Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics

Wintersemester 2019/20
— Exercise Sheet 9 -

Exercise 9.1

(a) Numerically compute an eigenvector g for the second smallest eigenvalue $3-\lambda_{2}$ of the Laplacian of the vertex-edge graph of the truncated icosahedron (football):

(from https://en.wikipedia.org/wiki/Fullerene)
(b) Use g to find (e.g., by computer) a set $U \subseteq V$ with $\delta(U) /|U| \leq \sqrt{6\left(3-\lambda_{2}\right)}$.
(c) Can you also compute the expansion of this graph?

Exercise 9.2 Let G be a k-regular graph on n vertices with adjacency matrix A.
(a) Show that $\operatorname{Tr}\left(A^{2}\right) \geq n k$.
(b) Using (a), show that $\lambda_{2}(A) \geq \sqrt{k \cdot \frac{n-k}{n-1}}$.

Exercise 9.3 Let G be a simple, k-regular graph and let $A_{r} \in \mathbb{R}^{V \times V}$ as in the lecture:

$$
\left(A_{r}\right)_{i, j}=\text { number of paths }\left(i, x_{1}, x_{2}, \ldots, x_{r-1}, j\right) \text { without backtracking. }
$$

Show that $A_{1} A_{r}=A_{r} A_{1}=A_{r+1}+(k-1) A_{r-1}$ for $r \geq 2$.

Exercise 9.4 For a non-singular 2×2-matrix A over $\mathbb{Z}_{n}, b \in \mathbb{Z}_{n}^{2}$ and $f \in \mathbb{C}^{\mathbb{Z}}{ }_{n}^{2}$, let $g \in \mathbb{C}_{n}^{2}$ with $g(x)=f(A x+b)$. Show:

$$
\hat{g}(y)=e^{-\frac{2 \pi i\left\langle A^{-1} b, y\right\rangle}{n}} \hat{f}\left(\left(A^{-1}\right)^{\top} y\right)
$$

"Hand-in": Until Thursday December 19, 10 am, using the form on the course homepage.

