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Pursuing Polygonal Privacy

lan Stewart proves that good fences make good neighbors

ombinatorial geometry is one
of the most appealing areas of
mathematics, full of simple
problems whose solutions are
unknown. The aim of these problems is
to find arrangements of lines, curves ot
other geometric shapes that achieve
some objective in the most efficient man-
ner. This month [ want to concentrate on
a puzzle known as the Opaque Square
Problem, along with several fascinating
variations. Bernd Kawohl of the Universi-
ty of Cologne in Germany brought the
puzzle to my attention, and my discus-
sion is based on an article he sent me.
Suppose you own a square plot of land
whose sides, for the sake of simplicity, are
each one mile long. To ensure your priva-
¢y, you want to build an opaque fence—a
barrier that will block any straight line of
sight passing through the square plot.
Moreover, to save money, you want the
fence to be as short as possible. How
should you build it? The fence can be as
complicated as you like, with lots of differ-
ent pieces that can be curved or straight.
Perhaps the most obvious solution is to
build a fence around the perimeter of the
square plot, with a total length of four
miles [sce illustration A at left]. A few mo-
ments’ thought reveals an improvement:
leave out one side to create a square-cor-
nered U shape [see illustration B]. Now the
length reduces to three miles. This is, in
fact, the shortest fence possible if we im-
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pose the additional condition that the
fence must be a single polygonal or curved
line. Why? Because every opaque fence
must contain all four corners of the square,
and the three-sided U is the shortest sin-
gle curve that contains all the corners.

We can build a shorter fence, however,
that consists of more than one curve. I1-
lustration C shows a fence with a length
of 1+v3 (about 2.732) miles. The an-
gles between the lines are all 120 degrees.
Arrangements of this kind are called
Steiner trees; the 120-degree angles mini-
mize the length of the tree. This is the
shortest fence in which the curves are
connected. If we allow the fence to have
several disconnected pieces, the total
length can be reduced to about 2.639
miles [see illustration D]. The three lines
in the upper half of the diagram also
meet at angles of 120 degrees. This last
example is widely believed to be the
shortest opaque fence for a square plot,
but nobody has proved this yet.

Indeed, mathematicians are not sure
whether a shortest opaque fence exists. It
may be possible to keep shortening the
length by making the fence more and
more complicated. For any given number
of connected components, it has been
proved that a shortest opaque fence does
exist. What is not known is whether the
minimal length keeps shrinking as the
number of components increases with-
out limit or whether a fence with an infi-
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OPAQUE FENCES are barriers that block any straight line of sight passing through a given fig-
ure. For a square, a perimeter fence (A) and a three-sided U shape (B) are opaque, but a Steiner tree
(€) and a two-component fence (D) are shorter. The shortest opaque fence for an equilateral trian-
gleis also a Steiner tree (E). The best-known opaque fences for the regular pentagon (F) and hexa-
gon (G) each have three components. All fence lengths (1) are approximate except those for A and B.
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EVEN-SIDED POLYGON with many sides
has an opaque fence with many compenents (H).
Their combined length approximates the length
of the shortest single-curve fence for a circle (/).

nite number of components can outper-
form all fences with a finite number of
components. These possibilities seem un-
likely, but neither has been ruled out.

Kawohl has provided a lovely proof that
illustration D on the opposite page is the
shortest fence having exactly two compo-
nents. He shows that one component
must contain three corners of the square
and that the other must contain the re-
maining corner. The first component
must therefore be the shortest Steiner tree
linking three corners, which is the shape
shown in the upper part of the figure. The
convex hull of this shape—the smallest
convex region that contains it—is the tri-
angle formed by cutting the square in two
along a diagonal. The second component
must be the shortest curve that joins the
fourth corner to this triangle: the diago-
nal line from that corner to the center of
the square.

What about shapes other than the
square? If the plot of land is an equilateral
triangle, the shortest opaque fence is a
Steiner tree formed by joining each cor-
ner to the center along a straight line [see
illustration E]. If the plot is a regular penta-
gon, the best-known opaque fence comes
in three pieces [see illustration F]. One
piece of the fence is a Steiner tree linking
three adjacent corners of the pentagon.
The second piece is a straight line joining
the fourth corner to the convex hull of
the Steiner tree. The third piece is a
straight line joining the fifth comer to
the convex hull of the four other corners.
Nobody has proved that this fence has a
minimal length, but no shorter opaque
fence has been found.

