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Abstract

We compare entire weak solutions u and v of quasilinear partial
differential inequalities on Rn without any assumptions on their be-
haviour at infinity and show among other things, that they must co-
incide if they are ordered, i.e. if they satisfy u ≥ v in Rn. For the
particular case that v ≡ 0 we recover some known Liouville type re-
sults. Model cases for the equations involve the p-Laplacian operator
for p ∈ [1, 2] and the mean curvature operator.

1 Introduction and Definitions.

This work is devoted to the study of a Liouville comparison principle for entire
weak solutions of quasilinear elliptic second-order differential inequalities of
the forms

A(u) + |u|q−1u ≤ A(v) + |v|q−1v (1)

and
−A(u) + |u|q−1u ≤ −A(v) + |v|q−1v (2)

on Rn, where n ∈ N, 0 < q ∈ R, and the operator A(w) belongs to the class
of so-called α-monotone operators. Typical examples of such operators are
the p-Laplacian operator

∆p(w) := div
(
|∇w|p−2∇w

)
(3)



for 1 ≤ p ≤ 2, its well-known modification (see, e.g. p.155 in [17])

∆̃p(w) :=
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂w∂xi
∣∣∣∣p−2

∂w

∂xi

)
(4)

for 1 ≤ p ≤ 2, and the mean curvature operator

M(w) := div

(
∇w√

1 + |∇w|2

)
. (5)

Remark 1 Note that if u and v satisfy the inequalities

−A(u) ≥ |u|q−1u and − A(v) ≤ |v|q−1v, (6)

or
A(u) ≥ |u|q−1u and A(v) ≤ |v|q−1v, (7)

then the pair (u, v) satisfies inequality (1) or (2). Thus, all the results ob-
tained in this paper for solutions of (1) or (2) are valid for the corresponding
solutions of system (6) or (7).

To be specific, let A(w) be the differential operator in divergence form

A(w) =
n∑
i=1

d

dxi
Ai (x,∇w) , (8)

and assume that the functionsAi (x, ξ), i = 1, . . . , n, satisfy the Carathéodory
conditions on Rn × Rn: They are continuous in ξ for almost every x ∈ Rn

and measurable in x for all ξ ∈ Rn.

Definition 1 Let n ∈ N and α ≥ 1. The operator A(w) given by (8) is
called α-monotone iff Ai (x, 0) = 0 for i = 1, . . . , n and for a.e. x ∈ Rn, if it
is monotone in the sense that

0 ≤
n∑
i=1

(
ξ1
i − ξ2

i

) (
Ai
(
x, ξ1

)
− Ai

(
x, ξ2

))
, (9)

and if there exists a positive constant K such that(
n∑
i=1

(
Ai
(
x, ξ1

)
− Ai

(
x, ξ2

))2)α/2

≤ K

(
n∑
i=1

(
ξ1
i − ξ2

i

) (
Ai
(
x, ξ1

)
− Ai

(
x, ξ2

)))α−1

(10)

for every pair ξ1, ξ2 ∈ Rn and a.e. x ∈ Rn.
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Note that condition (9) is the well-known monotonicity condition in PDE
theory, while condition (10) is the proper α-monotonicity condition for dif-
ferential operators, considered first in [12], see also [14]. In the particular

case ξ2 = 0 condition (10) implies the growth condition |−→A | ≤ K|−→ξ |α−1.
The notion of α-monotonicity was inspired by condition (3.7) in [18]. For the
case ξ2 = 0 the α-monotonicity condition boils down to the corresponding
condition of Miklyukov with A(x, u,Du) = A(x,Du) independent of u.
It is well-known that the mean curvature operator M(w), the 1-Laplacian

operator ∆1(w) and its modification ∆̃1(w) satisfy condition (9) for α = 1.
Moreover it is easy to see that these three operators satisfy also condition
(10) for α = 1 with K =

√
n.

Now we present algebraic inequalities which imply immediately that the p-
Laplacian operator ∆p(w) and its modification ∆̃p(w) satisfy the α-mono-
tonicity condition for α = p and 1 < p ≤ 2.

Lemma 1 Suppose n ∈ N and 1 < α ≤ 2, and a = (a1, . . . , an) and b =
(b1, . . . , bn) are vectors in Rn of length |a| and |b|. Then there exists a positive
constant K such that the inequalities(

n∑
i=1

(
ai|a|α−2 − bi|b|α−2

)2)α/2

≤ K

(
n∑
i=1

(ai − bi)
(
ai|a|α−2 − bi|b|α−2

))α−1

(11)
and(

n∑
i=1

(
ai|ai|α−2 − bi|bi|α−2

)2)α/2

≤ K

(
n∑
i=1

(ai − bi)
(
ai|ai|α−2 − bi|bi|α−2

))α−1

(12)
hold.

