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A few words on quasirandomness



Quasirandom objects

Intuitively, quasirandom objects are those that behave like a random
object of the same type.

Main idea: We first identify the most important characteristics of a
random mathematical object, and then define a quasirandom object
of this type as one which shares these same characteristics.

This characteristic is usually related to the lack of correlation
between distinct sub-parts of the object considered, which gives it
strong uniformity properties.
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Quasirandom objects

Motivation: Random objects are usually much easier to analyze, as
their properties are highly concentrated around their mean (which is
simple to compute).

In general, there are several decomposition theorems which allow us
to decompose any object into a highly structured component and a
quasirandom component (with possibly a small error term).

This is known in combinatorics as the dichotomy between structure
and randomness, and is an essential ingredient to prove several very
general results.

3



Asymptotic equivalence

We will show many natural “quasirandom properties” are roughly
equivalent, in the following sense:

Definition: We say a property P1 = P1(c1) is asymptotically equivalent
to a property P2 = P2(c2) if:

• ∀c1 > 0 ∃c2 > 0 : P2(c2) ⇒ P1(c1)
• ∀c2 > 0 ∃c1 > 0 : P1(c1) ⇒ P2(c2)

Example: Consider P1 : (x− 2)2 ≤ c1 and P2 : |x2 − 4| ≤ c2

• P1 and P2 are asymptotically equivalent for x ∈ R≥0

• P1 and P2 are not asymptotically equivalent for x ∈ R
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General notation

We write x = a± b to denote that a− b ≤ x ≤ a+ b.

We use the expected value to denote average over a finite set, i.e.

Ex∈X[ f(x) ] :=
1
|X|

∑
x∈X

f(x)

We usually identify a set with its indicator function: given a set A, we
write

A(x) :=
{
1 if x ∈ A
0 if x /∈ A
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Quasirandom graphs



Introduction

First and most well-known quasirandomness concept in combinato-
rics, which formally introduced the notion of quasirandom objects
and motivated its study in other settings.

It was first introduced by Chung, Graham and Wilson in 1989, when
they showed that several different-looking properties usually
satisfied by random graphs are actually all roughly equivalent.

Intuition: A graph is quasirandom if its edge distribution resembles
the one of a truly random graph with the same edge density.
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Random graphs

The basic model of random graphs with edge density p is the
Erdös-Rényi random graph G(n,p):

A graph on n vertices where every pair of vertices has probability
p of being an edge, all choices independent.

Important property: The edges are distributed very uniformly.

Definition: Given a graph G and two sets A,B ⊆ V(G), we define the
cut between A and B in G as

EG(A,B) := {(x, y) ∈ A× B : xy ∈ E(G)}
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Random graphs

For the Erdös-Rényi random graph G = G(n,p):

Each one of the |A||B| pairs (x, y) ∈ A× B has probability p of
being in G(n,p), so the expected size of EG(A,B) is

E

∑
x∈A

∑
y∈B

G(x, y)

 =
∑
x∈A

∑
y∈B

P (G(x, y) = 1) = p|A||B|

The actual number of edges in this cut is highly concentrated
around their mean p|A||B|, with error o(n2).

If a graph satisfies this uniform distribution of edges over all cuts, we
say it is quasirandom.

Notation: For a graph G, we denote its number of edges by |G| and
its number of vertices by v(G).
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Quasirandom graphs

Theorem (Chung, Graham, Wilson):
Let G be a graph with n vertices and edge density p. Then the
following statements are asymptotically equivalent:

(i) For any two subsets A,B ⊆ V(G), the size of the cut EG(A,B)
differs from p|A||B| by at most c1n2

(ii) The number of labelled copies of any given graph F in G differs
from p|F|nv(F) by at most c2|F|nv(F)

(iii) The number of labelled 4-cycles in G is at most (p4 + c3)n4

(iv) The largest eigenvalue of the adjacency matrix of G is (p± c4)n,
and all other eigenvalues are at most c4n in absolute value
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Remarks

These properties are all satisfied by the Erdös-Rényi random graph
with high probability:

• As discussed, the size of the cut EG(A,B) is highly concentrated
around its mean p|A||B|.

• There are nv(F) ways of choosing in the vertices for a copy of F in
G(n,p), and each of the |F| edges have probability p of being in
G(n,p). The expected number of copies of F is then p|F|nv(F), and
it will be very close to the mean with high probability.