The best-known fence for the regular

hexagon is similar [see illustration G|. Be-
cause the corner angles of the hexagon
are 120 degrees, the Steiner tree consists of
three consecutive sides of the figure itself,
linking four adjacent corners. The sec-
ond component of the fence is the short-
est line joining a fifth corner to the con-
vex hull of the Steiner tree, and the third
component is the shortest line joining the
sixth corner to the convex hull of the five
other corners. Again, no one has proved
that this fence has a minimal length.

You can use the same type of construc-
tion to draw a conjectured minimal fence
for any regular polygon with an even
number of sides [see illustration H at left].
Simply divide the polygon in two by a di-
ameter joining two opposite corners. The
first component of the fence is formed
from all the edges that lie in that half,
forming the polygonal analogue of a
semicircle. The second component is the
shortest line linking the next corner to the
convex hull of the first component. The
third component is the shortest line link-
ing the next corner to the convex hull of
the first two components, and so on.

A regular polygon with a large number
of sides is very close to a circle. What is
the shortest fence that makes a circle
opaque? For simplicity, suppose that the
circle has a radius of one mile. The sim-
plest fence that comes to mind is the cir-
cumference of the circle, which has a
length of 2r (about 6.283) miles. We can
do better, however, if the fence is permit-
ted to lie outside the circular plot. Run
the fence along half the circumference,
creating a semicircle, and extend it by
adding two one-mile lines that are tan-
gent to the circle at the ends of the semi-

circle [see illustration I]. The resulting U
shape is an opaque fence for the circle,
with a length of © + 2 (about 5.142) miles.

It can be proved that this figure is the
shortest opaque fence if we insist that it
be a single curve—all in one piece and
with no branching points. Another way
to describe the problem is to think of
trenches instead of fences. Imagine thata
straight underground pipe is known to
pass within a mile of some specific point.
What is the shortest trench we can dig
that is guaranteed to find the pipe? We
know that the pipe must cross a circle
with a one-mile radius centered at that
point and must therefore hit any opaque
fence for that circle. So we should dig a
trench in the form of an opaque fence.

In this version of the puzzle, it is natu-
ral to allow the trench to go outside the
circle, but fences are typically built on the
owner's land rather than on the neigh-
bors'. Kawohl shows that the shortest
opaque fence lying entirely inside the cir-
cle also cannot be longer than 7+ 2 miles.
He does this by considering the conjec-
tured fence for an even-sided polygon
with a very large number of sides, thus
closely approximating the circle. A trig-
onometric calculation proves that the
length of the fence shown in illustration
H approaches  + 2 as the number of sides
increases without limit.

But are the conjectured fences truly the
shortest, or is there a way to shorten them
further? What about other shapes, such as
irregular polygons (convex or not), ellipses
and semicircles? And what about the same
problem in three dimensions (the opaque
cube and sphere)? Recreational mathe-
maticians have much to investigate. =~ &

READER FEEDBACK

: ; everal readers objected to a calculation | did in the column on logical fractals

[“A Fractal Guide to Tic-Tac-Toe," August 2000]. | stated that the number of
possible games of tic-tac-toe is 362,880. | should have made it clear that this
number is correct only under the assumption that the game continues until all the
squares in the grid are filled, rather than stopping when someone wins. The total
number of sequences leading to a completed grid is 9 x 8 x 7 x 6 x5 x4 x3x2 X
1 (denoted as 91), which equals 362,880.
But what is the number of actual games? John Stewart of Rockledge, Fla,,
pointed out that the number can be expressed as:

91 -24M—-6N-2P-Q + M+ N+ P+ Q)

where M, N, P and Q are the number of games completed after the fifth, sixth,
seventh and eighth moves, respectively. The precise values of M, N, Pand Q re-
main to be calculated. Any takers? John Stewart (no relation to myself, by the
way) suggests that M might be 1,440.

—LS.
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