A proof of this Lemma was given in [12], see also [15].

Note that there exist α-monotone differential operators with arbitrary
degeneracy. For example, the weighted mean curvature operator

M∗(w) := div

(
a(x)∇w√
1 + |∇w|2

)
. (13)

and the weighted p-Laplacian operator

∆∗p(w) := div
(
a (x) |∇w|p−2∇w

)
(14)
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(see, e.g. p. 55 in [7]) with any measurable non-negative uniformly bounded
weight-function a(x) on Rn are α-monotone, with α = 1 and α = p for any
fixed 1 ≤ p ≤ 2.

Now we can define weak solutions of (1) and (2).

Definition 2 Suppose α ≥ 1, q > 0 and the operator A(w) is α-monotone.
We call a pair of functions (u, v) which belong to the space W 1,α

loc (Rn) ∩
Lqloc(Rn) an entire weak solution of (1) if∫
Rn

[
n∑
i=1

ϕxiAi(x,∇u)− |u|q−1uϕ

]
dx ≥

∫
Rn

[
n∑
i=1

ϕxiAi(x,∇v)− |v|q−1vϕ

]
dx

(15)
for every non-negative test function ϕ ∈ C∞0 (Rn).

Definition 3 Similarly suppose that α ≥ 1, q > 0 and the operator A(w) is
α-monotone. Then we call a pair of functions (u, v) in W 1,α

loc (Rn) ∩ L∞loc(Rn)
an entire weak solution of (2) if∫
Rn

[
−

n∑
i=1

ϕxiAi(x,∇u)− |u|q−1uϕ

]
dx ≥

∫
Rn

[
−

n∑
i=1

ϕxiAi(x,∇v)− |v|q−1vϕ

]
dx

(16)
for every non-negative test function ϕ ∈ C∞0 (Rn).

We use analogous definitions for solutions to the systems (6), (7) or for the
equality case in (2):

−A(u) + |u|q−1u = −A(v) + |v|q−1v. (17)

2 Results.

In Theorems 1–5 we formulate our results for solutions of inequality (1) and
in Theorem 6 for solutions of (2).

Theorem 1 Let n ≥ 1, 2 ≥ α ≥ 1, α ≥ n and q > 0. Suppose that
the operator A(w) is α-monotone and (u, v) is an entire weak solution of
inequality (1) on Rn such that u(x) ≥ v(x). Then u(x) = v(x) on Rn.
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Theorem 2 Let n ≥ 2, 2 ≥ α > 1, n > α, n(α−1)
n−α ≥ q > α − 1 and q ≥ 1.

Suppose that the operator A(w) is α-monotone and (u, v) is an entire weak
solution of inequality (1) on Rn such that u(x) ≥ v(x). Then u(x) = v(x) on
Rn.

Theorem 3 Let n ≥ 2, 2 ≥ α > 1, n > α, q > n(α−1)
n−α and q ≥ 1, and let

the operator A(w) be α-monotone. Then there exists no entire weak solution
(u, v) of inequality (1) on Rn such that u(x) ≥ v(x) and the relation

lim sup
R→+∞

R−n+
α(q−ν)
q−α+1

∫
|x|<R

(u− v)q−νdx = +∞ (18)

holds for any ν ∈ (0, α− 1].

To illustrate the sharpness of Theorem 3 we give Example 1.

Example 1 For n ≥ 2, 2 ≥ α > 1, n > α, q > n(α−1)
n−α , q ≥ 1 and a suitable

constant c > 0, the pair (u, v) of the functions

u(x) = c(1 + |x|α/(α−1))(1−α)/(q−α+1) and v(x) ≡ 0 (19)

is an entire smooth solution of inequality (1) on Rn with A(w) = ∆α(w) or

A(w) = ∆̃α(w) satisfying u(x) ≥ v(x), while for any ν ∈ (0, α − 1] (18) is
violated because

0 < lim sup
R→+∞

R−n+
α(q−ν)
q−α+1

∫
|x|<R

(u− v)q−νdx <∞. (20)

The following statement is a simple corollary of Theorem 3.

Corollary 1 Let n ≥ 2, 2 ≥ α > 1, n > α, q > n(α−1)
n−α and q ≥ 1, and let

the operator A(w) be α-monotone. Then, for any given constants c > 0 and
δ > 0, there exists no entire weak solution (u, v) of inequality (1) on Rn such
that u(x) ≥ v(x) + c(1 + |x|α/(α−1))(1−α)/(q−α+1)+δ.

