+

|∇u|2dx ≥
∫

Rn
+

(

β1
|X1|2

+ . . .+
βn

|Xn|2
)

u2dx+C

(

∫

Rn
+

X1

Q−2
2 n−Q|u|Qdx

)
2
Q

,

for any 2 < Q ≤ 2n
n−2 .

If αn = 0 then there is no positive constant C such that (8) holds.
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For more information we refer to [5, 6].
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Role of fundamental solution in Hardy Sobolev inequalities

Adimurthi

Introduction. To begin with, recall the Hardy’s inequalities in dimension one.
Let f ∈ L2(0,∞) and define the Hardy operator.

(1) Tf(x) =
1

x

x
∫

0

f(t)dt.

Then Hardy showed that T defines a bounded Linear Operator on L2(0,∞) with

(2)

∞
∫

0

|f(x)|2dx− 1

4

∞
∫

0

|T (f)(x)|2dx ≥ 0

where equality holds if and only if f = 0. Hence 1
4 is the best constant in (2) and

is never achieved.
Now specialize (1) to f = u′(x), u ∈ C1

0 (0,∞) to obtain

(3) H(u) =

∞
∫

0

|u′(x)|2dx− 1

4

∞
∫

0

∣

∣

∣

∣

u(x)

x

∣

∣

∣

∣

2

dx ≥ 0
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and this is called Hardy - Sobolev inequality.
From Hardy’s result, H(u) > 0 for u 6= 0. Hence the question is ”Is it possible to
estimate H from below?”

In order to understand this, make the following transformation. Let α ∈ R and
V = xαu(x). Then V ∈ C1

0 (0,∞) and u = x−αV. Taking the derivative to obtain

u′

u = −α
x + V ′

V

u′
2

= α2

x2 u
2 − 2αu2V ′

xV + V ′2

V 2 u
2

= α2

x2 u
2 − αx−2α−1(V 2)′ + V ′2x−2α.

Hence

(4)

∞
∫

0

x2α+1|u′(x)|2dx = α2
∞
∫

0

u2

x2 x
2d+1dx− α

∞
∫

0

(V 2)′dx+
∞
∫

0

V ′2xdx

= α2
∞
∫

0

u2

x2 x
2α+1dx+

∞
∫

0

V ′2xdx,

since
∞
∫

0

(V 2)′dx = V 2(∞) − V 2(0) = 0. Vanishing of this term is called “Magical

cancellation” by Brezis - Vazquez [7].
Observe that if V is considered as a radial function in R2, then the last integral

on the right hand side of (4) is the Dirichlet integral of V in R2. Therefore
if supp u ⊂ (0, R), then supp V ⊂ (0, R). Let λ1(R) denote the first Dirichlet
eigenvalue of −∆ in B(0, R) ⊂ R2, then

(5)

R
∫

0

|V ′(x)|2xdx ≥ λ1(R)

R
∫

0

|V (x)|2xdx = λ1(R)

R
∫

0

|u|2x2α+1dx.

Consequences.

(a) Let 2α+ 1 = 0, that is α = − 1
2 , then (3) gives H(u) ≥ 0 and H(u) = 0 if

and only if V ≡ 0, hence u ≡ 0. This process 1
4 is the best constant and is

never achieved.
(b) Let 2α+ 1 = n− 1 or α = n−2

2 , then (3) gives

(6) H(u) =

∞
∫

0

|u′(r)|2rn−1dr −
(

n− 2

2

)2
∞
∫

0

|u(r)|2
r2

rn−1dr ≥ 0

and H(u) = 0 if and only if V ≡ 0 and hence u ≡ 0. Hence (n−2
2 )2

is the best constant in (5) and is never achieved. This inequality is the
Hardy-Sobolev inequality in n ≥ 3.
Furthermore if u ∈ C1

0 (0, R), then consider u as a radial function in Rn,
then (5) and (6) imply for B(R) = {x ∈ Rn; |x| < R}, λ(R) = λ1(Ω),

(7) H(u) =

∫

Ω

|∇u|2dx−
(

n− 2

2

)2 ∫

Ω

|u|2
|x|2 dx ≥ λ1(Ω)

∫

Ω

|u|2dx
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By density argument, (7) holds for all u radial in H1
0 (B(R)). Furthermore equal-

ity holds in (7) if and only if V = r
(n−2)

2 u is the first Dirichlet eigenfunction in
the ball of radius R in R2. Hence V (0) 6= 0. But V (0) = 0 which is a contradic-
tion. This result was obtained in the seminal paper of Brezis - Vazquez [7] for an
arbitrary bounded domain in Rn for n ≥ 3. In view of the strict inequalities in (8)
they raised the following question:

“Let Ω ⊂ Rn be a bounded domain, what is the best possible lower bound one
can obtain for H(u)?”.

This question has an affirmative answer by estimating H by infinite series in-
volving logarithms. Basic idea in deriving this result is as follows:

Define V1(x) = (log x
R )

−1
2 V (x) = (log x

R )
−1
2 xαu(x)

V ′(x)

V (x)
=

1

2

1

x(log x
R )

+
V ′
1(x)

V1(x)

xV ′2(x) =
1

4

x2α+1u2

x2(log x
R )2

+ V 2
1 x
(

log
x

R

)

+
1

2
(V 2

1 )′

and integrating to obtain

(8)

∞
∫

0

xV ′2dx =
1

4

∞
∫

0

x2α+1u2

x2
(

log x
R

)2 +

∞
∫

0

V ′2

1 x
(

log
x

R

)

Combining (8) and (4) to obtain

∞
∫

0

x2α+1|u|2dx ≥ α2

∞
∫

0

u2

x2
x2α+1dx+

1

4

∞
∫

0

u2x2α+1

x2
(

log x
R

)2

and equality holds if and only if u ≡ 0. By the same argument this can be continued
indefinitely by adding terms containing more logarithms (See [2], [8]).