• Item (iv) is a well-known property of random symmetric
matrices, and for graphs it is related to the spectral properties
of edge expansion we have seen earlier in the course.
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Cut norm

Intuition: The cut norm measures the discrepancy of the edge
distribution of the graph, that is, how far from uniform the edge
distribution is.

For graphs: It measures how much the size of a cut EG(A,B) can
deviate from its “expected” value p|A||B|, over all sets A,B ⊆ V:

1
|V|2 max

A,B⊆V
||EG(A,B)| − p|A||B||

It is convenient to first “balance” the graph by subtracting its density,
considering instead of the graph G its balanced function fG := G− p.
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Cut norm

Definition: Given a function f : V× V→ R, its cut norm is

∥ f ∥□ =
1

|V|2 max
A,B⊆V

∣∣∣∣∣∣
∑
x∈A

∑
y∈B

f(x, y)

∣∣∣∣∣∣
= max

A,B⊆V
|Ex,y∈V [ f(x, y)1A(x)1B(y) ]|

Remark: For any functions u, v : V→ [0, 1] we have that

|Ex,y∈V [ f(x, y)u(x)v(y) ]| ≤ ∥ f ∥□

With this notation, item (i) becomes ∥G− p∥□ ≤ c1.
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Homomorphism densities

Homomorphism densities are a convenient way of counting copies of
small graphs inside large graphs.

Definition: The homomorphism density of a graph F in a graph G,
denoted t(F,G), is the probability that a randomly chosen map
ϕ : V(F) → V(G) preserves edges:

t(F,G) = Px1,...,xv(F)∈V(G)
(
xixj ∈ E (G) whenever ij ∈ E (F)

)
= Ex1,...,xv(F)∈V(G)

 ∏
ij∈E(F)

G(xi, xj)


With this notation, items (ii) and (iii) become t(F,G) = p|F| ± c2|F| and
t(C4,G) ≤ p4 + c3, respectively.
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Quasirandom graphs (again)

Theorem (Chung, Graham, Wilson):
Let G be a graph with n vertices and edge density p. Then the
following statements are asymptotically equivalent:

(i) G has low discrepancy: ∥G− p∥□ ≤ c1
(ii) G correctly counts all graphs: t(F,G) = p|F| ± c2|F| for all F
(iii) G has few 4-cycles: t(C4,G) ≤ p4 + c3
(iv) Only the first eigenvalue matters: λ1 = (p± c4)n, |λ2| ≤ c4n
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Uniformity and quasirandomness
in additive groups



Additive groups

Another fruitful setting for studying quasirandomness is subsets of
additive groups, which are the main object of study in additive
combinatorics.

Definition: An additive group is any Abelian group G with group
operation +.

Remark: All additive groups we consider here will be finite.
While perhaps the most important additive group is Z, it can be
studied by analyzing ZN for N large enough.

Intuition: Quasirandom sets are those which have many of the same
properties as a randomly chosen set of the same density.

An interesting way of measuring this is using the Fourier transform.
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Fourier analysis on additive groups

Quick recap:

• The characters of an additive group G are the group homo-
morphisms from G to C× (the complex multiplicative group).

• They form a group (with pointwise multiplication) called the
dual group of G, and denoted by Ĝ.

• They also form an orthonormal basis of CG, with inner product
given by ⟨ f,g ⟩L2(G) := Ex∈G[ f(x)g(x) ].

Definition: Given a function f : G→ C, we define its Fourier
transform f̂ : Ĝ→ C by

f̂(γ) := ⟨ f, γ ⟩L2(G) = Ex∈G[ f(x)γ(x) ]
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Fourier analysis on additive groups

Example: If G = Zn, we have the usual discrete Fourier transform. In
this case:

• The characters are χr : x 7→ e2πirx/n, for r ∈ Zn
• The Fourier transform is given by f̂(χr) = Ex∈Zn [ f(x)e−2πirx/n ]

Remark: Together with the fundamental theorem of finite Abelian
groups, this example gives an explicit formula for the characters and
the Fourier transform in any additive group G. However, we will not
need such an explicit description here.
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Fourier analysis on additive groups

While G and Ĝ are isomorphic, it is convenient to use different
measures on them:

• For G we use the normalized measure Ex∈G, and denote the
associated Euclidean space CG by L2(G).

• For Ĝ we use the counting measure
∑

γ∈Ĝ, and denote the
associated Euclidean space CĜ by ℓ2(Ĝ).

This way, the Fourier transform is an isometry from L2(G) to ℓ2(Ĝ).

