

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20

— Exercise Sheet 6 —

**Exercise 6.1** Show that  $\operatorname{Harm}_k \subseteq \mathbb{C}[x_1, x_2]_k$  is spanned by the polynomials

 $(x_1 + ix_2)^k$  and  $(x_1 - ix_2)^k$ .

**Exercise 6.2** Show that  $C \subseteq S^{n-1}$  is a spherical *t*-design if and only if for all  $f \in \operatorname{Harm}_k$  with  $k \in \{1, \ldots, t\}$  we have  $\sum_{x \in C} f(x) = 0$ .

**Exercise 6.3** Prove the following linear programming bound for spherical *t*-designs: Let  $C \subseteq S^{n-1}$  be a spherical *t*-design. Suppose there is a polynomial *h* such that

(i)  $h(u) \ge 0$  for all  $u \in [-1, 1]$ ,

(ii) 
$$h(u) = P_0^n(u) + \sum_{k=1}^d \alpha_k P_k^n(u)$$
 with  $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$  and with  $\alpha_{t+1}, \ldots, \alpha_d \leq 0$ ,

holds. Then,  $|\mathcal{C}|$  is at least h(1).

**Exercise 6.4** Compute the linear programming bound numerically for spherical *t*-designs with parameters n = 2, ..., 12 and t = 4, 5, 6.

"Hand-in": Until Thursday November 28, 10 am, using the form on the course homepage.