Next we look for generalization of Hardy Sobolev inequalities on Manifolds. For

the sake of simplicity, assume that Ω ⊂ Rn be a domain and L = − ∂
∂xi

(

aij(x) ∂
∂xj

)

be an elliptic operator on Ω. For u ∈ C1(Ω). define

(9) |∇Lu|2 =
∑

aij (x)
∂u

∂xi

∂u

∂xj

Based on the same ideas as in the previous arguments we have the following
generalized Hardy - Sobolev inequalities [1].

Theorem 1 (Generalized Hardy-Sobolev inequalities). Let 0 ∈ Ω, E ∈ C1(Ω\(0))∩
L1
loc(Ω) such that

(10)
LE = δ0 in Ω
E > 0 in Ω
E(0) = ∞
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then ∀u ∈ C1
0 (Ω), we have

(11)

∫

Ω

|∇Lu|2 ≥ 1

4

∫

Ω

∣

∣

∣

∣

∇LE

E

∣

∣

∣

∣

2

u2

and equality holds if and only if u ≡ 0

Proof. Let u ∈ C1
0 (Ω) and define V = E− 1

2u. Then V (0) = 0 and u = E
1
2 V. Then

∇Lu

u
=

1

2

∇LE

E
+

∇LV

V

|∇Lu|2 =
1

4

∣

∣

∣

∣

∇LE

E

∣

∣

∣

∣

2

u2 +
〈∇LE.∇LV 〉

EV
u2 +

|∇Lv|2
V 2

u2

=
1

4

∣

∣

∣

∣

∇LE

E

∣

∣

∣

∣

2

u2 +
1

2
〈∇LE.∇LV

2〉 + |∇LV |2E

Now
∫

Ω

(LE)V 2 = V 2(0) = 0, This is termed as the magical cancellation by Berzis

and Vazquez. Hence (10) follows from this identity. �

As an application, we recollect the classical Hardy-Sobolev type inequalities in
R

n(n ≥ 2) as follows: let

E =

{

1
|x|n−2 if n ≥ 3

log R
|x| if n = 2,Ω ⊂ B(R),

then
∣

∣

∣

∣

∇E
E

∣

∣

∣

∣

2

=

{

(n−2)2

|x|2 if n ≥ 3
1

|x|2(log R
|x|

)2
if n = 2.

Hence ∀u ∈ C1
0 (Ω),

∫

Ω

|∇u|2 ≥











(n−2
2 )2

∫

Ω

u2

|x|2 if n ≥ 3

1
4

∫

Ω

u2

|x|2(log R
|x|

)2
if n = 2.

Further Extensions.

(1) (11) extends to the Lp norm as well as for some degenerate operators (see
[1]).

(2) (11) extends to Dirac operators (See [5]).

Dimension 2 Hardy - Sobolev inequalities.
Recall the Trudinger - Moser imbedding in R2. Let Ω ⊂ R2 be a bounded

domain, then H1
0 (Ω) embeds in an Orlicz space and in described by

(12) max∫

Ω

|∇u|2≤1







∫

Ω

e4πu
2

dx







<∞

and 4π is the best constant. Associated to this we have the following (see [6]).
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Theorem 2. Let 0 ∈ Ω and α, β are non negative real numbers. Then

(13) sup∫

Ω

|∇u|2≤1

∫

Ω

eαu
2

|x|β dx <∞

if and only if α
4π + β

2 ≤ 1.

Theorem 3. Let B = {x ∈ R2, |x| < 1} and equipped with the hyperbolic metric
dx

(1−|x|2)2 . Then ∀u ∈ H1
0 (B),

sup∫

B

|∇u|2≤1

∫

B

(e4πu
2 − 1)

(1 − |x|2)2
<∞.

This is proved in ([9], [4]).
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Higher order Sobolev-Hardy inequalities with remainder terms

Filippo Gazzola

For 1 < p < ∞ and m ≥ 1 (m ∈ N) consider the space Dm,p(Rn) endowed with
the norm

‖u‖m,p :=

{ ‖∆ku‖p if m = 2k,

‖∇(∆ku)‖p if m = 2k + 1.

For bounded domains Ω, this is also the norm in the space Wm,p
0 (Ω) and in

Wm,p
ϑ (Ω) :=

{

v ∈Wm,p(Ω); ∆jv|∂Ω
= 0 for 0 ≤ j <

m

2

}
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where restrictions on ∂Ω are intended in the sense of traces. When 1 ≤ m < n
p put

p∗m = np
n−mp . It is well-known that there exist optimal constants H = H(p,m, n) >

0 and S = S(p,m, n) > 0 such that

(1) ‖u‖pm,p ≥ H

∫

Rn

|u|p
|x|mp

∀u ∈ Dm,p(Rn)

(2) ‖u‖pm,p ≥ S

(
∫

Rn

|u|p∗
m

)p/p∗
m

∀u ∈ Dm,p(Rn).

We refer to the classical works by Sobolev, Hardy, and Rellich, and to the more
recent papers [2, 11, 13, 14] where these constants have been computed. Both in-
equalities (1) and (2) hold with the same constants H and S in the space Wm,p

0 (Ω)
in any bounded domain Ω. Although it is not explicitly assumed that 0 ∈ Ω, we
have this case in mind. A natural question is then to wonder if the optimal em-
bedding constants H and S remain the same in the larger space Wm,p

ϑ (Ω). If
m ≥ 2 the proofs valid for the spaces Wm,p

0 (Ω) cannot be carried on since there is
no obvious extension of a function u ∈ Wm,p

ϑ (Ω) to Rn. Positive answers to this
question were given in [10, 16] for (2) when p = 2. However, these proofs use the
concentration-compactness method by Lions [11] which, in turn, extends functions
from Ω to Rn. Since it is not mentioned how these extensions can be obtained,
the proof appears incomplete. Positive answers concerning H were obtained when
m = p = 2 and Ω = B (the ball) in [3], and when m = 2 and 1 < p < ∞ or
p = 2 and m ≥ 2 in general domains Ω in [6]. A complete positive answer to these
questions was finally given in [8]:

THEOREM 1 Let n ∈ N, p ∈ (1,∞) and m ∈ N with m < n/p. Let Ω ⊂ Rn be a
bounded domain with ∂Ω ∈ Cm. Then,

‖u‖pm,p ≥ H

∫

Ω

|u|p
|x|mp

and ‖u‖pm,p ≥ S

(
∫

Ω

|u|p∗
m

)p/p∗
m

∀u ∈Wm,p
ϑ (Ω).

