

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Dr. A. Gundert A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20

— Exercise Sheet 8 —

Exercise 8.1 Let G = (V, E) be a connected, k-regular graph with n vertices and let

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$$

be the eigenvalues of the adjacency matrix of G. Show that the following three statements are equivalent:

- (a) G is bipartite,
- (b) $\lambda_i = -\lambda_{n-i}$ for $i = 1, \ldots, n$,
- (c) $\lambda_n = -k$.

Exercise 8.2 The *k*-th power of a graph *G*, denoted by G^k , is a graph with the same vertex set as *G* and two vertices u, v are adjacent in G^k if and only if there is a path from *u* to *v* with at most *k* edges. Show that for fixed *k* the family of *k*-th graph powers of cycle graphs C_n^k is *not* a family of expanders.

Exercise 8.3 Consider the additive group $G = (\mathbb{Z}/2\mathbb{Z})^n = \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$. The cube graph Q_n has vertex set G and two vertices $x, y \in G$ are adjacent if and only if their sum $x + y \in G$ has exactly one non-zero coordinate. Compute the spectral gap of Q_n .

Exercise 8.4 Let G = (V, E) be a k-regular graph. Show that for any $U \subseteq V$ the inequality

$$\left| |\delta(U)| - \frac{k|U||V \setminus U|}{|V|} \right| \le \lambda_2 \sqrt{|U||V \setminus U|}$$

holds.

"Hand-in": Until Thursday December 12, 10 am, using the form on the course homepage.