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Exercise 12.1 For two non-zero vectors x, y ∈ Rr show:
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(b) ‖x‖ ·
∥∥∥ x
‖x‖ −
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‖y‖

∥∥∥ ≤ 2‖x− y‖.

Exercise 12.2 Let G = (V,E) be a k-regular graph without loops and let V = U1∪̇U2∪̇ . . . ∪̇Ur be
a partition.

(a) Let f be a linear combination of the characteristic vectors of the Ui. Show:

〈∆f, f〉
〈f, f〉

≤ 2 · max
i=1...,r

φG(Ui).

(b) Show that k−λr

2 ≤ k · ρG(r) for the r-th largest eigenvalue λr of the adjacency matrix of G.

Exercise 12.3 Consider the random clustering algorithm described in the lecture. Show that the
probability that a partition is formed after N rounds is at least

1− n
(
n− 1

n

)N
,

where n is the number of points to be clustered.

Exercise 12.4 Describe the algorithm behind the proof of the higher order Cheeger inequality.

“Hand-in”: Until Thursday January 23, 10 am, using the form on the course homepage.