Theorem 4 Let n ≥ 2, 2 ≥ α ≥ 1, n > α and 1 ≥ q > 0, and let the
operator A(w) be α-monotone. Then there exists no entire weak solution
(u, v) of inequality (1) on Rn such that u(x) ≥ v(x) and

lim sup
R→+∞

Rα−n
∫

{|x|<R}∩{x:u(x)6=v(x)}

(|u|q−1u−|v|q−1v)(u−v)1−αdx = +∞. (21)
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To illustrate the sharpness of Theorem 4 we give three examples.

Example 2 For n ≥ 2, 2 ≥ α > 1, n > α, α − 1 > q > 0, 0 < µ < n−α
n

,
λ = (α − 1)/(α − 1 − q) and a suitable constant c > 0 the pair (u, v) of
functions given by

u(x) = c(1 + |x|α/(α−1))λ + (1 + |x|α/(α−1))−µ (22)

and
v(x) = c(1 + |x|α/(α−1))λ (23)

is an entire smooth solution of inequality (1) on Rn with A(w) = ∆α(w) or

A(w) = ∆̃α(w) such that u(x) ≥ v(x) and

0 < lim sup
R→+∞

Rα−n
∫

{|x|<R}∩{x:u(x)6=v(x)}

(|u|q−1u− |v|q−1v)(u− v)1−αdx <∞.

(24)

Example 3 For n ≥ 2, 2 ≥ α > 1, n > α, α − 1 > q > 0, 0 < µ < n−α
n

,
λ > (α − 1)/(α − 1 − q), and a suitable constant c > 0, the pair (u, v) of
functions (22) and (23) is an entire smooth solution of inequality (1) on Rn

with A(w) = ∆α(w) or A(w) = ∆̃α(w) such that u(x) ≥ v(x) and

lim sup
R→+∞

Rα−n
∫

{|x|<R}∩{x:u(x)6=v(x)}

(|u|q−1u− |v|q−1v)(u− v)1−αdx = 0. (25)

Example 4 To illustrate the sharpness of Theorem 4 in the case when 1 ≥
q > 0 and q > n(α−1)

n−α , we note that for n ≥ 2, 2 ≥ α > 1, n > α, 1 ≥ q > 0,

q > n(α−1)
n−α , and a suitable constant c > 0, the pair (u, v) of functions described

in (19) is an entire smooth solution of (1) on Rn with A(w) = ∆α(w) or

A(w) = ∆̃α(w) such that u(x) ≥ v(x) and

0 < lim sup
R→+∞

Rα−n
∫

{|x|<R}∩{x:u(x)6=v(x)}

(|u|q−1u− |v|q−1v)(u− v)1−αdx <∞.

(26)

The following statement follows immediately from Theorem 4 and supple-
ments the results of Theorem 1 for n > α and Theorem 2 for q = α− 1.
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Theorem 5 If n ≥ 3, α = 2 and q = 1 and if the operator A(w) is α-
monotone, then there exists no entire weak solution (u, v) of (1) on Rn such
that u(x) > v(x).

Now we formulate our results for solutions of inequality (2).

Theorem 6 Let n ≥ 1, 2 ≥ α ≥ 1, q ≥ 1 and q > α − 1. Let the operator
A(w) be α-monotone, and let (u, v) be an entire weak solution of inequality
(2) on Rn. Then u(x) ≤ v(x) on Rn.

Corollary 2 Let n ≥ 1, 2 ≥ α ≥ 1, q ≥ 1 and q > α − 1. Let the operator
A(w) be α-monotone, and let (u, v) be an entire weak solution of the equation
case of (2) on Rn. Then u(x) = v(x) on Rn.

To illustrate the sharpness of Theorem 6 and Corollary 2 we give some ex-
amples.

Example 5 For n ≥ 1 and q = α− 1 = 1, the pair (u, v) of the functions

u(x1, . . . , xn) = exp(x1) and v(x) ≡ 0 (27)

is an entire smooth solution of equation (17) on Rn with A(w) = ∆(w), the
Laplacian operator, such that u(x) > v(x).

Example 6 For n ≥ 1, α ≥ 1 and q = α − 1, the pair (u, v) of functions
given in (27) is an entire smooth solution of equation

−A(u) + (α− 1)|u|q−1u = −A(v) + (α− 1)|v|q−1v (28)

on Rn with A(w) = ∆α(w) or A(w) = ∆̃α(w) such that u(x) > v(x).

