Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20
— Exercise Sheet 7 -

Exercise 7.1 For an orthonormal basis $e_{1}, \ldots, e_{h_{k}}$ of H_{k} we define the zonal spherical function

$$
z_{k}: S^{n-1} \times S^{n-1} \rightarrow \mathbb{C} \quad \text { by } \quad z_{k}(x, y)=\sum_{i=1}^{h_{k}} e_{i}(x) \overline{e_{i}(y)}
$$

Show:
(a) z_{k} does not dependent on the choice of the orthonormal basis of H_{k}.
(b) For all $A \in \mathrm{O}(n)$ and for all $x, y \in S^{n-1}$ we have $z_{k}(A x, A y)=z_{k}(x, y)$.

Exercise 7.2 Compute Δf for

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k / 2} c_{i} x_{1}^{k-2 i}\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)^{i}
$$

Exercise 7.3 Let $G=(V, E)$ be a graph.
(a) Assume that G is k-regular. Show that the multiplicity of λ_{1}, the largest eigenvalue of the adjacency matrix of G, equals the number of connected components of G.
(b) Suppose there are r vertices which all have the same neighbours. Show that 0 is an eigenvalue of the adjacency matrix of G which has multiplicity at least $r-1$.

Exercise 7.4 Let $G=(V, E)$ be a graph.
(a) Show that there is a non-negative eigenvector for $\lambda_{1}(G)$, the largest eigenvalue of the adjacency matrix of G.
(b) Let G^{\prime} be a subgraph of G. Show that $\lambda_{1}\left(G^{\prime}\right) \leq \lambda_{1}(G)$.
"Hand-in": Until Thursday December 5, 10 am, using the form on the course homepage.