Since the characters form an orthonormal basis of L2(G), we have

f(x) =
∑
γ∈Ĝ

⟨ f, γ ⟩L2(G)γ(x) =
∑
γ∈Ĝ

f̂(γ)γ(x)
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Quasirandomness and uniformity

Connection to quasirandomness:

The Fourier transform of a function f evaluated at a character γ gives
how much f correlates with γ.

As the characters of G encode the additive structure of the group,
correlation with a (non-trivial) character is a good measure of how
much additive structure a given function or set has.

Definition: A function f : G→ R is said to be linear ϵ-uniform if
| f̂(γ) | ≤ ϵ for all γ ∈ Ĝ \ {1}. A set A ⊆ G is linear ϵ-uniform if its
indicator function is.
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Uniform subsets of G

Theorem (Chung, Graham):
Let G be an additive group of order n and let A ⊆ G be a set of size
|A| = αn. Then the following are asymptotically equivalent:

(i) Fourier coefficients: |Â(γ)| ≤ c1 for all non-trivial characters γ
(ii) Additive quadruples: There are at most (α4 + c2)n3 solutions in A

of the equation x+ y = z+ w
(iii) Strong translation: For all sets B ⊆ G, all but at most c3n

elements x ∈ G satisfy |A ∩ (B+ x)| = α|B| ± c3n
(iv) Weak translation: All but at most c4n elements x ∈ G satisfy

|A ∩ (A+ x)| = α2n± c4n
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The U2 uniformity norm

For the proof of the theorem it is useful to introduce a new norm
which measures the uniformity of a function:

Definition: Given a real function f : G→ R, we define its U2 norm by

∥ f ∥4U2(G) := Ex,h1,h2∈G [ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) ]

Note: This is the weighted count of additive quadruples x+ y = z+w.

Connection to the Fourier transform:
For all real functions f : G→ R, we have ∥ f ∥U2(G) = ∥ f̂ ∥ℓ4(Ĝ).

The proof is a simple application of the orthogonality relations of
characters: Ex∈G [γ(x)] = 1{γ=1},

∑
γ∈Ĝ γ(x) = |G|1{x=0}.
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The U2 uniformity norm

∥ f ∥U2(G) := Ex,h1,h2∈G [ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) ]1/4

Analogously to Euclidean spaces, we can define an inner product of
second order by

⟨ f1, f2, f3, f4 ⟩U2(G) = Ex,h1,h2∈G [ f1(x)f2(x+ h1)f3(x+ h2)f4(x+ h1 + h2) ] ,

and with this inner product we have ∥ f ∥U2(G) = ⟨ f, f, f, f ⟩1/4U2(G).

Lemma (Gowers-Cauchy-Schwarz inequality):
For any functions f1, f2, f3, f4 : G→ R we have

⟨ f1, f2, f3, f4 ⟩U2(G) ≤ ∥ f1 ∥U2(G)∥ f2 ∥U2(G)∥ f3 ∥U2(G)∥ f4 ∥U2(G)
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Uniform subsets of G (again)

Theorem (Chung, Graham):
Let G be an additive group of order n and let A ⊆ G be a set of size
|A| = αn. Then the following are asymptotically equivalent:

(i) Fourier coefficients: |Â(γ)| ≤ c1 for all non-trivial characters γ
(ii) Additive quadruples: There are at most (α4 + c2)n3 solutions in A

of the equation x+ y = z+ w, or ∥A∥4U2(G) ≤ α4 + c2
(iii) Strong translation: For all sets B ⊆ G, all but at most c3n

elements x ∈ G satisfy |A ∩ (B+ x)| = α|B| ± c3n
(iv) Weak translation: All but at most c4n elements x ∈ G satisfy

|A ∩ (A+ x)| = α2n± c4n
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Cayley graphs

Definition: Given a subset A ⊆ G, we define its Cayley graph ΓA by

V(ΓA) = G, E(ΓA) = {xy : x+ y ∈ A}

Remark: This is slightly different from the usual definition of a
Cayley graph, but is more convenient for us.

Lemma: A set A ⊆ G is linear uniform if and only if its Cayley graph
ΓA is quasirandom.
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Counting linear patterns in A

We have seen that linear uniformity suffices for us to count additive
quadruples in A:

If A is linear ϵ-uniform, then it contains between α4n3 and
(α4 + ϵ2)n3 solutions to the equation x+ y = z+ w.

What other linear patterns can we count in A by knowing it is linear
uniform?