Example 7 For n ≥ 1, 2 ≥ α > 1, α − 1 > q > 0, and a suitable constant
c > 0, the pair (u, v) of functions

u(x) = c|x|
α

α−1−q and v(x) ≡ 0 (29)

is an entire smooth solution of the equation (17) on Rn with A(w) = ∆α(w)

or A(w) = ∆̃α(w) such that u(x) > v(x).
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Remark 2 In the special case when u ≡ 0 or v ≡ 0, the results of this
paper are commonly called Liouville type theorems. In fact for inequalities
of the form (1) the corresponding Liouville theorems were obtained in [12],
[16] and [19], and they were inspired by a similar result for solutions of
semilinear equations in [6]. For inequalities of the form (2) the corresponding
Liouville theorems were obtained in [11] and [13], and they were inspired by a
similar result for solutions of semilinear equations in [2]. Various interesting
generalizations of those results can be found in [21] and [5]. In fact there is
an abundance of literature on Liouville theorems, see for instance [1, 3, 4,
19, 20].

In contrast to all of these, in the present paper we compare a pair (u, v)
of nonzero solutions to (1) or (2). That is why we call this type of result
Liouville comparison theorem. To prove these results we further develop the
approach that was proposed to solve similar problems in wide classes of partial
differential equations and inequalities in [10] and [12].

3 Proofs

In what follows, a “smooth” function is a C∞-function on Rn, and B(R) is
the open ball on Rn centered at the origin with radius R > 0.

Proof of Theorem 1. By assumption∫
Rn

n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))ϕxidx ≥
∫
Rn

(|u|q−1u− |v|q−1v)ϕdx (30)

holds for every non-negative test function ϕ ∈ C0(Rn). Let R and ε be
arbitrary positive numbers, and let ζ : Rn → [0, 1] be a smooth cut-off
function which equals 1 on B(R/2), 0 outside B(R) and satisfies

|∇ζ(x)| ≤ c0
R

(31)

on Rn. Without loss of generality, we substitute ϕ(x) = (w(x) + ε)−νζs(x)
as a test function in (30), where w(x) = u(x)− v(x), and where ν and s are
real numbers such that ν > α − 1 and s ≥ α. Integrating by parts in (30)
gives

−ν
∫

B(R)

n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))wxi(w + ε)−ν−1ζsdx
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+s

∫
B(R)

n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))ζxi(w + ε)−νζs−1dx

:= I1 + I2 ≥
∫

B(R)

(|u|q−1u− |v|q−1v)(w + ε)−νζsdx. (32)

Observing that I1 is non-positive by (9), we first estimate I2 in terms of I1.
Since

|I2| =

∣∣∣∣∣s
∫
B(R)

n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))ζxi(w + ε)−νζs−1dx

∣∣∣∣∣
≤ s

∫
B(R)

[
n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))2

]1/2

|∇ζ|(w + ε)−νζs−1dx, (33)

using condition (10) on the coefficients of the operator A, we easily obtain
the following estimate from (33)

|I2| ≤

≤
∫

B(R)

sK
1
α

(
n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))

)α−1
α

|∇ζ|(w + ε)−νζs−1dx.(34)

We estimate the integrand on the right-hand side of (34) using Young’s in-
equality

AB ≤ ρA
β
β−1 + ρ1−βBβ (35)

with ρ = ν
2
, β = α,

A = (w + ε)
(1+ν)(1−α)

α ζ
s(α−1)
α

(
n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))

)α−1
α

and
B = sK1/α|∇ζ|ζ

s
α
−1(w + ε)

α−1−ν
α ,

and arrive at

|I2| ≤
ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx

+

∫
B(R)

c1|∇ζ|α(w + ε)α−1−νζs−αdx. (36)
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Here we use the symbols ci, i = 1, 2, . . . , to denote constants depending
possibly on n, q, s, α, ν, K but not on R and ε. Now from (32) and (36) we
obtain ∫

B(R)

c1|∇ζ|α(w + ε)α−1−νζs−αdx

≥ ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx

+

∫
B(R)

(|u|q−1u− |v|q−1v)(w + ε)−νζsdx. (37)

Since the function w(x) is non-negative and ν > α− 1, (37) implies

c2ε
α−1−ν

∫
B(R)

|∇ζ|αdx ≥
∫

B(R)

n∑
i=1

wxi(Ai(∇u)− Ai(∇v))(w + ε)−ν−1ζsdx

+

∫
B(R)

(|u|q−1u− |v|q−1v)(w + ε)−νζsdx. (38)

Now (38) and (31) yield

c3ε
α−1−νRn−α ≥

∫
B(R)

n∑
i=1

wxi(Ai(∇u)− Ai(∇v))(w + ε)−ν−1dx

+

∫
B(R/2)

(|u|q−1u− |v|q−1v)(w + ε)−νdx. (39)