Theorem 1 becomes false for p = 1, see [1]. Moreover, the assumption ∂Ω ∈ Cm

is necessary to have the full generality of the statement, see related work in [12]
and also in [9]. We point out that the main idea for the proof of Theorem 1 was
found by the authors during the Oberwolfach meeting Topological and Variational
Methods for Partial Differential Equations held in may 2009. We conclude this
first part with an open problem: Which boundary conditions (other than Dirichlet
and Navier) give the same constants for the embeddings in (1) and (2)?

Since the inequalities in Theorem 1 are strict for u 6= 0, one is led to try
to add remainder terms. There is a huge literature on inequalities with re-
mainder terms. With no hope of being complete, let us just quickly mention
some of the existing second order inequalities. These may be found in papers by
Galaktionov (Diff. Int. Eq. 2006), Adimurthi-Grossi-Santra (JFA 2006), Tertikas-
Zographopoulos (Adv. Math. 2006), Barbatis-Tertikas (J. Comp. Appl. Math.
2006), Barbatis (Math. Z. 2007), Ghoussoub-Moradifam (2009).
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For general higher order spaces, we mention the paper Bartsch-Weth-Willem
(Calc. Var. 2003), and that the following result is obtained in [5]:

THEOREM 2 Let Ω ⊂ Rn (n > 2m) be a bounded domain. Let q′ be the conjugate
of q ∈ (1,∞) and consider

|u|q,w = sup
A⊆Ω
|A|>0

|A|−1/q′
∫

A

|u|.

There exists C = C(m,n,Ω) > 0 such that

‖u‖2m,2 ≥ S‖u‖22∗m + C|u|2 n
n−2m ,w ∀u ∈ Hm

0 (Ω).

The proof of this result heavily uses the Hilbert structure of the spaces Hm
0 (Ω).

We refer to [7] for a partial generalization of this result to the space H2
ϑ(Ω) =

H2 ∩H1
0 (Ω) and to [4] to the non-Hilbertian framework W 1,p

0 (Ω). However, a full
generalization of this statement is still missing and we address the problem: prove
Theorem 2 in any space Wm,p

0 and Wm,p
ϑ .

The following somehow similar result concerning (1) was obtained in [6]:

THEOREM 3 Let Ω ⊂ Rn be a smooth bounded domain and let m ∈ N, 2m ≤ n.
There exist c1, . . . , cm, depending only on m, n and |Ω|, such that

‖u‖2m,2 ≥ H

∫

Ω

u2

|x|2m +

m−1
∑

ℓ=0

cℓ

∫

Ω

u2

|x|2ℓ ∀u ∈ Hm
ϑ (Ω).

More inequalities of this type are available, see again [6] and a nice improvement
by Tertikas-Zographopoulos [15].
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Inversion positivity and the sharp Hardy–Littlewood–Sobolev
inequality

Rupert L. Frank

(joint work with Elliott H. Lieb)

The Hardy–Littlewood–Sobolev inequality says that if 0 < λ < N and f, g ∈
Lp(RN ) with p = 2N/(2N − λ), then

(1)
∣

∣

∣
Iλ[f, g]

∣

∣

∣
≤ HN,λ‖f‖p‖g‖q

for some universal constant HN,λ. Here we abbreviated

Iλ[f, g] :=

∫∫

RN×RN

f(x) g(y)

|x− y|λ dx dy .

We are interested in the sharp (that is, smallest possible) constant HN,λ in (1).
Our goal here is to sketch our new proof [3] of the following

Theorem 1. Let 0 < λ < N if N = 1, 2 and N − 2 ≤ λ < N if N ≥ 3. If
p = 2N/(2N − λ), then (1) holds with

HN,λ = πλ/2 Γ((N − λ)/2)

Γ(N − λ/2)

(

Γ(N)

Γ(N/2)

)1−λ/N

.

Equality holds if and only if

f(x) = α
(

β + |x− γ|2
)−(2N−λ)/2

and g(x) = α′
(

β + |x− γ|2
)−(2N−λ)/2

,

for some α, α′ ∈ C, β > 0 and γ ∈ RN .

This theorem is originally due to Lieb [6], who can deal with the whole range
of λ ∈ (0, N). Another proof appeared in [2]. Both proofs in [6] and [2] rely on
the non-linear technique of Schwarz symmetrization. In contrast, our proof relies
on the linear notion of inversion positivity. A second ingredient of our proof is the

geometric characterization of the optimizing functions α
(

β + |x− γ|2
)−(2N−λ)/2

,
extending a result of Li and Zhu [5].
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Inequality (1) is clearly invariant under translations and dilations. It is less
obvious that it is actually invariant under the whole conformal group [6, 2]. This
fact will also play a crucial role in our proof

We emphasize that since |x|−N+2s is a constant times the Green’s function of
(−∆)s, inequality (1) is equivalent to the Sobolev inequality

(2) ‖(−∆)s/2u‖22 ≥ SN,s‖u‖2q , q = 2N/(N − 2s) ,

for 0 < s < N/2. Here ‘equivalent’ means that the sharp constant and the op-
timizer in one inequality determine the sharp constant and the optimizer in the
other inequality. In passing we mention that we recently managed to extend the
methods presented here to obtain the sharp logarithmic HLS inequality in dimen-
sions N = 1 and 2. By duality and stereographic projection this is equivalent to
Onofri’s inequality (for N = 2) and the Lebedev–Milin inequality (for N = 1).