Lemma: Let G be an additive group of odd order and suppose A ⊆ G
is linear ϵ-uniform. Then there are between (α3 − ϵ)n2 and (α3 + ϵ)n2
3-term arithmetic progressions in A.
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Higher degree uniformity and Gowers norms

For more complicated patterns, we need to define stronger norms
which control a stronger form of quasirandomness:

Linear uniformity:

∥ f ∥4U2(G) := Ex,h1,h2∈G [ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) ]

Counts the (weighted) number of additive quadruples, or squares.

Quadratic uniformity:

∥ f ∥8U3(G) := Ex,h1,h2,h3∈G[ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

× f(x+ h3)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3) ]

Counts the weighted number of parallelepipeds.
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Higher degree uniformity and Gowers norms

In general, for every k ≥ 2 we can define the uniformity norm of
degree k by

∥ f ∥2
k

Uk(G) := Ex,h1,...,hk∈G

 ∏
ω∈{0,1}k

f(x+ ω · h)

 ,
where ω · h := ω1h1 + · · ·+ ωkhk.

Remark: If A ⊆ G is a set, then

∥A∥2
k

Uk(G) = Px,h1,...,hk∈G
(
x+ {0, 1}k · (h1, . . . ,hk) ⊆ A

)
is the proportion of parallelepipeds of dimension k contained in A.
By Cauchy-Schwarz, this value is at least α2k .
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Higher degree uniformity and Gowers norms

Quadratic uniformity suffices to count how many 4-term arithmetic
progressions (x, x+ r, x+ 2r, x+ 3r) are contained in A:

Ex,r∈G [A(x)A(x+ r)A(x+ 2r)A(x+ 3r) ] = α4 ± 4 ∥A− α ∥U3(G)

In general, uniformity of degree k is sufficient to count (k+ 2)-term
arithmetic progressions in A, as well as several other linear patterns
said to have complexity at most k.

Application: Green and Tao used such a result to compute the
asymptotic number of solutions to systems of linear equations
inside the first n primes.

Linear equations in primes (Annals of Mathematics, 2010)
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Quasirandomness in hypergraphs



Hypergraphs

Hypergraphs are the natural generalization of graphs where edges
can contain more than two vertices.

Definition: For k ≥ 2, a k-uniform hypergraph (or k-graph) H is given
by a vertex set V(H) and an edge set E(H) ⊆

(V(H)
k
)
(i.e. the k-element

subsets of V(H)). We usually identify H with its edge set E(H), and
denote the number of vertices of H by v(H).

As with graphs, quasirandom hypergraphs are those whose edge
distribution resembles the one of a truly random hypergraph of the
same edge density.
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Random hypergraphs

First of all, how do we “naturally” choose a random hypergraph?
And what would be a good measure of quasirandomness?

For graphs (2-uniform hypergraphs):

• Model of random graph G(n,p): n vertices, each pair of vertices
has probability p of being an edge

• For a two-variable function f : V× V→ R we define the cut norm

∥ f ∥□ = max
A,B⊆V

|Ex,y∈V [ f(x, y)A(x)B(y) ]|

• A graph G with edge density p is ϵ-quasirandom if ∥G− p∥□ ≤ ϵ

(meaning the edges are uniformly distributed inside all cuts)

• If G is quasirandom, then it contains about nv(F)p|F| copies of any
graph F as a subgraph
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Random hypergraphs

Let us then try to generalize these notions to higher hypergraphs:

For 3-uniform hypergraphs:

• Model of random hypergraphs: n vertices, each triple of vertices
has probability p of being an edge

• For a three-variable function f : V× V× V→ R define

∥ f ∥□3
1
= max

A,B,C⊆V
|Ex,y,z∈V [ f(x, y, z)A(x)B(y)C(z) ]|

• Let us say that a 3-uniform hypergraph H with edge density p is
ϵ-quasirandom if ∥H− p∥□3

1
≤ ϵ

• Then the random hypergraph defined is very quasirandom w.h.p,
and it contains about nv(F)p|F| copies of any hypergraph F
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Random hypergraphs

There is another natural way of choosing a random 3-uniform
hypergraph, which is by making random choices at the second level
instead of the third:

First pick a random graph G = G(n, 1/2), then let H be the
hypergraph corresponding to the triangles in G.

This random hypergraph H will indeed be very quasirandom by our
earlier definition, but the counting lemma does not hold!