Moreover, since α ≥ n, u ≥ v and since t 7→ |t|q−1t is monotone, the integrals
on the right-hand side of (39) are nonnegative and bounded for all R > 0.
Sending R to ∞ in (39) leads to∫

B(Rk)\B(Rk/2)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1 → 0 (40)

as well as (if α > n)∫
B(Rk/2)

(|u|q−1u− |v|q−1v)(w + ε)−νdx→ 0 (41)
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for all sequences Rk → ∞. But that in turn implies that u(x) = v(x) a.e.
on Rn. To cover also the case n = α, since I1 is non-positive, it follows from
(32) and (34) that

∫
B(R)

sK1/α

(
n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))

)(α−1)/α

|∇ζ|(w + ε)−νζs−1dx

≥
∫

B(R)

(|u|q−1u− |v|q−1v)(w + ε)−νζsdx. (42)

Estimating the integrand on the left-hand side of (42) by Hölder’s inequality,
we obtain

c4

 ∫
B(R)\B(R/2)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1dx


α−1
α

×

 ∫
B(R)

|∇ζ|α(w + ε)α−1−νdx


1
α

≥
∫

B(R/2)

(|u|q−1u− |v|q−1v)(w + ε)−νdx.(43)

We recall the choice of ζ above. Since w(x) is non-negative and ν > α − 1
(43) and (31) yield

c5

 ∫
B(R)\B(R/2)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1dx


α−1
α

× ε
α−1−ν
α R

n−α
α ≥

∫
B(R/2)

(|u|q−1u− |v|q−1v)(w + ε)−νdx. (44)

It then follows directly from (40) and (44) that∫
B(Rk/2)

(|u|q−1u− |v|q−1v)(w + ε)−νdx→ 0 (45)

as Rk →∞, and that in turn yields that u(x) = v(x) on Rn. �
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Proof of Theorem 2. We start by observing that (see, e.g, [9])

(|u|q−1u− |v|q−1v)(u− v) ≥ c1|u− v|q+1 (46)

for any real numbers q ≥ 1, u and v and c1 = 21−q. Thus (15) implies∫
Rn

n∑
i=1

ϕxi(Ai(x,∇u)− Ai(x,∇v))dx ≥ c1

∫
Rn

(u− v)qϕdx (47)

for every non-negative test function ϕ ∈ C∞0 (Rn). Choose ζ and ϕ(x) =
(w(x) + ε)−νζs(x) as in the proof of Theorem 1, where w(x) = u(x)− v(x).
The positive constants s ≥ α and α − 1 > ν > 0 will be chosen below.
Integrating by parts in (47) gives

−ν
∫

B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx

+s

∫
B(R)

n∑
i=1

ζxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−νζs−1dx

≡ I1 + I2 ≥ c1

∫
B(R)

wq(w + ε)−νζsdx. (48)

As in the previous proof we estimate I2 in terms of I1 and arrive at

|I2| ≤
ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx

+

∫
B(R)

c2|∇ζ|α(w + ε)α−1−νζs−αdx. (49)

Moreover, inequality∫
B(R)

c2|∇ζ|α(w + ε)α−1−νζs−αdx ≥ c1

∫
B(R)

wq(w + ε)−νζsdx

+
ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx (50)
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immediately follows from (48) and (49). Next we estimate the integrand on
the left-hand side of (50) by Young’s inequality (35) with ρ = c1

2
, β = q−ν

q−α+1
,

A = (w + ε)α−ν−1ζ
s(α−1−ν)

q−ν , (51)

and
B = c2|∇ζ|αζ

s(q−α+1)
q−ν −α, (52)

and obtain

c1
2

∫
B(R)

(w + ε)q−νζsdx+ c3

∫
B(R)

|∇ζ|
α(q−ν)
q−α+1 ζs−

α(q−ν)
q−α+1 dx

≥ c1

∫
B(R)

wq(w + ε)−νζsdx

+
ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))(w + ε)−ν−1ζsdx. (53)

Since the last term on the right-hand side of (53) is non-negative, this yields

c1
2

∫
B(R)

(w + ε)q−νζsdx+ c3

∫
B(R)

|∇ζ|
α(q−ν)
q−α+1 ζs−

α(q−ν)
q−α+1 dx

≥ c1

∫
B(R)

wq(w + ε)−νζsdx. (54)

In (54) we can send ε→ 0. This is justified by Lebesgue’s theorem (see, e.g.
p. 303 in [9]), and for s ≥ α q−ν

q−α+1
it leads to

c4

∫
B(R)

|∇ζ|
α(q−ν)
q−α+1 dx ≥

∫
B(R)

wq−νζsdx. (55)

We chose ζ(x) as in the proof of Theorem 1. Then (55) and (31) yield

c5R
n−α(q−ν)

q−α+1 ≥
∫

B(R)

wq−νdx. (56)
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It is easy to see that for 1 < q < n(α−1)
n−α and sufficiently small ν, the inequality

n− α(q − ν)

q − α + 1
< 0 (57)

holds. Sending R → +∞ on the left-hand side of (56) and observing (57)
gives ∫

Rn

wq−νdx = 0, (58)

where q > ν. But then w(x) = 0 a.e. on Rn. Thus, for 1 < q < n(α−1)
n−α , we

have proved that u(x) = v(x) a.e. on Rn. This proves Theorem 2 in the case

q < n(α−1)
n−α .

