Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20
— Exercise Sheet 5 -

Exercise 5.1 Let $S, S^{\prime} \subseteq \mathbb{C}^{V}$ be G-invariant subspaces. Let e_{1}, \ldots, e_{h} be an orthonormal basis of S and let $e_{1}^{\prime}, \ldots, e_{h^{\prime}}^{\prime}$ be an orthonormal basis of S^{\prime}. Show that the linear map

$$
A: S \rightarrow S^{\prime} \text { defined by } A\left(e_{i}\right)=\sum_{j=1}^{h^{\prime}}\left\langle e_{j}^{\prime}, e_{i}\right\rangle e_{j}^{\prime}, \text { with } i=1, \ldots, h
$$

is a G-map.

Exercise 5.2 Decompose $\mathbb{C}^{S_{3}}$ as a direct orthogonal sum of irreducible unitary representations. Hint: Consider the constant function, the sign function, and the action of S_{3} on the vertices of a regular triangle, which is defined by $\operatorname{conv}\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\}$.

Exercise 5.3 Let G be a finite group. Then $f \in \mathbb{C}^{G}$ defines the group determinant $\operatorname{det} M_{f}$ where

$$
M_{f}=\left(f\left(x y^{-1}\right)\right)_{x, y \in G}
$$

Show that the group determinant M_{f} factors as follows:

$$
\operatorname{det} M_{f}=\prod_{\pi \in \widehat{G}} \operatorname{det}(\widehat{f}(\pi))^{d_{\pi}}
$$

Exercise 5.4 Use Exercise 5.3 to give formulas for the determinants of the following matrices with complex entries:

$$
\left(\begin{array}{ccccc}
x_{0} & x_{n-1} & \ldots & x_{2} & x_{1} \\
x_{1} & x_{0} & \ldots & x_{3} & x_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{n-2} & x_{n-3} & \ldots & x_{0} & x_{n-1} \\
x_{n-1} & x_{n-2} & \ldots & x_{1} & x_{0}
\end{array}\right) \quad\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{6} & x_{5} \\
x_{2} & x_{1} & x_{5} & x_{6} & x_{4} & x_{3} \\
x_{3} & x_{6} & x_{1} & x_{5} & x_{2} & x_{4} \\
x_{4} & x_{5} & x_{6} & x_{1} & x_{3} & x_{2} \\
x_{5} & x_{4} & x_{2} & x_{3} & x_{1} & x_{6} \\
x_{6} & x_{3} & x_{4} & x_{2} & x_{5} & x_{1}
\end{array}\right)
$$

"Hand-in": Until Thursday November 7, 10 am, using the form on the course homepage.