Example: Let F be the 3-uniform hypergraph on four vertices with
two edges. Then the number of copies of F we would expect to find
in H is about n4/64, while its true number is about n4/32.
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Random hypergraphs

The problem: The hypergraph F considered has edges intersecting at
two vertices, while the cut norm used measures correlation with
functions of one vertex at a time.

If we consider only linear hypergraphs, i.e. those where any two
edges share at most one vertex, then this issue does not happen.

In order to control the number of copies of all 3-graphs, we need to
consider the following stronger norm to measure quasirandomness:

∥ f ∥□3
2
= max

A,B,C⊆V×V
|Ex,y,z∈V [ f(x, y, z)A(x, y)B(x, z)C(y, z) ]|
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Random hypergraphs

In general, to choose a random k-graph H we can make random
choices at any level 2 ≤ j ≤ k, or any subset of them:

Randomness at level j:
Pick each j-set f ∈

(V(H)
j
)
at random with probability pj, and let

e ∈
(V(H)

k
)
be an edge iff all its j-subsets f ∈

(e
j
)
were chosen.

Example: To choose a random 3-graph H on the vertex set V, pick:
• A random subset G(2) ⊆

(V
2
)
of all pairs of vertices (each being in

G(2) with probability p2);
• A random subset G(3) ⊆

(V
3
)
of all triples of vertices (each being

in G(3) with probability p3).
Then {x, y, z} ∈

(V
3
)
is an edge of H iff {x, y, z} ∈ G(3) and each pair

{x, y}, {x, z}, {y, z} is in G(2).
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Quasirandom hypergraphs

For each level of randomness in the choice of a random k-graph
there is an associated notion of quasirandomness.

Intuition: For 1 ≤ d ≤ k− 1, we say a k-graph H is quasirandom of
order d+ 1 if it does not correlate with any structure of order d.

Definition: Given a function f : V[k] → R and an integer 1 ≤ d ≤ k− 1,
we define the (k,d)-cut norm of f by

∥ f ∥□k
d
:= max

uB:VB→[0,1], ∀B∈([k]d )

∣∣∣∣∣∣∣Ex∈V[k]
 f(x) ∏

B∈([k]d )

uB(xB)


∣∣∣∣∣∣∣

Notation: Given a k-tuple x ∈ V[k] and a subset B ⊆ [k], we denote by
xB := (xi : i ∈ B) the projection of x into its B-coordinates.
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Quasirandom hypergraphs

∥ f ∥□k
d
:= max

uB:VB→[0,1], ∀B∈([k]d )

∣∣∣∣∣∣∣Ex∈V[k]
 f(x) ∏

B∈([k]d )

uB(xB)


∣∣∣∣∣∣∣

We say that a k-graph H of edge density p is ϵ-quasirandom of order
d+ 1 if ∥H− p ∥□k

d
≤ ϵ.

For random hypergraphs:

If all levels of randomness involved in the choosing of a random
hypergraph H are ≥ d, then H will be quasirandom of order d w.h.p.

If there is a non-trivial level of randomness smaller than d, then H
will not be quasirandom of order d.
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Counting subhypergraphs

What kind of information can we obtain from quasirandomness?

Definition: Let H and F be two k-uniform hypergraphs. The homo-
morphism density of F in H is the probability that a randomly chosen
map ϕ : V(F) → V(H) preserves edges:

t(F,H) = Px1,...,xv(F)∈V(H) ({xi : i ∈ e} ∈ E(H) for all e ∈ E(F))

= Ex∈V(H)V(F)

 ∏
e∈E(F)

H(xe)


Remark: This is essentially the (normalized) number of copies of F
inside H.
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d-linear hypergraphs

As noted before, quasirandomness of order 2 suffices to control the
number of linear hypergraphs. In general, quasirandomness of order
d+ 1 suffices to control the number of d-linear hypergraphs:

Definition: Let d < k be positive integers. We say that a k-graph H is
d-linear if every pair of edges intersect in at most d vertices.
We denote the set of all d-linear k-graphs by L(k)

d .

Counting lemma for quasirandomness of order d+ 1:

For any k-uniform hypergraph H and any 0 ≤ p ≤ 1, we have that

t(F,H) = p|F| ± |F| · ∥H− p ∥□k
d

∀F ∈ L(k)
d

38



Necessity of d-linearity

We can generalize our previous example to show the assumption of
d-linearity is necessary for the counting lemma:

Example: For 2 ≤ d ≤ k− 1, let F be the connected k-graph on 2k− d
vertices and two edges. Note that F is d-linear.