To treat the case q = n(α−1)
n−α , we borrow an idea from [19], which boils

down to estimating the integral∫
B(R)

wqζsdx (59)

by expoiting (53) from above in the way suggested in [12]. To this end, we
set ϕ(x) = ζs(x) in (15). Then (46) implies

s

∫
B(R)

n∑
i=1

ζxi(Ai(x,∇u)− Ai(x,∇v))ζs−1dx ≥ c1

∫
B(R)

wqζsdx. (60)

Since

n∑
i=1

ζxi(Ai(x,∇u)− Ai(x,∇v)) ≤ |∇ζ|

(
n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))2

) 1
2

,

(61)
using the condition (10) on the coefficients of the operator A(w), (60) and
(61) lead to

c1

∫
B(R)

wqζsdx

≤ sK1/α

∫
B(R)

(
n∑
i=1

wxi(Ai(x,∇u)− (Ai(x,∇v))

)α−1
α

|∇ζ|ζs−1dx. (62)

14



Estimating the right-hand side of (62) by Hölder’s inequality, it is easy to
see that the inequality

c1

∫
B(R)

wqζsdx ≤ sK1/α

 ∫
B(R)

|∇ζ|α(w + ε)(α−1)(ν+1)ζs−αdx


1/α

×

 ∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− (Ai(x,∇v))(w + ε)−ν−1ζsdx


α−1
α

(63)

holds for any ε > 0. Further, since the inequality∫
B(R)

|∇ζ|α(w + ε)(α−1)(ν+1)ζs−αdx

≤

 ∫
B(R)\B(R/2)

(w + ε)d(α−1)(1+ν)ζsdx


1
d
 ∫
B(R)

|∇ζ|
αd
d−1 ζs−

αd
d−1dx


d−1
d

(64)

is valid for any d > 1, by choosing any sufficiently small ν from the interval
(0, α − 1) ∩ (0, q−α+1

α−1
), and the parameter d = q

(α−1)(1+ν)
such that d(α −

1)(1 + ν) = q, (63) and (64) yield

c1

∫
B(R)

wqζsdx

≤ sK1/α

 ∫
B(R)

|∇ζ|
αd
d−1 ζs−

αd
d−1dx


d−1
αd
 ∫
B(R)\B(R/2)

(w + ε)qζsdx


1
αd

×

 ∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− (Ai(x,∇v))(w + ε)−ν−1ζsdx


α−1
α

. (65)

Estimating now the last term on the right-hand side of (65) by (53), we

15



obtain

c1

∫
B(R)

wqζsdx ≤ sK
1
α

 ∫
B(R)

|∇ζ|
αd
d−1 ζs−

αd
d−1dx


d−1
αd

×

 ∫
B(R)\B(R/2)

(w + ε)qζsdx


1
αd
c4 ∫

B(R)

|∇ζ|α
q−ν

q−α+1 ζs−α
q−ν

q−α+1dx

+
c1
ν

∫
B(R)\B(R/2)

(w + ε)q−νζsdx− 2c1
ν

∫
B(R)

wq(w + ε)−νζsdx


α−1
α

. (66)

In (66), passing to the limit as ε→ 0 as justified by Lebesgue’s theorem (see,
e.g., [9], p. 303), gives

∫
B(R)

wqζsdx ≤ c6

 ∫
B(R)\B(R/2)

wqζsdx


1
αd

×

 ∫
B(R)

|∇ζ|
αd
d−1 ζs−

αd
d−1dx


d−1
αd
 ∫
B(R)

|∇ζ|α
q−ν

q−α+1 ζs−α
q−ν

q−α+1dx


α−1
α

. (67)

Therefore, for sufficiently large s, (67) implies ∫
B(R/2)

wqdx


αd−1
αd

≤ c7

 ∫
B(R)

|∇ζ|
αd
d−1dx


d−1
αd
 ∫
B(R)

|∇ζ|α
q−ν

q−α+1dx


α−1
α

.