Our restriction λ ≥ N − 2 corresponds to the restriction s ≤ 1 in (2), which
covers the cases that appear most frequently in application. Since ‖(−∆)s/2u‖22 =
‖∇u‖22 for s = 1, we provide a new proof of the standard Sobolev inequality [1, 9].

In the remainder of this note we sketch the key steps leading to the proof of
Theorem 1.

Inversion positivity. Let B = {x ∈ RN : |x− a| < r}, a ∈ RN , r > 0, be a ball
and denote by

ΘB(x) :=
r2(x− a)

|x− a|2 + a

the inversion of a point x through the boundary of B. This map on RN is lifted
to an operator acting on functions f on R

N according to

(ΘBf)(x) :=

(

r

|x− a|

)2N−λ

f(ΘB(x)) .

One easily finds that with p = 2N/(2N − λ)

Iλ[f ] = Iλ[ΘBf ] and ‖f‖p = ‖ΘBf‖p ,
where we abbreviated Iλ[f ] := Iλ[f, f ]. Similarly, let H = {x ∈ RN : x · e > t},
e ∈ SN−1, t ∈ R, be a half-space and denote by ΘH(x) := x + 2(t − x · e) the
reflection of a point x on the boundary of H . The corresponding operator is
defined by (ΘHf)(x) := f(ΘH(x)) and it again satisfies Iλ[f ] = Iλ[ΘHf ] and
‖f‖p = ‖ΘHf‖p. Our first ingredient in the proof of Theorem 1 is the following

Theorem 2 (Reflection and inversion positivity). Let 0 < λ < N if N = 1, 2,
N − 2 ≤ λ < N if N ≥ 3, and let B ⊂ R

N be either a ball or a half-space. If
f ∈ L2N/(2N−λ)(RN ) and

f i(x) :=

{

f(x) if x ∈ B ,

ΘBf(x) if x ∈ RN \B ,
fo(x) :=

{

ΘBf(x) if x ∈ B ,

f(x) if x ∈ RN \B ,
then

1

2

(

Iλ[f i] + Iλ[fo]
)

≥ Iλ[f ] .
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If λ > N − 2 then the inequality is strict unless f = ΘBf .

For half-spaces and λ = N − 2 this theorem was long known to quantum field
theorists [8]. The half-space case with N − 2 < λ < N was apparently first proved
by Lopes and Mariş [7]. The case of balls seems to be new for all λ and we are
grateful to E. Carlen for simplifying our original proof.

The Li–Zhu lemma. Our second ingredient in the proof of Theorem 1 is a
generalization of a result by Li and Zhu [5].

Theorem 3 (Characterization of inversion invariant measures). Let µ be
a finite, non-negative measure on RN . Assume that

(A) for any a ∈ RN there is an open ball B centered at a and for any e ∈ SN−1

there is an open half-space H with interior unit normal e such that

µ(Θ−1
B (A)) = µ(Θ−1

H (A)) = µ(A) for any Borel set A ⊂ R
N .

Then µ is absolutely continuous with respect to Lebesgue measure and

dµ(x) = α
(

β + |x− y|2
)−N

dx

for some α ≥ 0, β > 0 and y ∈ RN .

For absolutely continuous measures dµ = v dx assumption (A) is equivalent to
the fact that for any a ∈ RN there is an ra > 0 such that for any x

v(x) =

(

ra
|x− a|

)2N

v

(

r2a(x − a)

|x− a|2 + a

)

,

and similarly for reflections.
We refer to [3] for how to deduce Theorem 1 from Theorems 2 and 3.
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On approximate differentiability of the maximal function

Piotr Haj lasz

Juha Kinnunen [3] proved that the Hardy-Littlewood maximal operator Mu is
bounded in the Sobolev space W 1,p(Rn) when p > 1. More generally, if A is a
sub-linear, translation invariant operator bounded in Lp, p > 1, then A is bounded
in W 1,p. Since the maximal function is not bounded in L1, there is no apparent
reason to believe that the maximal function should be bounded in W 1,1. However,
Tanaka [4], proved that the non-centered one dimensional maximal function of
u ∈ W 1,1(R) is locally in W 1,1 and has integrable derivative. This leads to a
question: Is the operator u 7→ |∇Mu| bounded from W 1,1(Rn) to L1(Rn)? This
seems to be a very difficult problem. Even in dimension one it is not known if
the Hardy-Littlewood maximal operator (i.e. the centered one) of a W 1,1 function
belongs locally to W 1,1.

In the talk I discussed partial results from joint papers with Janni Onninen [2]
and Jan Malý [1].

Theorem. ([2]) Let u ∈W 1,1
loc (Rn). If Mu <∞ a.e. and M |∇u| ∈ L1

loc(R
n), then

Mu ∈ W 1,1
loc (Rn) and |∇Mu| ≤ 2M |∇u| a.e.

This result allows to avoid reflexivity of Lp which is usually employed in the
proof of Kinnunen’s result.

Theorem. ([1]) If u ∈ L1(Rn) is approximately differentiable a.e., then Mu is
approximately differentiable a.e.

In particular u ∈ W 1,1(Rn) is approximately differentiable a.e. and hence the
Hardy-Littlewood maximal function of u ∈ W 1,1 is approximately differentiable
a.e. This is, however, much less than weak differentiability.

Another result concerns differentiability properties of the maximal function of
an arbitrary function u ∈ L1(Rn). Namely we have:

Theorem. ([1]) Let u ∈ L1(Rn). Then any open set Ω ⊂ Rn contains a set of
positive measure on which Mu is approximately differentiable. Equivalently, for
any open set Ω ⊂ Rn there is a C1 function v such that the set Ω∩ {Mu = v} has
positive measure.