Choose a random subset G(d) ⊆
(V
d
)
of all d-tuples of vertices, each

being in G(d) with probability 1/2, and let H be the random k-graph
on V where {x1, . . . , xk} ∈

(V
k
)
is an edge of H iff all its d-element

subsets are in G(d).

Then with high probability H will be o(1)-quasirandom of order d and
have density p = 2−(kd) + o(1), but

t(F,H) = 2−2(
k
d)+1 + o(1) ≈ 2p|F|
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Quasirandomness of order d+ 1

Theorem (Towsner):
Let H be a k-uniform hypergraph with edge density p. Then the
following statements are asymptotically equivalent:

(i) H is quasirandom of order d+ 1: ∥H− p∥□k
d
≤ c1

(ii) H correctly counts all d-linear hypergraphs:

t(F,H) = p|F| ± c2|F| ∀F ∈ L(k)
d

(iii) H correctly counts M(k)
d : t(M(k)

d ,H) = p|M
(k)
d | ± c3

Here M(k)
d is a specific d-linear hypergraph on k2(k−1

d ) vertices and 2(kd)
edges, constructed to model the applications of Cauchy-Schwarz
needed in the proof that (ii) implies (i).
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Strong quasirandomness

In order to control the number of every subhypergraph F in a k-graph
H, we need H to be quasirandom of order k.

We say that such hypergraphs are strongly quasirandom.

Example: The random k-graph chosen by picking each k-tuple of
vertices to be an edge independently with probability p will be
strongly quasirandom with high probability.

Kohayakawa, Rödl and Skokan showed that a k-graph being strongly
quasirandom is asymptotically equivalent to it having the almost
minimal number of copies of the k-octahedron Oct(k):

V = {x(0)1 , x(1)1 , . . . , x
(0)
k , x(1)k }, E =

{
{x(ω1)1 , . . . , x(ωk)

k } : ω ∈ {0, 1}k
}
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Strong quasirandomness

Theorem (Kohayakawa, Rödl, Skokan):
Let H be a k-uniform hypergraph with edge density p. Then the
following statements are asymptotically equivalent:

(i) H is strongly quasirandom: ∥H− p∥□k
k−1

≤ c1

(ii) H correctly counts all hypergraphs:

t(F,H) = α|F| ± c2|F| for all k-hypergraphs F

(iii) H has few octahedra: t(Oct(k),H) ≤ p2k + c3
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Octahedral norms

Definition: Given f : Vk → R, we define its octahedral norm by

∥ f ∥Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

f(x(ω))

1/2
k

,

where we write x(ω) := (x(ωi)
i )i∈[k].

Note that ∥ f ∥2kOctk = t(Oct(k), f) is the weighted count of k-octahedra.

It has an associated inner product of order k, denoted ⟨·⟩Octk , which
we define for functions fω : Vk → R, ω ∈ {0, 1}k, by

⟨(fω)ω∈{0,1}k⟩Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

fω(x(ω))
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Octahedral norms

⟨(fω)ω∈{0,1}k⟩Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

fω(x(ω))


With this inner product, we have ∥ f ∥2kOctk = ⟨ f, f, . . . , f ⟩Octk

Lemma (Gowers-Cauchy-Schwarz inequality):
For any collection of functions fω : Vk → R, ω ∈ {0, 1}k, we have

⟨(fω)ω∈{0,1}k⟩Octk ≤
∏

ω∈{0,1}k
∥ fω ∥Octk

Corollary: For all f : Vk → R we have that ∥ f ∥□k
k−1

≤ ∥ f ∥Octk .
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Comparing quasirandomness in
additive groups and in
hypergraphs



Cayley hypergraphs

Goal: To understand how the notions of quasirandomness for
additive groups and for hypergraphs relate to each other.

Definition: For a subset A ⊆ G of an additive group G, define the
k-uniform Cayley hypergraph H(k)A by:

V = G, E =
{
{x1, . . . , xk} ∈

(
G
k

)
: x1 + · · ·+ xk ∈ A

}

Remark: More generally, we can define a “Cayley-like hypergraph” for
any linear form ψ : Gk → G, or any system of such linear forms.

The theory is very similar, but with a heavier notation.
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Cayley hypergraphs

We have already seen a strong connection between linear uniform
sets and their associated Cayley graphs:

Lemma: A set A ⊆ G is linear uniform if and only if its Cayley graph
ΓA is quasirandom.

