Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20
— Exercise Sheet 3 -

Exercise 3.1 Consider the weight function $w \in \mathcal{C}([-1,1])$ defined by $w(t)=\left(1-t^{2}\right)^{-1 / 2}$. The corresponding orthogonal polynomials are the Chebyshev polynomials $T_{n}(\cos \theta)=\cos n \theta$. Verify the interlacing property of the roots of T_{n}.

Exercise 3.2 Let $w \in \mathcal{C}([a, b])$ be a continuous, nonnegative weight function, $w \neq 0$, and let $\left(p_{n}\right)_{n=0,1, \ldots}$ be a sequence of orthogonal polynomials with respect to w. Show: For each $\alpha \in \mathbb{R}$, the polynomial $p_{n}+\alpha p_{n-1}$ has n distinct real roots, which are interlaced with the roots of p_{n-1}.

Exercise 3.3 Consider the Chebyshev polynomials $T_{n}(\cos \theta)=\cos n \theta$. Let r_{1}, \ldots, r_{n} be the roots of T_{n}.
(a) Show that the coefficients λ_{i} for the Gauss-Jacobi quadrature are given by the following system of linear equations:

$$
\left(\begin{array}{cccc}
T_{0}\left(r_{1}\right) & T_{0}\left(r_{2}\right) & \ldots & T_{0}\left(r_{n}\right) \\
T_{1}\left(r_{1}\right) & T_{1}\left(r_{2}\right) & \ldots & T_{1}\left(r_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
T_{n-1}\left(r_{1}\right) & T_{n-1}\left(r_{2}\right) & \ldots & T_{n-1}\left(r_{n}\right)
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
\int_{-1}^{1} T_{0}(t)\left(1-t^{2}\right)^{-1 / 2} d t \\
0 \\
\vdots \\
0
\end{array}\right)
$$

(b) Show that there is $\lambda>0$ such that $\lambda_{i}=\lambda$ for $i=1, \ldots, n$.
(c) Determine λ.

Exercise 3.4 Present the proof of Lemma 3.8 (see page 118 in the Cohn-Kumar paper).
"Hand-in": Until Thursday November 7, 10 am, using the form on the course homepage.