The proof involves potential theory of superharmonic functions.

In view of this result it is natural to inquire whether the maximal function of an
integrable function is approximately differentiable a.e. The answer to this question
turns out to be in the negative, a suitable example was constructed in [1].
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Critical Equations in R2

Manuel del Pino

(joint work with Monica Musso and Bernhard Ruf)

Let Ω ⊂ R
2 a smooth, bounded domain and λ > 0. We consider the problem

(Pλ) ∆u+ λu eu
2

= 0, u > 0 in Ω, u = 0 on ∂Ω.

Solutions of Problem (Pλ) are critical points of the functional

Jλ(uλ) =

∫

Ω

|∇u|2 − λ

∫

Ω

eu
2

, u ∈ H1
0 (Ω).

In [1] it is proven that (Pλ) is solvable whenever 0 < λ < λ1. In [4] it is found
that a solution uλ with Jλ(uλ) ≤ C must satisfy that for some integer k ≥ 0

Jλ(uλ) = 4kπ + o(1) as λ→ 0.

In [3] we find solutions with this property. To state the result we introduce some
notation.

Let G(x, y) denote Green’s function of the problem

−∆xG(x, y) = 8πδy(x) in Ω, G(·, y) = 0 on ∂Ω.

and H(x, y) = 4 log 1
|x−y| −G(x, y) its regular part.

For points ξ = (ξ1, . . . , ξk) ∈ Ωk, m = (m1, . . . ,mk) ∈ Rk
+ we consider the

functional

ϕk(ξ,m) =

k
∑

j=1

2m2
j(2 log 8 − 2 + logm2

j) +m2
jH(ξj , ξj) −

∑

i6=j

mimj G(ξj , ξj).

We say that ϕk has a stable critical point situation if for some region Λ compactly
contained in its domain, any small C1(Λ̄)-perturbation of ϕk has a critical point
in Λ.

• ϕ1(ξ,m) satisfies this property, with Λ a neighborhood of its minimum set.

• ϕ2(ξ,m) satisfies this property whenever Ω is not simply connected. We
believe this is the case for any k ≥ 2.

Theorem 1 ([3]). Assume that ϕk(ξ,m) has a stable critical point situation. Then
there exists a solution a solution uλ to (Pλ) that blows-up around k points ξλj as

λ → 0 and such that away from them, and for certain numbers mλ it takes the
form

uλ(x) =
√
λ

k
∑

j=1

mλ
j [G(x, ξj) + o(1) ]
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where ∇ϕk(ξλ,mλ) → 0. Furthermore

Jλ(uλ) = 4πk + λ
[

−|Ω| + 8π ϕk(ξλ,mλ) + o(1)
]

.

This result applies for k = 1, predicting bubbling near a minimizer of H(ξ, ξ),
and for k = 2 provided that Ω is not simply connected.

Existence of critical points in the Trudinger-Moser supercritical case.
Let us consider the related problem of finding critical points in H1

0 (Ω) of the

functional
∫

Ω e
u2

subject to the constraint
∫

Ω |∇u|2 = µ. This amounts to solving
the equation

(Tµ) ∆u + µ
u eu

2

∫

Ω u
2 eu2 = 0 in Ω, u = 0 in ∂Ω.

For µ ≤ 4π the supremum of this functional is finite, as the Trudinger-Moser
inequality states [9, 6] while it is infinite for µ > 4π. The supremum for µ = 4π is
attained, as found in [2, 5].

In [7] it is found that this global maximum can be continued as a local maximum
for a supercritical range of the form 4π < µ < µ1, and also that a second positive
solution exists on a dense subset of (4π, µ1). Existence of the second solution in
the entire range has been recently obtained in [8]. Qualitative properties of this
second solution are not known, nor existence of solutions for larger supercritical
values of µ. We find the following result.

Theorem 2. Assume that k = 1 or that k = 2 and that Ω is not simply connected.
Then there exists a positive solution uµ of Problem (Tµ) for µ ∈ (4kπ, µk) that
blows up at exactly k points with a profile determined by a critical point of the
functional ϕk, as in Theorem 1.

We believe that this result should hold true for any k ≥ 1 if Ω is not simply
connected.
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A variational method for a class of parabolic PDEs

Wilfrid Gangbo

(joint work with Alessio Figalli, Türkay Yolcu)

Let H be a Hilbert space and h : H × H → R be such that h(x, ·) is uniformly
convex and grows superlinearly at infinity, uniformy in x. Suppose U : H → R

is strictly convex and grows superlinearly at infinity. We assume that both h
and U are smooth. If H is of infinite dimension, the initial value problem ẋ =
−∇ph(x,−∇U(x)), x(0) = x̄ is not known to admit a solution. We study a class
of parabolic equations on Rd (and so of infinite dimensional nature), analogous
to the previous initial value problem and establish existence of solutions. First,
we extend De Giorgi’s interpolation method to parabolic equations which are not
gradient flows but possess an entropy functional and an underlying Lagrangian.
The new fact in the study is that not only the Lagrangian may depend on spatial
variables, but it does not induce a metric. These interpolations reveal to be a
powerful tool for proving convergence of a time discrete algorithm.
The specific system of PDEs we study is:

(1) ∂t̺t + div (̺tVt) = 0, in D′((0, T ) × R
d)

where

Vt := ∇pH
(

x,−̺−1
t ∇[P (̺t)]

)

̺t − almost everywhere.

Here, H : Rd × Rd → R is a Hamiltonian, convex in its second variables, U ∈
C1(0,∞) is strictly convex and P (s) = sU ′(s)−U(s). Note that formally we have
̺−1
t ∇[P (̺t)] = ∇[U ′(̺t)], which explains the link with the ODE in Hilbert spaces.

This report is based on a joint work with A. Figalli and T. Yolcu.