Today we will generalize this result and obtain a similar connection
between uniform sets of degree d and quasirandomness of order d
of their Cayley hypergraphs.

We will also see that such a condition gives a stronger control on the
count of subhypergraphs than what we have in general quasirandom
hypergraphs.
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Recap: Quasirandomness in hypergraphs

There are many different notions of quasirandomness associated
with k-uniform hypergraphs.

Intuition: For 1 ≤ d ≤ k− 1, we say a k-graph H is quasirandom of
order d+ 1 if it does not correlate with any structure of order d.

Definition: Given a function f : V[k] → R and an integer 1 ≤ d ≤ k− 1,
we define the (k,d)-cut norm of f by

∥ f ∥□k
d
:= max

uB:VB→[0,1], ∀B∈([k]d )

∣∣∣∣∣∣∣Ex∈V[k]
 f(x) ∏

B∈([k]d )

uB(xB)


∣∣∣∣∣∣∣

We say that a k-graph H of edge density p is ϵ-quasirandom of order
d+ 1 if ∥H− p ∥□k

d
≤ ϵ.
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Recap: Octahedral norms

There is another norm which measures (strong) quasirandomness,
called the octahedral norm.

Definition: Given f : Vk → R, we define its octahedral norm by

∥ f ∥Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

f(x(ω))

1/2
k

,

where we write x(ω) := (x(ωi)
i )i∈[k].

Note that the product is along all edges of the k-octahedron, so
∥ f ∥2kOctk = t(Oct(k), f) is the weighted count of k-octahedra.

Example: When k = 2 the octahedron is the 4-cycle:

V(Oct(2)) = {x(0), x(1), y(0), y(1)}

E(Oct(2)) = {{x(0), y(0)}, {x(0), y(1)}, {x(1), y(0)}, {x(1), y(1)}}
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Recap: Octahedral norms

There is another norm which measures (strong) quasirandomness,
called the octahedral norm.

Definition: Given f : Vk → R, we define its octahedral norm by

∥ f ∥Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

f(x(ω))

1/2
k

,

where we write x(ω) := (x(ωi)
i )i∈[k].

Note that the product is along all edges of the k-octahedron, so
∥ f ∥2kOctk = t(Oct(k), f) is the weighted count of k-octahedra.

Example: When k = 3 the octahedron is given by:

V(Oct(3)) = {x(0), x(1), y(0), y(1), z(0), z(1)}

E(Oct(3)) = {{x(ω1), y(ω2), z(ω3)} : ω1, ω2, ω3 ∈ {0, 1}}
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Recap: Octahedral norms

This norm has an associated inner product of order k, defined for 2k
functions fω : Vk → R, ω ∈ {0, 1}k, by

⟨(fω)ω∈{0,1}k⟩Octk := Ex(0),x(1)∈Vk

 ∏
ω∈{0,1}k

fω(x(ω))


With this inner product, we have ∥ f ∥2kOctk = ⟨ f, f, . . . , f ⟩Octk

Lemma (Gowers-Cauchy-Schwarz inequality):
For any collection of functions fω : Vk → R, ω ∈ {0, 1}k, we have

⟨(fω)ω∈{0,1}k⟩Octk ≤
∏

ω∈{0,1}k
∥ fω ∥Octk

Corollary: For all f : Vk → R we have that ∥ f ∥□k
k−1

≤ ∥ f ∥Octk .
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Recap: Quasirandomness in additive groups

Definition: Let G be an additive group and k ≥ 2. Given f : G→ R, we
define its uniformity norm of degree k by

∥ f ∥Uk := Ex,h1,...,hk∈G

 ∏
ω∈{0,1}k

f(x+ ω · h)

1/2
k

where ω · h := ω1h1 + · · ·+ ωkhk.
A set A ⊆ G of density α is ϵ-uniform of degree k if ∥A− α ∥Uk+1 ≤ ϵ.

Note: This is the weighted count of k-dimensional parallelepipeds.

Example: Linear uniformity (k = 2):

∥ f ∥4U2 := Ex,h1,h2∈G[ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2) ]
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Recap: Quasirandomness in additive groups

Definition: Let G be an additive group and k ≥ 2. Given f : G→ R, we
define its uniformity norm of degree k by

∥ f ∥Uk := Ex,h1,...,hk∈G

 ∏
ω∈{0,1}k

f(x+ ω · h)

1/2
k

where ω · h := ω1h1 + · · ·+ ωkhk.
A set A ⊆ G of density α is ϵ-uniform of degree k if ∥A− α ∥Uk+1 ≤ ϵ.