(68)
Now choose in (68) the function ζ(x) as the usual cut-off function. Then (31)
and (68) yield  ∫

B(R/2)

wqdx


αd−1
αd

≤ c8R
p, (69)
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where

p =
n− p1

p1

+
(α− 1)(n− p2)

α
, p1 =

αd

d− 1
, p2 =

α(q − ν)

q − α + 1
. (70)

It is easy to calculate that for 1 < α < n

p =
(n− α)(αq − α + 1− ν(α− 1))

αq(q − α + 1)

(
q − n(α− 1)

n− α

)
. (71)

Further, for n > α and q = n(α−1)
n−α , it follows from (69) and (71) that the

integral ∫
Rn
wqdx (72)

is bounded. Therefore, due to monotonicity, the relation∫
B(Rk)\B(Rk/2)

wqdx→ 0 (73)

holds for any sequence Rk → ∞. On the other hand, for sufficiently large s
it follows from (67) that

∫
B(R/2)

wqdx ≤ c6

 ∫
B(R)\B(R/2)

wqdx


1
αd

×

 ∫
B(R)

|∇ζ|
αd
d−1dx


d−1
αd
 ∫
B(R)

|∇ζ|α
q−ν

q−α+1dx


α−1
α

. (74)

In (74), choosing the function ζ(x) of the form indicated above and observing
(31) gives ∫

B(R/2)

wqdx ≤ c9R
p

 ∫
B(R)\B(R/2)

wqdx


1
αd

. (75)

Finally, for n > α, q = n(α−1)
n−α and any sufficiently small ν ∈ (0, α − 1) ∩

(0, q−α+1
α−1

), we have from (71),(73) and (75) the relation∫
B(Rk/2)

wqdx→ 0 (76)
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for any sequence Rk →∞. Now this implies that∫
Rn
wqdx = 0 (77)

and hence that u(x) = v(x) on Rn.�

Proof of Theorem 3. The proof is indirect, by contradiction. Assume that
there exists an entire weak solution (u, v) of inequality (1) on Rn such that
u(x) ≥ v(x) satisfying (18). Then by (46) we have from (15) the inequality∫

Rn

n∑
i=1

ϕxi(Ai(x,∇u)− Ai(x,∇v))dx ≥ c1

∫
Rn

(u− v)qϕdx (78)

for every non-negative smooth test function ϕ ∈ C∞0 (Rn). Without loss of
generality, we substitute ϕ(x) = (w(x) + ε)−νζs(x) as a test function in (78),
where w(x) = u(x)− v(x), ζ is the standard cut-off function from the proof
of Theorem 1, and the positive constants s ≥ α and q > ν > 0 will be chosen
below. Integrating by parts in (78) and repeating the arguments in the proof
of Theorem 2 we arrive again at (56)

c5R
n−α(q−ν)

q−α+1 ≥
∫

B(R)

wq−νdx,

which holds for any ν ∈ (0, α − 1] and which contradicts hypothesis (18) of
Theorem 3.

Proof of Theorem 4. Also this proof is indirect by reduction to a contra-
diction. If there exists an entire weak solution (u, v) of inequality (1) on Rn

such that u(x) ≥ v(x) and (21) holds, then∫
Rn

n∑
i=1

(Ai(x,∇u)− Ai(x,∇v))ϕxidx ≥
∫
Rn

(|u|q−1u− |v|q−1v)ϕdx, (79)

for every non-negative smooth test function ϕ ∈ C∞0 (Rn). Similar to the
previous proofs, we set ϕ(x) = (w + ε)1−αζs(x) as a test function in (79),
where w(x) = u(x) − v(x), s ≥ α and ζ is the usual cut-off function. Then
an inspection of (39) for ν = α− 1 leads to

c5R
n−α ≥

∫
B(R)∩{x∈Rn:u(x)6=v(x)}

(|u|q−1u− |v|q−1v)(u− v)1−αdx (80)
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and this contradicts (21).

Proof of Theorem 5. Again we prove this by contradiction. Suppose there
exists an entire weak solution of (1). We follow the arguments in the proof
of Theorem 4. For q = 1 and α = 2 relation (80) becomes

lim sup
R→+∞

R2−n
∫

{|x|<R}∩{x:u(x)6=v(x)}

1 dx ≤ c3, (81)

but if u(x) > v(x) in Rn, then the left hand side of (81) is infinite, a contra-
diction.

