

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20

— Exercise Sheet 7 —

Exercise 7.1 For an orthonormal basis e_1, \ldots, e_{h_k} of H_k we define the zonal spherical function

$$z_k: S^{n-1} \times S^{n-1} \to \mathbb{C}$$
 by $z_k(x,y) = \sum_{i=1}^{h_k} e_i(x) \overline{e_i(y)}.$

Show:

- (a) z_k does not dependent on the choice of the orthonormal basis of H_k .
- (b) For all $A \in O(n)$ and for all $x, y \in S^{n-1}$ we have $z_k(Ax, Ay) = z_k(x, y)$.

Exercise 7.2 Compute Δf for

$$f(x_1, \dots, x_n) = \sum_{i=0}^{k/2} c_i x_1^{k-2i} (x_2^2 + \dots + x_n^2)^i.$$

Exercise 7.3 Let G = (V, E) be a graph.

- (a) Assume that G is k-regular. Show that the multiplicity of λ_1 , the largest eigenvalue of the adjacency matrix of G, equals the number of connected components of G.
- (b) Suppose there are r vertices which all have the same neighbours. Show that 0 is an eigenvalue of the adjacency matrix of G which has multiplicity at least r 1.

Exercise 7.4 Let G = (V, E) be a graph.

- (a) Show that there is a non-negative eigenvector for $\lambda_1(G)$, the largest eigenvalue of the adjacency matrix of G.
- (b) Let G' be a subgraph of G. Show that $\lambda_1(G') \leq \lambda_1(G)$.

"Hand-in": Until Thursday December 5, 10 am, using the form on the course homepage.