Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

## Methods and problems in discrete mathematics

Wintersemester 2019/20

## — Exercise Sheet 4 -

Exercise 4.1 Let $K_{i}: X \times X \rightarrow \mathbb{C}$ for $i=1,2$ be two $G$-invariant, positive-definite kernels. Show that $K(x, y)=K_{1}(x, y) \cdot K_{2}(x, y)$ is again a $G$-invariant, positive-definite kernel.

Exercise 4.2 Let $\hat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$. For any matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ let

$$
A x=\frac{a x+b}{c x+d}
$$

where $x \in \hat{\mathbb{R}}$, with the convention that $\frac{a \infty+b}{c \infty+d}=\frac{a}{c}$ and $\frac{u}{0}=\infty$ for $u \neq 0$. Show that this defines an action of $\mathrm{GL}_{2}(\mathbb{R})$ on $\hat{\mathbb{R}}$.

Exercise 4.3 Let $G$ be a group acting on a set $X$. With $x \in X$ we associate the orbit of $x$

$$
\operatorname{Orb}(x)=\{g x \mid g \in G\}
$$

and the stabilizer subgroup of $G$ with respect to $x$

$$
\operatorname{Stab}(x)=\{g \in G \mid g x=x\}
$$

(a) Let $G$ be a finite group acting on a finite set $X$ and let $x \in X$. Show:

$$
|\operatorname{Orb}(x)|=|G| /|\operatorname{Stab}(x)|
$$

(b) Determine the order of the symmetry group of the cuboctahedron $P$,

$$
G=\{A \in \mathrm{O}(3): A P=P\}
$$



The cuboctahedron (from Hilbert, Cohn-Vossen, Anschauliche Geometrie, Springer, 1932)

Exercise 4.4 Let $G$ be a finite abelian group and let $(V,\langle\cdot, \cdot\rangle)$ be an irreducible unitary representation of $G$. Show that $\operatorname{dim} V=1$.
"Hand-in": Until Thursday November 14, 10 am, using the form on the course homepage.