Sharp Hardy inequalities for fractional integrals on general domains

Michael Loss

(joint work with Craig Sloane)

Consider a domain Ω ⊂ R
n with non-empty boundary. The following notion is

taken from Davies [2]. Fix a direction w ∈ Sn−1 and define

dw,Ω(x) = min{|t| : x+ tw /∈ Ω} .

Further, define the function

δw,Ω(x) = sup{|t| : x+ tw ∈ Ω} ,
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i.e., δw,Ω(x) is the point in the intersection of the line x+ tw and Ω that is farthest
away from x and set

1

Mα(x)α
:=

∫

Sn−1 dw
[

1
dw,Ω(x) + 1

δw,Ω(x)

]α

∫

Sn−1 dw|wn|α
.

The integral in the denominator can be easily computed to be
∫

Sn−1

dw|wn|α = 2π
n−1
2

Γ(1+α
2 )

Γ(n+α
2 )

These definitions are analogous to the one in [2] where all estimates are expressed
in terms of

1

m2(x)2
=

∫

Sn−1 dw
1

dw,Ω(x)2

|Sn−1|/n .

In case the domain Ω is convex, the quantity Mα(x) can be bounded in terms of
dΩ(x), the distance of x to ∂Ω, and DΩ(x), the ‘width of Ω with respect to x’.
For convex domains with smooth boundary, this quantity is given by the width of
the smallest slab that contains Ω and consists of two parallel hyper-planes one of
which is tangent to ∂Ω at the point closest to x. This definition can be readily
extended to general convex domains. It is not difficult to see that

1

Mα(x)α
≥
[

1

dΩ(x)
+

1

DΩ(x) − dΩ(x)

]α

,

The following theorem is proved in [4].

Theorem 1. Let Ω be a domain with non-empty boundary and 1 < α < 2. For
any f ∈ C∞

c (Ω)

(1)
1

2

∫

Ω×Ω

|f(x) − f(y)|2
|x− y|n+α

dxdy ≥ κn,α

∫

Ω

|f(x)|2
Mα(x)α

dx .

In particular, if Ω is a convex region then for any f ∈ C∞
c (Ω)

1

2

∫

Ω×Ω

|f(x) − f(y)|2
|x− y|n+α

dxdy ≥ κn,α

∫

Ω

|f(x)|2
[

1

dΩ(x)
+

1

DΩ(x) − dΩ(x)

]α

dx

The constant κn,α is given by

κn,α = π
n−1
2

Γ(1+α
2 )

Γ(n+α
2 )

1

α

[

21−α

√
π

Γ(
2 − α

2
)Γ(

1 + α

2
) − 1

]

and is sharp.

The inequality

(2)
1

2

∫

Ω×Ω

|f(x) − f(y)|2
|x− y|n+α

dxdy ≥ κn,α

∫

Ω

|f(x)|2
dΩ(x)α

dx

has been shown previously by Bogdan and Dyda [1] for all 0 < α < 2 for the
special case where Ω a half space. They conjectured that (2) holds for general
convex domains.
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The proof of (1) proceeds via a one dimensional inequality that is proved using
certain invariance properties of the quadratic form

1

2

∫

R×R

|f(x) − f(y)|2
|x− y|1+α

dxdy

under fractional linear transformations and then reducing the general problem to
one dimensions via the formula

∫

Ω×Ω

|f(x) − f(y)|p
|x− y|n+α

dxdy

=
1

2

∫

Sn−1

dw

∫

{x:x·w=0}

dLw(x)

∫

x+sw∈Ω

ds

∫

x+tw∈Ω

dt
|f(x+ sw) − f(x+ tw)|p

|s− t|1+α

It was pointed out by Frank and Seiringer that the Theorem 1 can be extended,
albeit in a weaker form, to a more general class of fractional integrals.

Theorem 2. Let 1 < p < ∞ and 1 < α < p. Then for any domain Ω ⊂ Rn and
any f ∈ C∞

c (Ω)
∫

Ω×Ω

|f(x) − f(y)|p
|x− y|n+α

dxdy ≥ Dn,p,α

∫

Ω

|f(x)|p
mα(x)α

dx

where

1

mα(x)α
:=

∫

Sn−1 dw
1

dw,Ω(x)α
∫

Sn−1 dw|wn|α
.

and

Dn,p,α = 2π
n−1
2

Γ(1+α
2 )

Γ(n+α
2 )

∫ 1

0

|1 − r
α−1
p |p

(1 − r)1+α
dr

is the sharp constant. In particular, for Ω convex
∫

Ω×Ω

|f(x) − f(y)|p
|x− y|n+α

dxdy ≥ Dn,p,α

∫

Ω

|f(x)|p
dΩ(x)α

dx .

The constant Dn,p,s has been computed before in [3] as the sharp constant for
the Hardy inequality for the half-space.
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The isoperimetric inequality in the Gauss space

Nicola Fusco

(joint work with Andrea Cianchi, Francesco Maggi, Aldo Pratelli)

The Gauss measure is a probability measure on Rn defined by setting for any
measurable set E ⊂ Rn

γn(E) =
1

(2π)n/2

∫

E

e−
|x|2

2 dx .

If E is a set of locally fnite perimeter, the Gaussian perimeter of E is defined as

Pγ(E) =
1

(2π)n/2

∫

∂∗E

e−
|x|2

2 dHn−1(x) ,

where ∂∗E stands for the essential boundary of E in the sense of De Giorgi and
Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Clearly, both γn and
Pγ are invariant by rotations around the origin. As in the Euclidean case, also the
Gaussian perimeter can be characterized in a variational form. Namely, one has

Pγ(E) = sup
{

∫

E

(

divϕ(x) − x · ϕ
)

dγn : ϕ ∈ C1
0 (Rn;Rn), ‖ϕ‖∞ ≤ 1

}

.