Proof of Theorem 6. It first follows from (16) that the inequality

−
∫
Rn

n∑
i=1

ϕxi(Ai(x,∇u)− Ai(x,∇v))dx ≥
∫
Rn

(|u|q−1u− |v|q−1v)ϕdx (82)

holds for every non-negative smooth function ϕ ∈ C∞(Rn) with compact
support. We choose ϕ(x) = wν(x)ζs(x) as a test function, where w(x) =
max{u(x)− v(x), 0}, ζ is the standard cut-off function and the positive con-
stants s ≥ α and ν > 1 will be chosen below. Then, by (46), we arrive
at

−
∫
Rn

n∑
i=1

(wνζs)xi(Ai(x,∇u)− Ai(x,∇v))dx ≥ c1

∫
Rn

wq+νϕdx. (83)

Integrating this by parts gives

−ν
∫

B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))wν−1ζsdx

−s
∫

B(R)

n∑
i=1

ζxi(Ai(x,∇u)− Ai(x,∇v))wνζs−1dx

≡ I1 + I2 ≥ c1

∫
B(R)

wq+νζsdx. (84)
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As above, we estimate I2 in terms of I1. Since

|I2| =

∣∣∣∣∣∣∣s
∫

B(R)

n∑
i=1

ζxi(Ai(x,∇u)− Ai(x,∇v))wνζs−1dx

∣∣∣∣∣∣∣
≤
∫

B(R)

s

(
n∑
i=1

(Ai(x,∇u)− (Ai(x,∇v))2

) 1
2

|∇ζ|wνζs−1dx, (85)

we can proceed as in the proof of Theorem 1 and use condition (10) on the
coefficients of the operator A to obtain

|I2| ≤∫
B(R)

sK1/α|∇ζ|wνζs−1

(
n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))

)α−1
α

dx. (86)

For α > 1 we estimate the integrand on the right-hand side of (86) by Young’s
inequality (35) with ρ = ν

2
, β = α,

A = w
(α−1)(ν−1)

α ζ
s(α−1)
α

(
n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))

)α−1
α

(87)

and
B = sK1/α|∇ζ|ζ

s
α
−1w

α−1+ν
α , (88)

and we arrive at

|I2| ≤
ν

2

∫
B(R)

n∑
i=1

wxi(Ai(x,∇u)− Ai(x,∇v))wν−1ζsdx

+

∫
B(R)

c2|∇ζ|αwα−1+νζs−αdx. (89)

Since I1 ≤ 0, (89) and (84) imply

c3

∫
B(R)

|∇ζ|αwα−1+νζs−αdx ≥
∫

B(R)

wq+νζsdx (90)
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for α > 1 and from (10) and (84) for α = 1.

Further, since q > α− 1, choosing s = α(q+ν)
q−α+1

such that (s− α) q+ν
α−1+ν

= s

and estimating the left-hand side of (90) by Hölder’s inequality we obtain

c4

 ∫
B(R)

|∇ζ|
α(q+ν)
q−α+1


q−α+1
q+ν

 ∫
B(R)

wq+νζsdx


α−1+ν
q+ν

≥
∫

B(R)

wq+νζsdx. (91)

Recalling (31) we arrive at

c6R
n−α(q+ν)

q−α+1 ≥
∫

B(R)

wq+νdx (92)

which holds for anyR > 0. Now we choose in (92) the parameter ν sufficiently
large such that

n− α(q + ν)

q − α + 1
< 0 (93)

holds. The sending R→∞ in (92) implies∫
Rn
wq+νdx = 0, (94)

that is w(x) = 0 or u(x) ≤ v(x) a.e. on Rn. �
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[7] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory
of degenerate elliptic equations, The Clarendon Press, Oxford University
Press, New York, 1993.

[8] A.G. Kartsatos and R.D. Mabry, Controlling the space with preassigned
responses, J. Optim. Theory Appl., 54 (1987), no. 3, 517–540.

[9] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1970, 403 p.

[10] V.A. Kondrat′ev and E.M. Landis, Semilinear second-order equations
with nonnegative characteristic form, (Russian) Mat. Zametki 44 (1988),
457–468.

[11] V.V. Kurta, Qualitative properties of solutions of some classes of
second-order quasilinear elliptic equations, (Russian) Differentsial′nye
Uravneniya 28 (1992), no. 5, 867–873.

[12] V.V. Kurta, Some problems of qualitative theory for nonlinear second-
order equations, (Russian) Doctoral Dissert., Steklov Math. Inst.,
Moscow, 1994.

22



[13] V.V. Kurta, On the comparison principle for second-order quasilinear
elliptic equations, (Russian) Differentsial′nye Uravneniya 31 (1995), no.
2, 289–295.

[14] V.V. Kurta, Comparison principle for solutions of parabolic inequalities,
C. R. Acad. Sci. Paris, Série I, 322 (1996), 1175–1180.

[15] V.V. Kurta, Comparison principle and analogues of the Phragmén-
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