Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20
— Exercise Sheet 8 -

Exercise 8.1 Let $G=(V, E)$ be a connected, k-regular graph with n vertices and let

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

be the eigenvalues of the adjacency matrix of G. Show that the following three statements are equivalent:
(a) G is bipartite,
(b) $\lambda_{i}=-\lambda_{n-i}$ for $i=1, \ldots, n$,
(c) $\lambda_{n}=-k$.

Exercise 8.2 The k-th power of a graph G, denoted by G^{k}, is a graph with the same vertex set as G and two vertices u, v are adjacent in G^{k} if and only if there is a path from u to v with at most k edges. Show that for fixed k the family of k-th graph powers of cycle graphs C_{n}^{k} is not a family of expanders.

Exercise 8.3 Consider the additive group $G=(\mathbb{Z} / 2 \mathbb{Z})^{n}=\mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$. The cube graph Q_{n} has vertex set G and two vertices $x, y \in G$ are adjacent if and only if their sum $x+y \in G$ has exactly one non-zero coordinate. Compute the spectral gap of Q_{n}.

Exercise 8.4 Let $G=(V, E)$ be a k-regular graph. Show that for any $U \subseteq V$ the inequality

$$
\left||\delta(U)|-\frac{k|U||V \backslash U|}{|V|}\right| \leq \lambda_{2} \sqrt{|U||V \backslash U|}
$$

holds.
"Hand-in": Until Thursday December 12, 10 am, using the form on the course homepage.