It is well known that if E is a set such that γn(E) = r ∈ (0, 1), then

(1) Pγ(E) ≥ Pγ(Hν,s) ,

where ν ∈ Sn−1 and Hν,s is the half-space Hν,s = {x : x · ν > s} such that

r = γn(Hν,s) =
1√
2π

∫ ∞

s

e−t2/2 ds := Φ(s) .

Using the function Φ, inequality (1) may be restated as

Pγ(E) ≥ 1√
2π
e−[Φ−1(γn(E))]2/2 .

The first proofs of the Gauss isoperimetric inequality (1) appeared in [6] and [1],
followed later by different ones, both of geometric and probabilistic nature (see e.g.
the references in [3]). However, only recently it was proved by Carlen and Kerce
([2]) that half-spaces are the only sets for which equality holds in (1). Their proof
makes use of probabilistic arguments involving the Ornstein-Uhlenbeck semigroup.
We present here a variational proof following the old idea of Steiner to deduce
the isoperimetric inequality in the Euclidean case by a symmetrization argument.
The analog in the Gauss space of the Steiner symmetrization is the so called
Ehrhard symmetrization, first introduced in [4]. More precisely, in [3] the Gaussian
isoperimetric inequality (1), together with the characterization of the equality
cases, is quickly obtained by proving that the Gaussian perimeter strictly decreases
under the Ehrhard symmetrization of a set E in a given direction ν ∈ Sn−1, unless
the one dimensional sections of E parallel to ν are half-lines or lines.
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By using Ehrhard symmetrization in [3] we prove also a quantitative version of
inequality (1). In fact we show that the stronger inequality holds

(2) Pγ(E) ≥ Pγ(Hν,s) +
λ2(E)

C2(n, r)
,

where λ(E) is the asymmetry index of the set E,

λ(E) = min
ν∈Sn−1

{

γn
(

E△Hν,s

)

: γ(Hν,s) = γn(E) = r
}

.

The quantitative inequality (2) can be also rewritten as

λ(E) ≤ C(n, r)
√

δ(E) ,

where δ(E) = Pγ(E) − Pγ(Hν,s) is the isoperimetric deficit of E.
Inequality (2) extends to the Gaussian context the quantitative (Euclidean) isoperi-
metric inequality proved in [5]

Λ2(E) ≤ C(n)
√

∆(E) ,

where Λ(E) is the Fraenkel asymmetry of E

Λ(E) = min
x∈Rn

{ |E△Br(x)|
|E| : |E| = |Br|

}

and D(E) is the isoperimetric deficit

D(E) =
P (E) − P (Br)

P (Br)
,

P (E) and P (Br) being the Euclidean perimeter of E and of a ball of radius r,
respectively.
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On mean field equations of Liouville type over closed surfaces

Gabriella Tarantello

The study of selfdual vortices in gauge field theory relates, via Taubes approach,
to the solvability of a certain class of mean field equations over a closed surface.
Typically the 2-sphere S2 to account (via the stereographic projection) to planar
vortices with appropriate decay at infinity; or the flat 2-torus T2 to handle periodic
configurations as they occur naturally in the physical applications.

To be more precise, let us focus on the following typified problem considered
over the closed surface (M, g):

(1) ∆gu+ λ

(

keu
∫

M
keudvg

− 1

|M |

)

= 4ū
N
∑

j=1

βj

(

δpj −
1

|M |

)

,

where ∆g and dvg denote respectively the Laplace-Beltrami operator and the vol-
ume element relative to the metric g, λ, βj ∈ (0,+∞) and pj ∈M for j = 1, ..., N ;
and k is a smooth (positive) function on M .

The interest for (1) has originated in several other contexts, including the ”uni-
formization” theorem in differential geometry, when we extend the conformal class
to include surfaces with ”conical” singularities. On the other hand, from the point
of view of selfdual vortex configurations, the point pj (j = 1, ..., N) plays a role of a
vortex point and we shall need to obtain solutions with strong ”localization” prop-
erties around pj (j = 1, ..., N). Such a ”concentration” property can be attained
only at a specific value of λ∗ that depends on β1, ..., βN .

We show in some cases how to compute the Leray-Schauder degree of the Fred-
holm operator dλ associated to (1), for λ in a neighbourhood of λ∗. By showing
that dλ has a ”jump” as λ crosses λ∗, we prove the existence of ”concentrated”
solutions when λ approaches λ∗, as desired.

Open problem session

Nicola Fusco, Piotr Haj lasz, Bernd Kawohl, Pekka Koskela

Open problems presented by Pekka Koskela:

Let u be both harmonic and 3-harmonic, i.e. u satisfies ∆u = 0 and ∆3u = 0
on the unit ball in Rn. Prove that then u is essentially trivial or that the Hessian
D2u of u vanishes everywhere in the unit ball.

For n = 2 this is known [1], but the proof uses function theoretic arguments.
Instead of ∆3u = 0 one could assume ∆∞u = 0 or any ∆pu = 0 with p ∈ (1, 2) ∪
(2,∞) without changing the problem. This question is related to quasiconformal
mappings F : B1(0) ⊂ R

3 → R
3 which are homeomorphisms and harmonic and

which satisfy the estimate ||DF (x)||3 ≤ KJK(x).

Let E ⊂ [0, 1] be the ternary Cantor set. Then prove or disprove that for
every Cantor set E2 ⊂ [0, 1] and for any p > 2 the set E := E1 × E2 is removable
for W 1,p, i.e. W 1,p(R2 \ E) = W 1,p(R2).
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It is known that the answer is positive if p > p0 > 2, and p0 is a known number.

Open problems presented by Bernd Kawohl:

The first eigenfunction u1 of the p-Laplacian operator on a bounded domain Ω
can be characterized as minimizing the Rayleigh quotient

(1) Rp(v) =

∫

Ω
|∇v|p dx

∫

Ω |v|p dx on W 1,p
0 (Ω) \ {0}.