Note: This is the weighted count of k-dimensional parallelepipeds.

Example: Quadratic uniformity (k = 3):

∥ f ∥8U3 := Ex,h1,h2,h3∈G[ f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)
× f(x+ h3)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3) ]

50



Connecting the uniformity and octahedral norms

Definition: Given an integer k and an additive group G, we denote by
s : Gk → G its summing operator

s(x1, x2, . . . , xk) := x1 + x2 + · · ·+ xk

Remark: The indicator function of the Cayley hypergraph H(k)A can
be written as A ◦ s on Gk.

Lemma (Relationship between the Uk and Octk norms):
For every real function f : G→ R, we have that ∥ f ◦ s ∥Octk = ∥ f ∥Uk .

From this it easily follows that H(k)A is ϵ-quasirandom of order k− 1
whenever A is ϵ-uniform of degree k− 1.
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Connecting quasirandomness and uniformity

Theorem:
Let G be a finite additive group and A ⊆ G be a subset.

a) If A is ϵ-uniform of degree d, then for all k ≥ d+ 1 the Cayley
hypergraph H(k)A is ϵ-quasirandom of order d.

b) Conversely, if H(d+1)A is ϵ-quasirandom of order d, then A is
2ϵ1/2d+1-uniform of degree d.

The proof of the theorem relies on the translation invariance of the
properties considered:

Definition: Given a ∈ G, we define the translation operator T a on RG

by T af(x) := f(x+ a).

Claim: ∥H(k)T aA− α∥□k
d
= ∥H(k)A− α∥□k

d
, and ∥ T af ∥Ud = ∥ f ∥Ud .
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Counting subhypergraphs

From this theorem and the counting lemma proven last lecture, we
can count all d-linear hypergraphs inside Cayley hypergraphs of sets
that are uniform of degree d.

The extra symmetries satisfied by Cayley hypergraphs imply that
actually more is true.

Definition: Given 1 ≤ d < k, we say that a k-graph F is (d+ 1)-simple
if the following is true: for every edge e ∈ F, there exists a set of d+ 1
vertices {v1, . . . , vd+1} ⊆ e which is not contained in any other edge
of F (i.e. {v1, . . . , vd+1} ⊈ e′ ∀e′ ∈ F \ {e}).

We denote the set of all (d+ 1)-simple k-graphs by S(k)
d+1.
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(d+ 1)-simple hypergraphs

Recall a k-graph F is (d+ 1)-simple if: for every edge e ∈ F, there
exists a set of d+ 1 vertices not contained in any other edge of F.

All d-linear hypergraphs are (d+ 1)-simple, but the converse is false.

Examples:

• Let F be the connected k-graph on 2k− d vertices and two edges
(considered last lecture). Then F is only d-linear, but is 1-simple.

• The squashed octahedron Oct(k)d is defined by:

V =
{
x(0)1 , x(1)1 , . . . , x

(0)
d , x(1)d , y1, . . . , yk−d

}
E =

{
{x(ω1)

1 , . . . , x(ωd)
d , y1, . . . , yk−d} : ω ∈ {0, 1}d

}
It is only (k− 1)-linear, but is d-simple.
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Quasirandom Cayley hypergraphs

Theorem:
Let A ⊆ G be a set of density α in G. Then for every k ≥ d+ 1 the
following statements are asymptotically equivalent:

(i) A is uniform of degree d: ∥A− α∥Ud+1 ≤ c1

(ii) H(k)A correctly counts all (d+ 1)-simple k-graphs:

t(F,H(k)A) = α|F| ± c2|F| ∀F ∈ S(k)
d+1

(iii) H(k)A correctly counts Oct(k)d+1:

t(Oct(k)d+1,H
(k)A) = α2

d+1
± c3
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Final remarks

The ability to count all hypergraphs in S(k)
d+1 is due to some extra

symmetries satisfied by Cayley hypergraphs.

It can be shown that these (approximate) symmetries are in fact
necessary and sufficient for a large hypergraph to have the “correct”
count of all (d+ 1)-simple hypergraphs, or even only of Oct(k)d+1.

We can similarly study other hypergraphs associated to additive sets
by systems of linear equations. Our methods then allow us to count
the number of solutions to such systems inside the set considered.

The methods and results showed can be used to analyze arbitrary
objects, by the application of decomposition theorems.
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