Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
Dr. A. Gundert
A. Heimendahl

Methods and problems in discrete mathematics
Wintersemester 2019/20
— Exercise Sheet 10 -

Exercise 10.1 Consider the set $X=\{1,2, \ldots, n\}$ and the set of pairs $P=\{(i, j): i, j \in X, i<j\}$. Every $p \in \mathbb{R}^{P}$ defines a symmetric function $d_{p} \in \mathbb{R}^{X \times X}$ by

$$
d_{p}(i, j)= \begin{cases}p(i, j) & \text { if } i<j \\ 0 & \text { if } i=j \\ p(j, i) & \text { if } i>j\end{cases}
$$

Let

$$
M_{n}=\left\{p \in \mathbb{R}^{P}: d_{p} \text { is a pseudometric on } X\right\}
$$

where a non-negative and symmetric function $d \in \mathbb{R}^{X \times X}$ is a pseudometric if $d(x, x)=0$ for all $x \in X$ and d satisfies the triangle inequality.
Show that M_{n} is a polyhedral cone. Sketch the cone M_{3} and determine its extreme rays.

Exercise 10.2 Let (X, d), with $X=\left\{x_{1}, \ldots, x_{n}\right\}$, be a finite metric space. Show that

$$
c_{2}(X, d) \geq \max _{Y \in \mathcal{S}_{+}^{n}, Y e=0} \sqrt{\frac{\sum_{i j: Y_{i j}>0} Y_{i j} d\left(x_{i}, x_{j}\right)^{2}}{-\sum_{i j: Y_{i j}<0} Y_{i j} d\left(x_{i}, x_{j}\right)^{2}}},
$$

where $e=(1, \ldots, 1)^{\top}$.
Exercise 10.3 What is the minimal distortion embedding of the Petersen graph?

Exercise 10.4 Consider the symmetric group S_{n}. The graph G_{n} has vertex set $V=S_{n}$, and two vertices $\sigma, \pi \in S_{n}$ are adjacent if and only if σ is the composition of π and a transposition that swaps consecutive elements. What is the minimal distortion embedding of G_{4} ?
"Hand-in": Until Thursday January 9, 10 am, using the form on the course homepage.