It is known to be unique up to scaling and it solves the associated Euler-equation
∆pu + λ|u|p−2u = 0 in Ω under Dirichlet’s boundary condition. In fact, any
eigenfunction of only one sign must be the firsteigenfunction, see [4]. What about
the second eigenfunction? It must change sign, and in particular in two dimensions
it has a nodal line in Ω. For p = 2 nodal lines are well studied objects. When Ω is
a disk and p = 2, the nodal line is a diameter, and when Ω is a square and p = 2,
the nodal line can be a vertical, a horizontal or a diagonal.

For p = ∞ the second eigenfunction was investigated in [3] and for p → 1
by Parini [5]. Their results as well as some numerical computations by J. Horák
support the following conjectures:

a) For Ω a disk and any p ∈ (1,∞) the nodal line is a diameter.
b) For Ω a square and any p ∈ (1, 2) the nodal line is vertical or horizontal,

while for p ∈ (2,∞) it is diagonal.
In his numerical calculation J. Horák used the fact that second eigenfunctions

can be characterized as a mountain pass connecting u1 and −u1, see [2].

Open problem presented by Nicola Fusco:

Let f be a function in BV (Ω) and Ω ⊂ R2 a plane domain. If fΩ denotes the
average of f over Ω, then the following Poincaré type inequality

(2)

(
∫

Ω

|f − fΩ|2
)1/2

≤ c(Ω)

∫

Ω

|Df |

is known to have an optimal constant c0, in the sense that c(Ω) ≥ c0 > 0. In fact
for any f0 ∈ C∞

0 (Ω) with
∫

Ω
f0 one finds c0 ≥ ||f0||2/

∫

|Df0|.
Show that the optimal constant among all domains of given area is attained for

a disk. In fact, for a disk the optimal constant was explicitly calculated and it
was shown that it is attained by a particular function in [6]. For general Ω with
area |Ω| = 1 Fusco and Pratelli could show that c(Ω) is realized by characteristic
functions

(3) c(Ω) = sup

{

√

t(1 − t)

P (E; Ω)
, |E| = t, E ⊂ Ω, 0 < t < 1

}

.

So if Ω is a disc, the optimal t is 1/2, and after scaling, one can conclude that
the conjecture would be true, if any plane domain of area π had a bisecting chord
of length at most 2. However, the hope of proving this last statement has to be
dismissed because of [7]. The so-called Auerbach triangle has area less than π and
only bisecting chords of length 2.
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Open problems presented by Piotr Haj lasz:

Extension domains.

We say that Ω ⊂ Rn is a W 1,p-extension domain if there is a bounded linear
operator E : W 1,p(Ω) →W 1,p(Rn) such that Eu|Ω = u for u ∈ W 1,p(Ω).

Problem 1. Suppose that Ω is a W 1,p-extension domain and W 1,q-extension
domain for some 1 ≤ p < q ≤ ∞. Does it follow that Ω is a W 1,r-extension
domain for all p < r < q?

All examples known to me have this property. Moreover the answer is in the
positive when p ≥ n, see [12]. The problem looks like an interpolation question,
but the interpolation methods do not easily apply here. See also [9] for related
results.

Sobolev homeomorphisms.

Let f : Ω1 → Ω2 be a Sobolev homeomorphism between domains Ω1,Ω2 ⊂ Rn,
f ∈W 1,p.

Problem 2. Is it possible to construct a homeomorphism f , whose its Jacobian
changes sign in the sense that Jf > 0 on a set of positive measure and Jf < 0 on
a set of positive measure?

The answer is “no” if p > [n/2] (integer part of n/2), see [10]. The proof is
based on the linking number and the method cannot be extended to smaller values
of p, so a completely new idea is needed. On the other hand one can construct
(P. Haj lasz, unpublished) an approximately differentiable homeomorphism with
the Lusin property (sets of measure zero are mapped onto sets of measure zero)
whose Jacobian changes sign.

Isoperimetric inequality.

To a vector function u = (u1, . . . , un) : Rn → Rn, we associate the deformation
tensor ε defined as the symmetric part of the gradient of u, i.e., ε(u) = 1

2 (∇u +

(∇u)T ), or in terms of components,

εij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

.

The well known Korn inequality implies that for 1 < p < n and p∗ = np/(n− p),

(4) ‖u‖Lp∗(Rn) ≤ C‖ε(u)‖Lp(Rn), u ∈ C∞
0 (Rn,Rn).

Since the Korn inequality is not true for p = 1, one could suspect that inequality
(4) should be false for p = 1. However, Strauss [13], proved a surprising result
that (4) is actually true also for p = 1.

(5)

(
∫

Rn

|u|n/(n−1) dx

)(n−1)/n

≤ C

∫

Rn

|ε(u)| dx.

It is well known that the classical Sobolev inequality for p = 1, with the best
constant, is equivalent to the isoperimetric inequality.



368 Oberwolfach Report 08/2010

Problem 3. What is the best constant in (5)? Is there any isoperimetric inter-
pretation of this inequality?

The isoperimetric inequality is obtained form the Sobolev inequality applied
to level sets of the function. However, in the case of the Strauss inequality, it is
not clear what are the level sets, because the function is vector valued and the
truncation is a problem in the vector valued case.

Convex functions.

Let u be a convex function on an open set in R
n. It is known (but not well

known) that for any ε > 0 there is v ∈ C2 which coincides with u off a set of
measure ε, see [8]. However, it is natural to ask:

Problem 4. Is it possible to find such a function v ∈ C2 that is also convex?

This is a very natural question and a positive answer would be a very nice
approximation result.

Subharmonic functions.

Let u be a subharmonic function defined in an open set Ω ⊂ Rn. Imomkulov
[11], proved that for any ε > 0 there is a function v ∈ C2 such that v coincides
with u off a set of measure ε. This is a very natural, but rather unknown, result.

Problem 5. Is it possible to find such a function v ∈ C2 that is also subharmonic?

This problem is somewhat related to Problem 4 and again a positive answer
would give a very nice approximation result.
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